

Voltage Comparator

OBSOLETE:

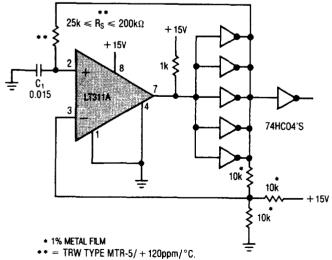
FOR INFORMATION PURPOSES ONLY

Contact Linear Technology for Potential Replacement

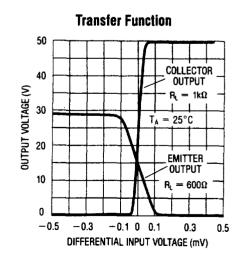
FEATURES

- Guaranteed Max Input Offset Voltage 1.0mV
- Guaranteed Max Input Offset Current 5nA
- Guaranteed Max Response Time 250nS
- Guaranteed Min. Voltage Gain 200,000
- ±30V Differential Input Voltage
- Drives 50mA Loads At Up To 50V.
- ½ The Power Dissipation For LT111A/LT311A

APPLICATIONS

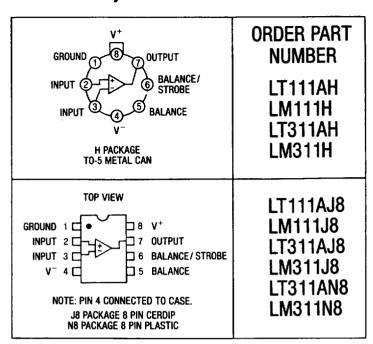

- General Purpose Comparator
- Zero Crossina Detector
- Voltage To Frequency Converter

DESCRIPTION


The LT111A is an improved version of the LM111 general purpose comparator. These new devices offer maximum input offset voltage of 1.0mV and input offset current of 5.0nA with a maximum response time of 250ns. The LT111A operates from a single 5V supply to ±15V supplies and can drive up to 50mA loads referred to ground or either supply. A separate output ground pin allows output signals to be isolated from analog ground.

The versatility of the LT111A is enhanced by an input stage design which allows differential input signals of up to ± 30 V. Offset balancing, strobe capability and the ability to "OR" the output is also included. These features plus Linear Technology Corporation's advanced processing and reliability enhancements make the LT111A an ideal choice for most comparator applications. For higher performance requirements, see the LT1011. For operation up to 200°C, see LT111X data sheet.

Low Drift R/C Oscillator


 $C_1 = .015 = POLYSTYRENE - 120ppm/°C \pm 30ppm$ WESCO TYPE 32-P NOTE: COMPARATOR CONTRIBUTES < 10ppm/°C DRIFT FOR FREQUENCIES BELOW 10kHz.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (pin 8 to pin 4)
LT111A/LM11150V
LT311A/LM31140V
Ground to Negative Supply
(pin 1 to pin 4)
Differential Input Voltage ± 30V
Voltage at Strobe Pin (pin 6 to pin 8) 5V
Input Voltage (Note 1) \pm 15V
Output Short Circuit Duration 10 sec.
Operating Temperature Range (Note 2)
LT111A/LM111
LT311A/LM3110°C to 70°C
Storage Temperature Range65°C to 150°C
Lead Temperature (Soldering, 10 sec.) 300°C

PACKAGE/ORDER INFORMATION

ELECTRICAL CHARACTERISTICS $v_s=\pm 15$ V, $T_s=25$ °C unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	LT 111A TYP	MAX	MIN	LM111 TYP	MAX	UNITS
Vos	Input Offset Voltage	R _S ≤ 50k (Note 3, 4)	•		0.5	1.0 2.0		0.7	3.0 4.0	mV
los	Input Offset Current	(Note 3,4)	•		2.0	5.0 10.0		4.0	10.0 20.0	nA
l _B	Input Bias Current	Note 3	•		60	100 150		60	100 150	nA
A _{VOL}	Large Signal Voltage Gain	Note 7		200	500		40	200		V/mV
	Response Time	Note 5			200	250		200		nS
	Saturation Voltage	$V_{\text{IN}} \leqslant -5 \text{mV}, I_{\text{OUT}} = 50 \text{mA}$ V + $\geqslant 4.5 \text{V}, \text{V} - = 0$			0.75	1.5		0.75	1.5	٧
		$V_{IN} \le -6mV$, $I_{SINK} \le 8mA$	•		0.23	0.4		0.23	0.4	V
	Strobe ON Current	Note 6			3.0	4.0		3.0		mA
	Output Leakage Current	$V_{IN} \ge 5mV$, $V_{OUT} = 35V$ $I_{STROBE} = 3mA$	•		0.2 0.1	10.0 0.5		0.2 0.1	10.0 0.5	nA μA
	Input Voltage Range	V+ = 15V, V- = 15V Pin 7 Pull up may go to 5V	•	-14.5	{ 13.8 } {-14.7 }	13.0	-14.5	{ 13.8 } -14.7 }	13.0	٧
	Positive Supply Current				3.0	4.0		5.1	6.0	mA
	Negative Supply Current				1.5	2.5		4.1	5.0	mA

