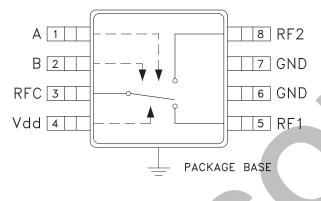


v00.0808



## GaAs MMIC 10 WATT T/R SWITCH DC - 4 GHz


HMC784MS8GE

## **Typical Applications**

The HMC784MS8GE is ideal for:

- Cellular / 4G Infrastructure
- WiMAX, WiBro & Fixed Wireless
- Automotive Telematics
- Mobile Radio
- Test Equipment

#### **Functional Diagram**



#### Features

Input P1dB: +40 dBm @ Vdd = +8V High Third Order Intercept: +62 dBm Positive Control: +3 to +8 V Low Insertion Loss: 0.4 dB MSOP8G Package: 14.8 mm<sup>2</sup>

### **General Description**

The HMC784MS8GE is a high power SPDT switch in an 8-lead MSOPG package for use in transmit-receive applications which require very low distortion at high input signal power levels. The device can control signals from DC to 4 GHz. The design provides exceptional intermodulation performance; > +60 dBm third order intercept at +5V bias. RF1 and RF2 are reflective shorts when "OFF". On-chip circuitry allows single positive supply operation from +3 Vdc to +8 Vdc at very low DC current with control inputs compatible with CMOS and most TTL logic families.

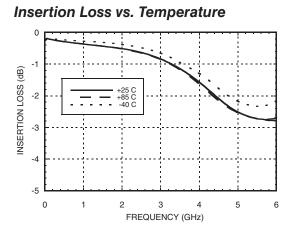
## Electrical Specifications,

|                         |                  | - /       |                            |               |
|-------------------------|------------------|-----------|----------------------------|---------------|
| $T_{A} = +25^{\circ} C$ | , $VctI = 0/Vdd$ | Vdd = +5V | (Unless Otherwise Stated), | 50 Ohm System |

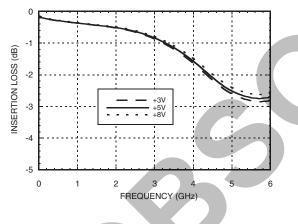
| Parameter                                                                 |                                                                   | Frequency                                                                    | Min.           | Тур.                            | Max.                            | Units                      |
|---------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------|----------------|---------------------------------|---------------------------------|----------------------------|
| Insertion Loss                                                            |                                                                   | DC - 1.0 GHz<br>DC - 2.0 GHz<br>DC - 2.5 GHz<br>DC - 3.0 GHz<br>DC - 4.0 GHz |                | 0.4<br>0.6<br>0.8<br>0.9<br>1.3 | 0.6<br>0.8<br>1.1<br>1.3<br>2.0 | dB<br>dB<br>dB<br>dB<br>dB |
| Isolation                                                                 |                                                                   | DC - 4.0 GHz                                                                 | 26             | 30                              |                                 | dB                         |
| Return Loss (On State)                                                    | DC - 1.0 GHz<br>DC - 2.0 GHz<br>DC - 3.0 GHz<br>DC - 4.0 GHz      |                                                                              |                | 35<br>30<br>20<br>10            |                                 | dB<br>dB<br>dB<br>dB       |
| Input Power for 0.1dB Compression                                         | Vdd = +3V<br>Vdd = +5V<br>Vdd = +8V                               | 0.1 - 4.0 GHz                                                                |                | 32<br>37<br>38                  |                                 | dBm<br>dBm<br>dBm          |
| Input Power for 1dB Compression                                           | Vdd = +3V<br>Vdd = +5V<br>Vdd = +8V                               | 0.1 - 4.0 GHz                                                                | 32<br>35<br>38 | 35<br>38<br>41                  |                                 | dBm<br>dBm<br>dBm          |
| Input Third Order Intercept<br>(Two-tone input power = +30 dBm each tone) | 0.02 - 0.1 GHz<br>0.1 - 2.0 GHz<br>0.1 - 3.0 GHz<br>0.1 - 4.0 GHz |                                                                              |                | 42<br>62<br>61<br>60            |                                 | dBm<br>dBm<br>dBm<br>dBm   |
| Switching Characteristics                                                 |                                                                   |                                                                              |                |                                 |                                 |                            |
|                                                                           | tRISE, tFALL (10/90% RF)<br>tON, tOFF (50% CTL to 10/90% RF)      | DC - 4.0 GHz                                                                 |                | 15<br>40                        |                                 | ns<br>ns                   |

