
GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, 5 - 30 GHz

Typical Applications

The HMC812ALC4 is ideal for:

- Point-to-Point Radio
- VSAT Radio
- Test Instrumentation
- Microwave Sensors
- Military, ECM & Radar

Functional Diagram

Features

Wide Bandwidth: 5 - 30 GHz

High Power Handling: +25 dBm Input P1dB

Excellent Linearity: +28 dBm Input IP3

Wide Attenuation Range: 30 dB

24 Lead Ceramic 4x4 mm SMT Package: 16mm²

General Description

The HMC812ALC4 is an absorptive Voltage Variable Attenuator (VVA) which operates from 5 - 30 GHz and is ideal in designs where an analog DC control signal must be used to control RF signal levels over a 30 dB amplitude range. It features two shunt-type attenuators which are controlled by two analog voltages, Vctrl1 and Vctrl2. Optimum linearity performance of the attenuator is achieved by first varying Vctrl1 of the 1st attenuation stage from -5V to 0V with Vctrl2 fixed at -5V. The control voltage of the 2nd attenuation stage, Vctrl2, should then be varied from -5V to 0V, with Vctrl1 fixed at 0V. The HMC812ALC4 is housed in a RoHS compliant 4x4 mm QFN leadless ceramic package

Furthermore, if the Vctrl1 and Vctrl2 pins are connected together it is possible to achieve the full analog attenuation range with only a small degradation in input IP3 performance. Applications include AGC circuits and temperature compensation of multiple gain stages in microwave point-to-point and VSAT radios.

Electrical Specifications, $T_A = +25^{\circ}$ C, 50 Ohm system

Parameter		Min.	Тур.	Max.	Units
Insertion Loss 16 -	16 GHz 24 GHz 30 GHz		1.8 2.2 2.5		dB dB dB
Attenuation Range	30 GHZ		35		dB
Input Return Loss			10		dB
Output Return Loss			10		dB
Input Power for 1 dB Compression (any attenuation)			25		dBm
Input Third Order Intercept (Two-tone Input Power = 10 dBm Each Tone)			28		dBm

HMC812A* PRODUCT PAGE QUICK LINKS

Last Content Update: 07/01/2017

COMPARABLE PARTS 🖵

View a parametric search of comparable parts.

EVALUATION KITS

• Evaluation board for the HMC812A.

DOCUMENTATION

Data Sheet

HMC812ALC4: GaAs MMIC Voltage-Variable Attenuator, 5
 30 GHz Data Sheet

TOOLS AND SIMULATIONS 🖵

HMC812A S-Parameters

DESIGN RESOURCES 🖵

- hmc812a Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all hmc812a EngineerZone Discussions.

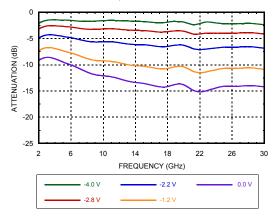
SAMPLE AND BUY 🖵

Visit the product page to see pricing options.

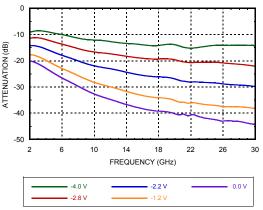
TECHNICAL SUPPORT 🖳

Submit a technical question or find your regional support number.

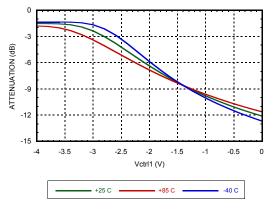
DOCUMENT FEEDBACK 🖳


Submit feedback for this data sheet.

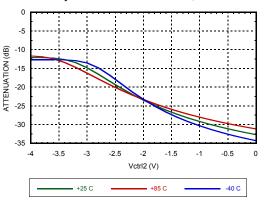
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

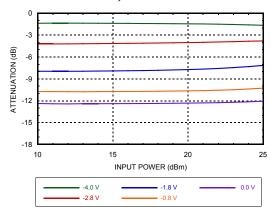

GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, 5 - 30 GHz

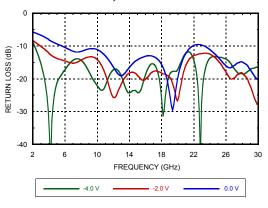
Attenuation vs. Frequency over Vctrl Vctrl1 = Variable, Vctrl2 = -5V



