Please note that Cypress is an Infineon Technologies Company.

The document following this cover page is marked as "Cypress" document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio.

Continuity of document content

The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers

Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering.
www.infineon.com

Quad Buck 2.1 MHz DC/DC Converter and Dual LDO with Watchdog Timer

S6BP401A is a power management IC, consists of quad buck 2.1 MHz DC/DC converter with built-in switching FETs, dual Low Drop-out regulator (LDOs) and a digital windowed watchdog timer. Having the switching FETs built-in, S6BP401A realizes high power conversion efficiency and high switching frequency up to 2.4 MHz . The internal FETs are capable to handle up to 3 A load. As S6BP401A employs the current mode architecture, it has fast load transient response. Built-in output voltage setting resistors and compensation circuits reduce BOM cost and component area.

Features

■Quad Buck DC/DC Converter (DD1 to DD4) \square VIN Input Range: 4.5 V to 5.5 V \square Switching Frequency
-External clock mode: 1.8 MHz to 2.4 MHz
口Internal clock mode: 2.0 MHz to 2.2 MHz

- Built-in Switching FETs up to 3 A
-Built-in Output Voltage Setting Resistors
-Built-in Compensation Circuits
■Dual LDO (LD1, LD2) םVIN Input Voltage Range: 2.97 V to 5.5 V -Built-in Output Voltage Setting resistors
■ Power Good Monitor Output for each DC/DC Converters, LDOs

■Built-in Windowed Watchdog Timer (WDT)
■Under Voltage Lockout (UVLO)
■Thermal Shutdown (TSD)

- Over Current Protection (OCP)

■Over Voltage Protection (OVP)
■Independent Enabling for each DC/DC Converters and LDOs
■Load-independent Soft-Start
■Built-in Discharge Resistors
■Small $6 \mathrm{~mm} \times 6 \mathrm{~mm}$ QFN-40 Package
■AEC-Q100 compliant (Grade-1)

Applications

■ Automotive Applications
■Advanced Driver Assistance Systems (ADAS)
■Camera Systems such as Security Camera

- Industrial Applications

More Information

Cypress provides a wealth of data at www.cypress.com/pmic to help you to select the right PMIC device for your design, and to help you to quickly and effectively integrate the device into your design. Following is an abbreviated list for S6BP401A:

■Overview: Automotive PMIC Portfolio, Automotive PMIC Roadmap

■Product Selector:

- S6BP401A: 6 ch Automotive PMIC for ADAS

■Application Notes: Cypress offers S6BP401A application notes. Recommended application notes for getting started with S6BP401A are:
-AN98649: How to Design a Power Management System
-AN201006: Thermal Considerations and Parameters

■Evaluation Kit Operation Manual:

- S6SBP401AM2SA1001: Power block for automotive ADAS platform
- Related Products:
- S6BP201A, S6BP202A, S6BP203A: 1 ch Buck-Boost Automotive PMIC
- S6BP501A, S6BP502A:

3 ch Automotive PMIC for Instrument Cluster

S6BP401A
Contents
Features 1
Applications 1
Block Diagram 1
More Information 2

1. Typical Application 4
2. Pin Configuration 5
3. Pin Functions 6
4. Preset Output Voltage 7
5. Architecture Block Diagram 9
6. Absolute Maximum Ratings 11
7. Recommended Operating Conditions 12
8. Electrical Characteristics 13
9. Operating Mode List. 18
10. Function 19
10.1 Turning ON and OFF Sequence 19
10.2 Over Current Protection 21
10.3 Over Voltage Protection 21
10.4 Thermal Shutdown (TSD) 22
10.5 Under Voltage Lockout (UVLO) 22
10.6 Soft-Start Operation. 22
10.7 Discharge Operation 23
10.8 Power Good Monitor and Reset Function 24
10.9 Watchdog Timer 26
10.10 Internal Linear Regulator Output (VREG) 29
11. Application Circuit Example 30
12. Reference Data 32
13. Ordering Information 35
14. Package Dimensions 36
15. Major Changes 37
Document History 38