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

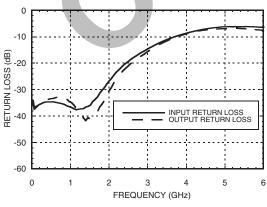
For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

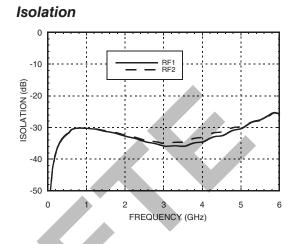

Downloaded from Arrow.com.



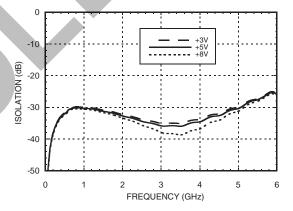

v00.0808



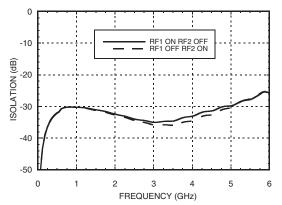

# GaAs MMIC 10 WATT T/R SWITCH DC - 4 GHz




Insertion Loss vs. Vdd




**Return Loss** 





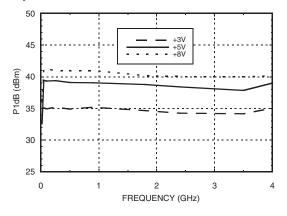

Isolation vs. Vdd



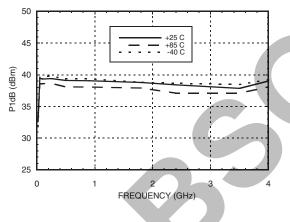
### RF1 to RF2 Isolation



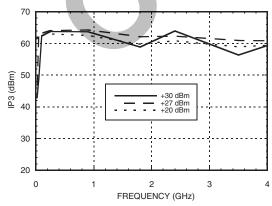
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



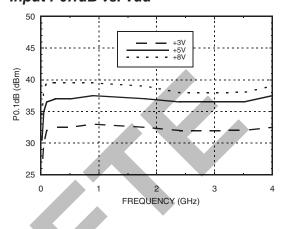

DC - 4 GHz


v00.0808



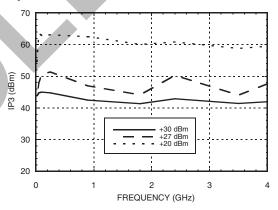

#### Input P1dB vs. Vdd



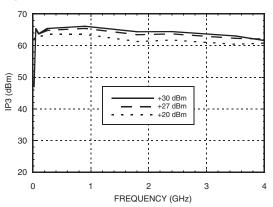

Input P1dB vs. Temperature @ Vdd = +5V



Input IP3 vs. Tone Power @ Vdd = +5V




Input P0.1dB vs. Vdd




GaAs MMIC 10 WATT T/R SWITCH

Input IP3 vs. Tone Power @ Vdd = +3V

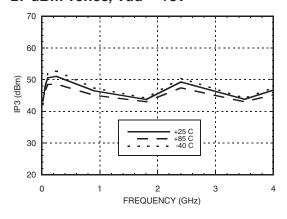


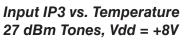
Input IP3 vs. Tone Power @ Vdd = +8V

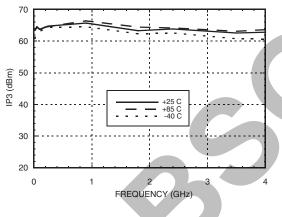


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D


Downloaded from Arrow.com.