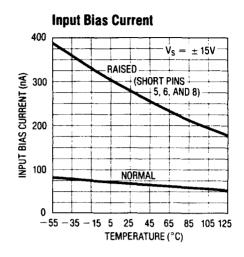
Shading of a specification highlights those items which offer key improvements in parametric performance or guaranteed test limits provided for the first time.

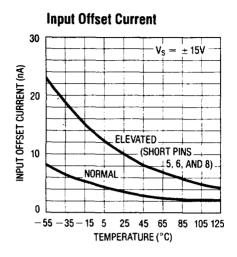
ELECTRICAL CHARACTERISTICS $V_s=\pm 15 V$, $T_A=25 ^{\circ} C$ unless otherwise noted.

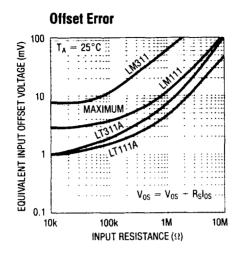
SYMBOL	PARAMETER	CONDITIONS		MiN	LT 311A TYP	MAX	MIN	LM311 TYP	MAX	UNITS
Vos	Input Offset Voltage	R _s ≤ 50k (Note 3, 4)	•		0.5	1.0 2.0		2.0	7.5 10	mV
los	Input Offset Current	(Note 3,4)	•		2.0	10 20		6.0	50 70	nA
I _B	Input Bias Current	Note 3			60	100 150		100	250 300	nA
Avol	Large Signal Voltage Gain			200	500		40	200		V/mV
	Response Time	Note 5			200	250		200		nS
	Saturation Voltage	$V_{IN} \le -10 \text{mV}, I_{OUT} = 50 \text{mA}$ $V + \ge 4.5 \text{V}, V - = 0$			0.75	1.5		0.75	1.5	٧
	Strobe ON Current	V _{IN} ≤ −10mV, I _{SINK} ≤ 8mA Note 6	•		0.23 3.0	0.4 4.0		0.23 3.0	0.4	V mA
	Output Leakage Current	V _{IN} ≥ 10mV, V _{OUT} = 35V I _{STROBE} = 3mA	•		0.2 0.1	50 0.5		0.2	50	nA μA
	Input Voltage Range		•	-14.5	{ 13.8 } {-14.7 }	13.0	-14.5	{ 13.8 } -14.7 }	13.0	٧
	Positive Supply Current				3.0	4.0		5.1	7.5	mA
	Negative Supply Current				1.5	2.5		4.1	5.0	mA

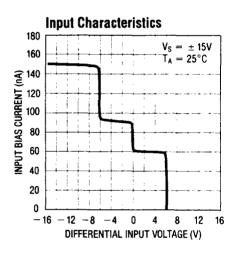
The • denotes the specifications which apply over the full operating temperature range.

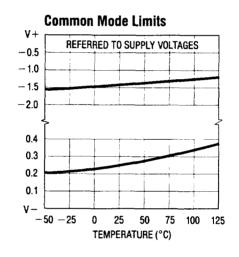
Note 1: Applicable for \pm 15V supplies. The positive input voltage limit is 30V above the negative supply. The negative input voltage limit is the negative supply.

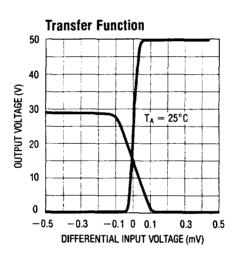

Note 2: T_j max. = 150°C for the LT111A and 95°C for the LT311A. **Note 3:** Offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5V up to \pm 15V supplies. Note 4: Offset voltages and offset currents shown are the maximum values required to drive the output within a volt of either supply with a 1mA load. These parameters define an error band and take into account the worst case effects of voltage gain and input impedance.