1. Typical Application

Figure 1-1 Typical Application

2. Pin Configuration

Figure 2-1 Pin Configuration

3. Pin Functions

Table 3-1 Pin Functions

Functional Block	Pin Number	Pin Name	I/O	Description	Pin Setting When Not Being Used
DD1	19	EN1	I	Enable input terminal of DD1.	Ground
	30	FB1	I	Output voltage feedback terminal of DD1.	Ground
	33	PG1	0	Power good output terminal of DD1.	Ground
	29	PVCC1	-	Power supply terminal of DD1.	VCC
	28	LX1	0	Inductor connect terminal of DD1.	Leave pin open
	27	PGND1	-	Power ground terminal of DD1.	Ground
DD2	18	EN2	1	Enable input terminal of DD2.	Ground
	20	FB2	1	Output voltage feedback terminal of DD2.	Ground
	31	PG2	0	Power good output terminal of DD2.	Ground
	21, 22	PVCC2	-	Power supply terminal of DD2.	VCC
	23, 24	LX2	0	Inductor connect terminal of DD2.	Leave pin open
	25, 26	PGND2	-	Power ground terminal of DD2.	Ground
DD3	17	EN3	I	Enable input terminal of DD3.	Ground
	9	FB3	1	Output voltage feedback terminal of DD3.	Ground
	10	PG3	0	Power good output terminal of DD3.	Ground
	8	PVCC3	-	Power supply terminal of DD3.	VCC
	7	LX3	0	Inductor connect terminal of DD3.	Leave pin open
	6	PGND3	-	Power ground terminal of DD3.	Ground
DD4	16	EN4	1	Enable input terminal of DD4.	Ground
	2	FB4	I	Output voltage feedback terminal of DD4.	Ground
	1	PG4	0	Power good output terminal of DD4.	Ground
	3	PVCC4	-	Power supply terminal of DD4.	VCC
	4	LX4	0	Inductor connect terminal of DD4.	Leave pin open
	5	PGND4	-	Power ground terminal of DD4.	Ground
LD1	15	ENL1	1	Enable input terminal of LD1.	Ground
	36	PVCCL1	-	Power supply terminal of LD1.	VCC
	35	LDO1	0	Output terminal of LD1.	Leave pin open
LD2	14	ENL2	1	Enable input of LD2.	Ground
	40	PGL2	0	Power good output terminal of LD2.	Ground
	37	PVCCL2	-	Power supply terminal of LD2.	VCC
	38	LDO2	0	Output terminal of LD2.	Leave pin open
WDT	12	WDI	I	Trigger input terminal of WDT.	Ground
	13	RST	0	Reset input terminal of WDT.	Ground
SYNC	11	SYNC	I	External clock input terminal.	Ground
-	34	VCC	-	Power supply terminal for analog controller.	-
-	32	VREG	O	Internal 1.8 V supply voltage capacitor terminal. Do NOT supply or load this terminal externally.	-
-	39	GND	-	Ground terminal for analog controller.	-
-	EP	EP	-	Exposed pad. Connect to ground plane.	-
-	CP1, CP2, CP3, CP4	CP	-	Corner pad for reinforcing attachment to a board. Connect to ground plane.	-

4. Preset Output Voltage

Table 4-1 Preset Output Voltage (Buck DC/DC Converter)

Channel	Preset Output Voltage [V]	Soft-start Time [ms]	Maximum Output Current [mA]	Under Voltage Threshold [\%]	Over Voltage Threshold [\%]
DD1	1.200	1.200	2000	94.0	106.0
	1.225	1.225			
	1.250	1.250			
	1.275	1.275			
	1.300	1.300			
	1.325	1.325			
	1.500	1.500			
	1.525	1.525			
	1.550	1.550			
	1.575	1.575			
DD2	1.000	1.000	3000	94.0	106.0
	1.025	1.025			
	1.050	1.050			
	1.075	1.075			
	1.100	1.100			
	1.125	1.125			
	1.150	1.150			
	1.175	1.175			
	1.200	1.200			
	1.225	1.225			
	1.250	1.250			
	1.275	1.275			
DD3	1.200	1.200	2000	95.2	106.0
	1.225	1.225			
	1.250	1.250			
	1.275	1.275			
	1.500	1.500			
	1.525	1.525			
	1.550	1.550			
	1.575	1.575			
	1.800	1.800			
	1.825	1.825			
	1.850	1.850			
	1.875	1.875			
	2.500	2.500			
	2.525	2.525			
	2.550	2.550			
	2.575	2.575			
DD4	3.300	3.300	1000	95.5	106.0
	3.325	3.325			
	3.350	3.350			
	3.375	3.375			
	3.400	3.400			

Notes:

- \quad Soft-start time values are at fosc $=2.1 \mathrm{MHz}$
- See 8. Electrical Characteristics for the minimum or maximum values of output voltage, under voltage threshold and over voltage threshold.