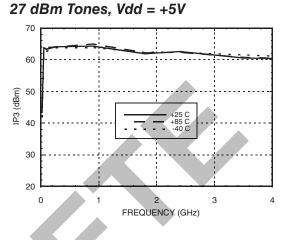




v00.0808

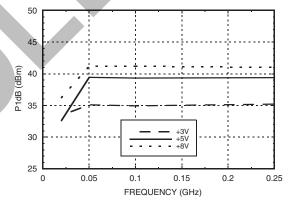


Input IP3 vs. Temperature 27 dBm Tones, Vdd = +3V

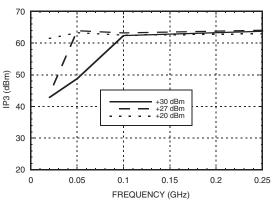








Input P0.1dB vs. Vdd 50 +3V +5V 45 +8V P0.1dB (dBm) 40 35 30 25 0 0.05 0.1 0.15 02 0.25 FREQUENCY (GHz)




Input IP3 vs. Temperature



### Input P1dB vs. Vdd



#### Input IP3 vs. Tone Power @ Vdd = +5V



Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent or rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



DC - 4 GHz

v00.0808



#### **Bias Voltage & Current**

| Vdd (V) | Typical Idd (µA) |  |
|---------|------------------|--|
| +3      | 0.5              |  |
| +5      | 2                |  |
| +8      | 20               |  |

#### **Truth Table**

| Control Input (Vctl) |      | Signal Path State |            |
|----------------------|------|-------------------|------------|
| A                    | В    | RFC to RF1        | RFC to RF2 |
| High                 | Low  | Off               | On         |
| Low                  | High | On                | Off        |

### Absolute Maximum Ratings

|                                                                | -                    |  |
|----------------------------------------------------------------|----------------------|--|
| RF Input Power (Vdd = +8V,<br>50 Ohm source & load impedances) | +39 dBm (T = +85 °C) |  |
| Supply Voltage Range<br>(Vdd) (VctI = 0V)                      | -0.2 to +9V          |  |
| Control Voltage Range (A & B)                                  | -0.2 to Vdd +0.5V    |  |
| Channel Temperature                                            | 150 °C               |  |
| Continuous Pdiss (T = 85 °C)<br>(derate 25 mW/°C above 85 °C)  | 1.217 W              |  |
| Thermal Resistance<br>(Channel to ground paddle)               | 53.4 °C/W            |  |
| Storage Temperature                                            | -65 to +150 °C       |  |
| Operating Temperature                                          | -40 to +85 °C        |  |
| ESD Rating                                                     | Class 1A HBM         |  |

Note: DC blocking capacitors are required at ports RFC, RF1 and RF2. Their value will determine the lowest transmission frequency.

#### **Control Voltages & Currents**

| State            | Vdd = +3V<br>(µA) | Vdd = +5V<br>(µA) | Vdd = +8V<br>(µA) |
|------------------|-------------------|-------------------|-------------------|
| Low (0 to +0.2V) | 0.5               | 2                 | 20                |
| High (Vdd ±0.2V) | 0.1               | 0.1               | 0.1               |

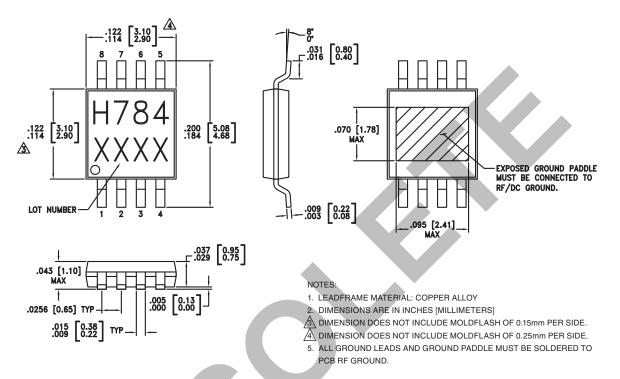
GaAs MMIC 10 WATT T/R SWITCH



**OBSERVE HANDLING PRECAUTIONS** 

Downloaded from Arrow.com.