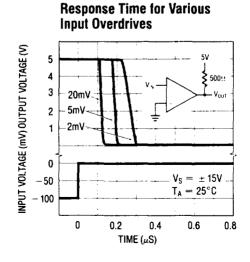

Note 5: Response time is specified for a 100mV input step with 5mV overdrive with the collector output terminated with a 500Ω pullup resistor tied to 5V.

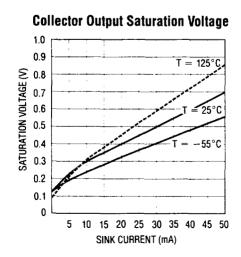

Note 6: Do not short the strobe pin to ground. It should be current driven at 3 to 5mA for the shortest strobe time. Currents as low as $500\mu\text{A}$ will strobe the LT111A if speed is not important. External leakage on the strobe pin in excess of $0.2\mu\text{A}$ when the strobe is "off" can cause offset voltage shifts.

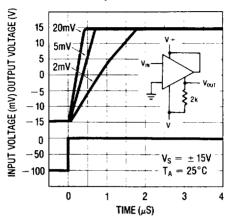

Note 7: $R_L = 1k\Omega$, $-10V \le V_{OUT} \le 14.5V$

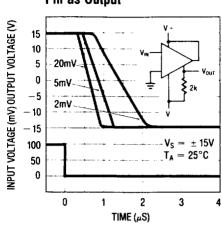

TYPICAL PERFORMANCE CHARACTERISTICS



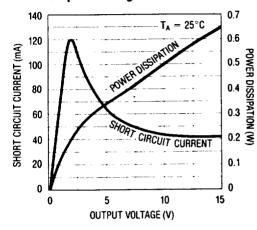


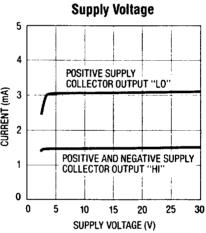


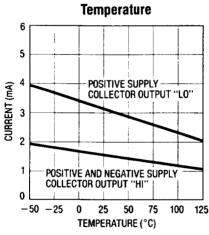


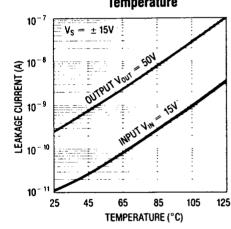


TYPICAL PERFORMANCE CHARACTERISTICS

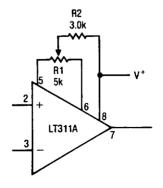

Response Time Using GND Pin as Output


Response Time Using GND Pin as Output

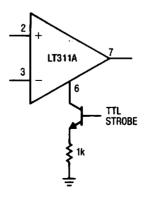

Output Limiting Characteristics


Supply Current VS Supply Voltage

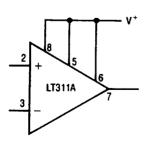
Supply Current vs



Leakage Current vs Temperature

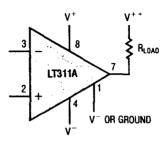

TYPICAL APPLICATIONS

Offset Balancing

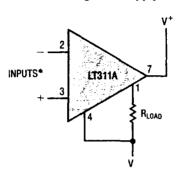

Note: Pin Connections Shown are for T0-5 package

Strobing

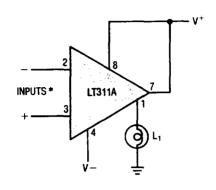
Note: Do Not Ground Strobe Pin.


Increasing Input Stage Current

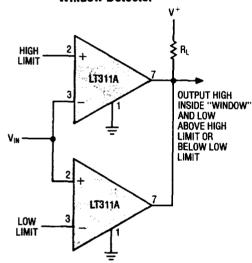
Increases typical common mode slew rate from 7.0 V/µS to 18V/µS.


TYPICAL APPLICATIONS

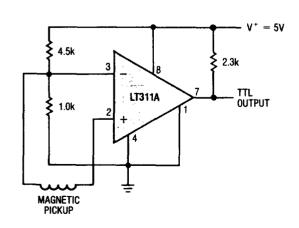
Driving Load Referenced To Positive Supply


 ${
m V}^{+\,+}$ can be greater or less than ${
m V}^{+}$

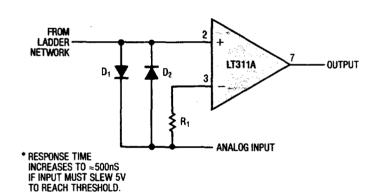
Driving Load Referenced To Negative Supply