Table 4-2 Preset Output Voltage (LDO)

Channel	Preset Output Voltage [V]	Soft-start Time [ms]	Maximum Output Current [mA]	Under Voltage Threshold [\%]	Over Voltage Threshold [\%]
LD1	3.300	3.300	200	94.0	106.0
	3.325	3.325			
	3.350	3.350			
	3.375	3.375			
	3.400	3.400			
LD2	1.200	1.200	500	94.0	106.0
	1.225	1.225			
	1.250	1.250			
	1.275	1.275			
	1.800	1.800			
	1.825	1.825			
	1.850	1.850			
	1.875	1.875			
	2.800	2.800			
	2.825	2.825			
	2.850	2.850			
	2.875	2.875			

Notes:

- \quad Soft-start time values are at $f_{\text {OSC }}=2.1 \mathrm{MHz}$
- See 8. Electrical Characteristics for the minimum or maximum values of output voltage, under voltage threshold and over voltage threshold.

5. Architecture Block Diagram

Figure 5-1 Architechture Block Diagram

6. Absolute Maximum Ratings

Table 6-1 Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating		Unit
			Min	Max	
Power supply voltage	Vvcc	VCC	-0.3	+6.9	V
	VpVcc	PVCC1, PVCC2, PVCC3, PVCC4	-0.3	+6.9	V
	VPVCCL	PVCCL1, PVCCL2	-0.3	+6.9	V
Input voltage	Ven	EN1, EN2, EN3, EN4, ENL1, ENL2	-0.3	+6.9	V
	V Wid	WDI	-0.3	+6.9	V
	$V_{\text {SYNC }}$	SYNC	-0.3	+6.9	V
	$\mathrm{V}_{\text {FB }}$	FB1, FB2, FB3, FB4	-0.3	+6.9	V
	$V_{\text {PG }}$	PG1, PG2, PG3, PG4, PGL2	-0.3	+6.9	V
	$\mathrm{V}_{\text {RST }}$	RST	-0.3	+6.9	V
LX voltage	VLX	LX1, LX2, LX3, LX4	-0.3	+6.9	V
Voltage difference	Vpvcc-vcc	PVCC1 -VCC, PVCC2-VCC, PVCC3-VCC, PVCC4-VCC	-0.3	+0.3	V
	Vpgnd-Gnd	PGND1-GND, PGND2-GND, PGND3-GND, PGND4-GND	-0.3	+0.3	V
	VPVCC-LX	PVCC1-LX1, PVCC2-LX2, PVCC3-LX3, PVCC4-LX4	-0.3	+6.9	V
	Vvcc--nput	VCC-EN1, VCC-EN2, VCC-EN3, VCC-EN4, VCC-EN1L, VCC-EN2L, VCC-WDI, VCC-SYNC, VCC-FB1, VCC-FB2, VCC-FB3, VCC-FB4	-0.3	+6.9	V
Power dissipation	PD	$\begin{aligned} & \mathrm{T}_{\mathrm{A}} \leq+25^{\circ} \mathrm{C}, \\ & \text { Thermal resistance }\left(\theta_{\mathrm{JA}}\right): 18^{\circ} \mathrm{C} / \mathrm{W}\left({ }^{*} 1\right) \end{aligned}$	-	6940	mW
Junction temperature	TJ	-	-40	+150	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-	-55	+150	${ }^{\circ} \mathrm{C}$

*1: When the IC is mounted on $76.2 \mathrm{~mm} \times 114.3 \mathrm{~mm}$ four-layer epoxy board. IC is mounted on a four-layer epoxy board, which terminal bias, and the IC's thermal pad is connected to the epoxy board.

WARNING

1. Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings.

Figure 6-1 Maximum Power Dissipation - Operating Ambient Temperature Characteristics

7. Recommended Operating Conditions

Table 7-1 Recommended Operating Conditions

Parameter	Symbol	Condition	Value			Unit
			Min	Typ	Max	
Power supply voltage	Vvcc	VCC	+4.5	+5.0	+5.5	V
	Vpvcc	PVCC1, PVCC2, PVCC3, PVCC4	-	Vvcc	-	V
	Vpvccl	PVCCL1, PVCCL2	+2.97	+5.0	Vvcc	V
Input voltage	Ven	EN1, EN2, EN3, EN4, ENL1, ENL2	0	-	Vvcc	V
	V wdi	WDI	0	-	Vvcc	V
	$\mathrm{V}_{\text {SYNC }}$	SYNC	0	-	Vvcc	V
	$V_{\text {FB }}$	FB1, FB2, FB3, FB4	0	-	Vvcc	V
	$V_{\text {PG }}$	PG1, PG2, PG3, PG4, PGL2	0	-	+5.5	V
	$V_{\text {RST }}$	RST	0	-	+5.5	V
Operating ambient temperature	TA	-	-40	+25	+125	${ }^{\circ} \mathrm{C}$

WARNING:

1. The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated under these conditions.
2. Any use of semiconductor devices will be under their recommended operating condition.
3. Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device failure.
4. No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you are considering application under any conditions other than listed herein, please contact sales representatives beforehand.