DC - 4 GHz

GaAs MMIC 10 WATT T/R SWITCH

v00.0808



### **Outline Drawing**



#### **Package Information**

| Part Number | Package Body Material                    | Lead Finish              | MSL Rating          | Package Marking <sup>[1]</sup> |
|-------------|------------------------------------------|--------------------------|---------------------|--------------------------------|
| HMC784MS8GE | RoHS-compliant Low Stress Injection Mole | ed Plastic 100% matte Sn | MSL1 <sup>[2]</sup> | <u>H784</u><br>XXXX            |

[1] 4-Digit lot number XXXX

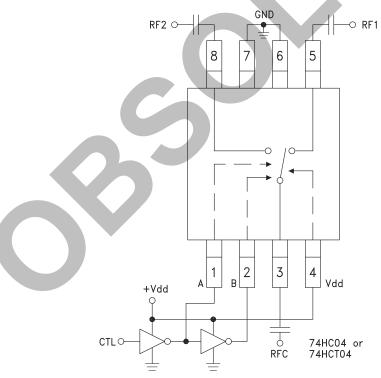
[2] Max peak reflow temperature of 260 °C

11

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



v00.0808




## GaAs MMIC 10 WATT T/R SWITCH DC - 4 GHz

#### **Pin Descriptions**

| Pin Number | Function      | Description                                                                         | Interface Schematic |
|------------|---------------|-------------------------------------------------------------------------------------|---------------------|
| 1          | А             | See truth table and control voltage table.                                          | A,B 0               |
| 2          | В             | See truth table and control voltage table.                                          | ± c<br>±            |
| 3, 5, 8    | RFC, RF1, RF2 | This pin is DC coupled and matched to 50 Ohms.<br>Blocking capacitors are required. |                     |
| 4          | Vdd           | Supply Voltage                                                                      |                     |
| 6, 7       | GND           | Package bottom must also be connected to PCB RF ground.                             |                     |

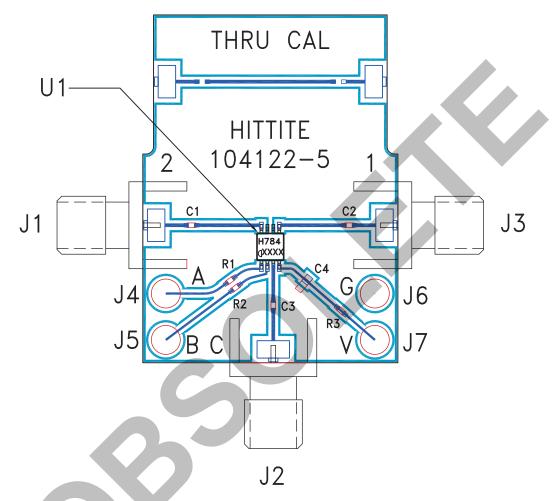
### **Typical Application Circuit**



Notes:

- 1. Set logic gate and switch Vdd = +3V to +8V and use HCT series logic to provide a TTL driver interface.
- 2. Control inputs A/B can be driven directly with CMOS logic (HC) with Vdd of +3 to +8 Volts applied to the CMOS logic gates and to pin 4 of the RF switch.
- 3. DC Blocking capacitors are required for each RF port as shown. Capacitor value determines lowest frequency of operation.
- 4. Highest RF signal power capability is achieved with V set to +8V. The switch will operate properly (but at lower RF power capability) at bias voltages down to +3V.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.




v00.0808



## GaAs MMIC 10 WATT T/R SWITCH DC - 4 GHz

### **Evaluation Circuit Board**



#### List of Materials for Evaluation PCB 104124<sup>[1]</sup>

| Item    | Description                 |  |
|---------|-----------------------------|--|
| J1 - J3 | PCB Mount SMA RF Connector  |  |
| J4 - J7 | DC Pin                      |  |
| C1 - C3 | 100 pF capacitor, 0402 Pkg. |  |
| C4      | 10 KpF capacitor, 0603 Pkg. |  |
| R1 - R3 | 100 Ohm Resistor, 0402 Pkg. |  |
| U1      | HMC784MS8GE T/R Switch      |  |
| PCB [2] | 104122 Evaluation PCB       |  |

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 ohm impedance and the package ground leads and package bottom should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.