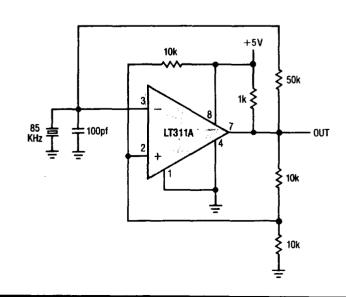

* NOTE THAT INPUT POLARITY IS REVERSED WHEN USING PIN 1 AS OUTPUT

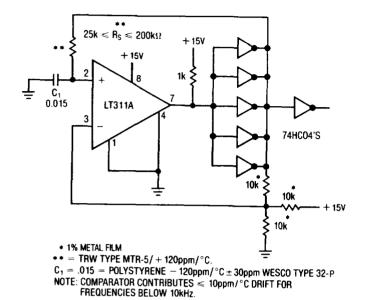
Driving Ground Referred Load

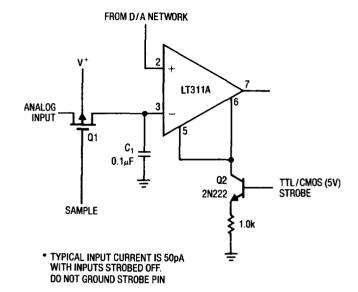


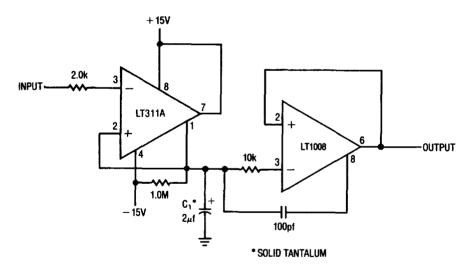
* NOTE THAT INPUT POLARITY IS REVERSED WHEN USING PIN 1 AS OUTPUT

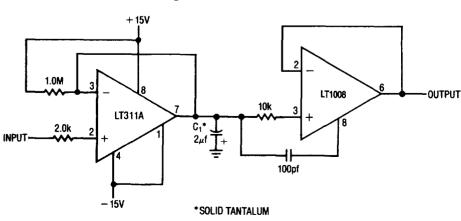

Window Detector


Detector For Magnetic Transducer

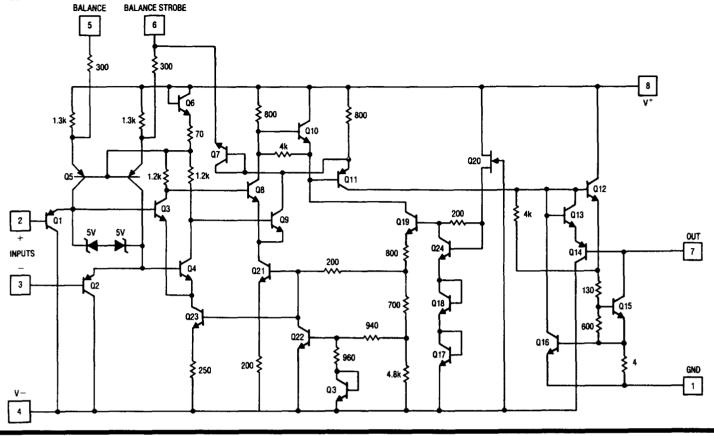

Using Clamp Diodes To Improve Frequency Response*


Crystal Oscillator

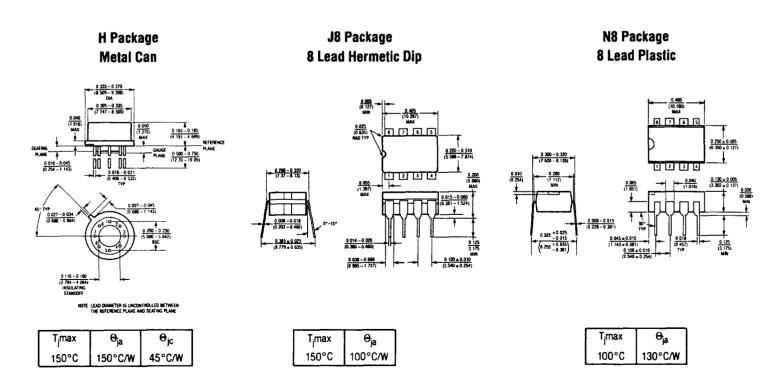

Low Drift R/C Oscillator


Strobing Off Both Input* And Output Stages

Positive Peak Detector



Negative Peak Detector



SCHEMATIC DIAGRAM

PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