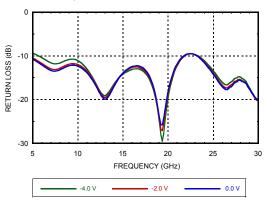
Vctrl1 = 0V, Vctrl2 = Variable


Attenuation vs. Frequency over Vctrl

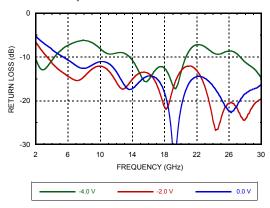

Attenuation vs. Vctrl1 Over Temperature @ 10 GHz, Vctrl2 = -5V

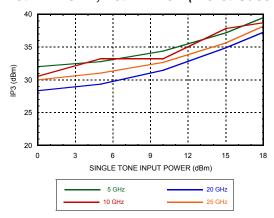

Attenuation vs. Vctrl2
Over Temperature @ 10 GHz, Vctrl1 = 0V

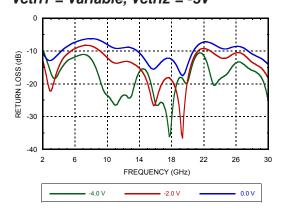
Attenuation vs. Pin @ 10 GHz Vctrl1 = Variable, Vctrl2 = -5V



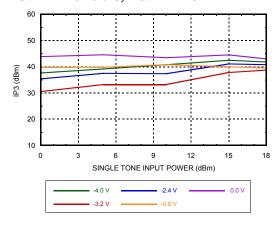
Input Return Loss Vctrl1 = Variable, Vctrl2 = -5V

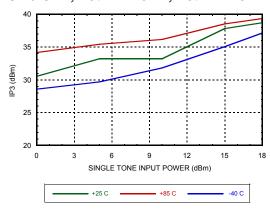



Input Return Loss Vctrl1 = 0V, Vctrl2 = Variable


Output Return Loss Vctrl1 = 0V, Vctrl2 = Variable

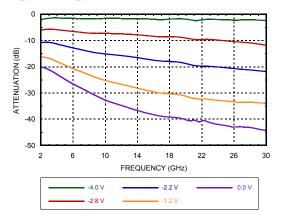
Input IP3 vs. Input Power Over Frequency Vctrl1 = -3.2V, Vctrl2 = -5V (Worst Case IP3)

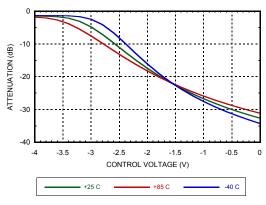

Output Return Loss Vctrl1 = Variable, Vctrl2 = -5V


GaAs MMIC VOLTAGE-VARIABLE

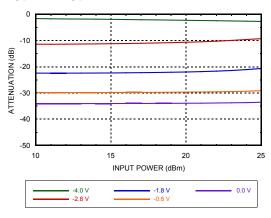
ATTENUATOR, 5 - 30 GHz

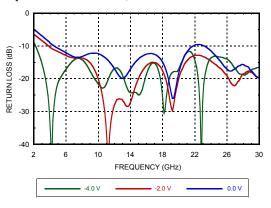
Input IP3 vs Input Power @ 10 GHz Vctrl1 = Variable, Vctrl2 = -5V

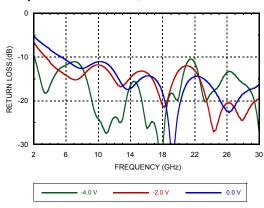

Input IP3 vs. Input Power Over Temperature @ 10 GHz, Vctrl1 = -3.2V, Vctrl2 = -5V

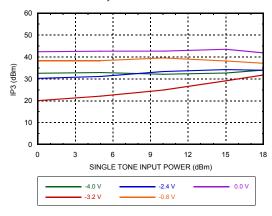


GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, 5 - 30 GHz


Attenuation vs. Frequency over Vctrl Vctrl1 = Vctrl2


Attenuation vs. Vctrl over Temperature @ 10 GHz, Vctrl1 = Vctrl2


Attenuation vs. Input Power over Vctrl Vctrl1 = Vctrl2


Input Return Loss, Vctrl1 = Vctrl2

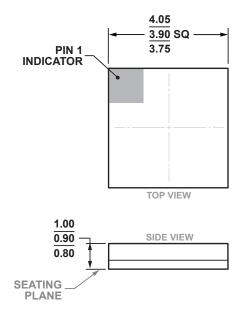
Output Return Loss, Vctrl1 = Vctrl2

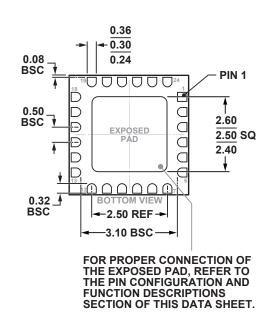
Input IP3 vs. Input Power Over Vctrl @ 10 GHz, Vctrl1 = Vctrl2

GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, 5 - 30 GHz

Absolute Maximum Ratings

RF Input Power	+30 dBm	
Control Voltage Range	+0.3 to -6V	
Channel Temperature	175 °C	
Continuous Pdiss (T = 85 °C) (derate 16.4 mW/ °C above 85 °C)	1.07 W	
Thermal Resistance (Channel to ground paddle)	61 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
ESD Sensitivity (HBM)	Class 0 (Passed 150V)	


Control Voltages


Vctrl1	-5 to 0V @ 10 μA
Vctrl2	-5 to 0V @ 10 μA

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

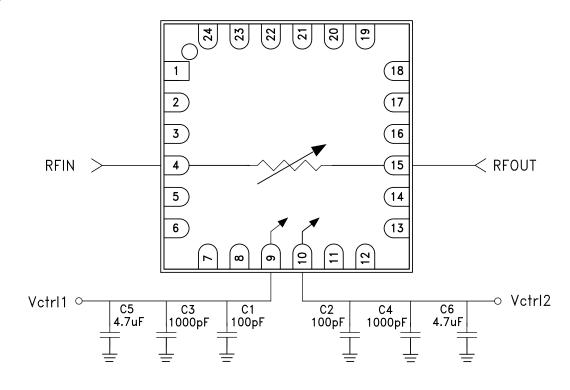
Outline Drawing

24-Terminal Ceramic Leadless Chip Carrier [LCC]
(E-24-1)
Dimensions shown in millimeters

Package Information

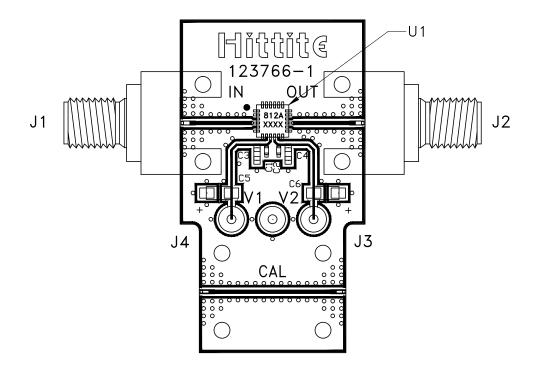
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking
HMC812ALC4	Alumina, White	Gold over Nickel	MSL3	<u>812A</u> XXXX

GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, 5 - 30 GHz


Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 2, 6 - 8, 11 - 13, 17 - 24	N/C	These pins are not connected internally, however these pins must be connected to RF/DC ground externally.	
3, 5, 14, 16	GND	These pins and the exposed ground paddle must be connected to RF/DC ground.	⊖ GND =
4	RFIN	This pad is DC coupled and matched to 50 Ohms.	RFIN OF THE SECOND SECO
15	RFOUT	A blocking capacitor is required if RF line potential is not equal to 0V.	RFOUT ESD
9	Vctrl1	Control Voltage 1	Vctrl1 ESD =
10	Vctrl2	Control Voltage 2	Vctrl2 ESD

GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, 5 - 30 GHz


Application Circuit

GaAs MMIC VOLTAGE-VARIABLE ATTENUATOR, 5 - 30 GHz

Evaluation PCB

List of Materials for EV1HMC812ALC4 [1]

Item	Description	
J1, J2	2.9 mm PC Mount RF Connector	
J3, J4	DC Pin	
C1, C2	100 pF Capacitor, 0402 Pkg.	
C3, C4	1000 pF Capacitor, 0402 Pkg.	
C5, C6	4.7 μF Capacitor, CASE A	
U1	HMC812ALC4 Analog VVA	
PCB [2]	123766 Evaluation PCB	

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Analog Devices upon request.

^[2] Circuit Board Material: Arlon 25FR or Rogers 4350