8. Electrical Characteristics

$V_{V C C}=V_{P V C C}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{PVCCL}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

Table 8-1 Electrical Characteristics

Parameter	Symbol	Condition	Value			Unit
			Min	Typ	Max	
Supply Current						
Shutdown current	Ivces	$\begin{aligned} & \text { VCC pin, } \\ & \text { VEN1 }=V_{\text {EN2 }}=V_{\text {EN3 }}=V_{\text {EN4 }}=V_{\text {ENL1 }}= \\ & V_{\text {ENL2 }}=0 \mathrm{~V} \end{aligned}$	-	1	10	$\mu \mathrm{A}$
UVLO: Under Voltage Lockout (VCC)						
Threshold voltage	Vuvlof	Vvcc falling, UVLO stop voltage	3.80	3.95	4.10	V
Hysteresis	Vuvhys	-	0.27	0.30	0.33	V

TSD: Thermal Shutdown

\circ						
Shutdown temperature	$\mathrm{T}_{\text {TSD }}$	Temperature rising	-	$165\left({ }^{*} 1\right)$	-	${ }^{\circ} \mathrm{C}$
Hysteresis	$\mathrm{T}_{\text {TSDHYS }}$	-	-	$10\left({ }^{*} 1\right)$	-	${ }^{\circ} \mathrm{C}$

Enable Inputs (EN1, EN2, EN3, EN4, ENL1, ENL2)

Input high voltage	$V_{\text {IHEN }}$	-	2.0	-	$V_{\text {VCC }}$	V	
Input low voltage	VILEN	-	0	-	0.4	V	
Input current	$\mathrm{I}_{\text {IHEN }}$	$\mathrm{V}_{\text {EN }}=5.0 \mathrm{~V}$		33	50	100	$\mu \mathrm{~A}$
Pull down resistance	RPDEN		-	50	100	150	$\mathrm{k} \Omega$

Internal Linear Regulator Output (VREG)

Output voltage	Vvreg	$\mathrm{Vvcc}=5.0 \mathrm{~V}$	1.74	1.80	1.86	V
Maximum output current	Ivreg	$\mathrm{V}_{\mathrm{vcc}}=5.0 \mathrm{~V}$	5	-	-	mA
Over voltage lockout threshold	Vvregovr	Vvreg rising, Power fail	1.86	1.92	1.98	V
	Vvregovf	Vvreg falling, Power good	1.81	1.87	1.93	V
Under voltage lockout threshold	VVreguvr	Vvreg rising, Power good	1.67	1.73	1.79	V
	Vvreguvf	Vvreg falling, Power fail	1.62	1.68	1.74	V
Oscillator						
Switching frequency	fosc	-	2.0	2.1	2.2	MHz
Synchronization Input (SYNC)						
Input high voltage	VIHSYNC	-	2.0	-	Vvcc	V
Input Low voltage	VILSYNC	- -	0	-	0.4	V
Input current	IIHSYNC	$\mathrm{V}_{\mathrm{EN}}=5.0 \mathrm{~V}$	33	50	100	$\mu \mathrm{A}$
Pull down resistance	RPDSYNC	-	50	100	150	k Ω
Input frequency	$\mathrm{f}_{\text {SYNC }}$	-	1.8	2.1	2.4	MHz
Switching frequency	fosc	-	-	$\mathrm{f}_{\text {SYNC }}$	-	MHz

S6BP401A

Parameter	Symbol	Condition	Value			Unit
			Min	Typ	Max	
Power Good Monitor (PG1, PG2, PGL2)						
Over voltage threshold	VPGOV	Ratio of power fail threshold to Vout1, Vout2, Voutl2 rising	104.5	106.0	107.5	\%
Over voltage hysteresis	VPgovhys	-	0.5	1.0	1.5	\%
Under voltage threshold	Vpguv	Ratio of power fail threshold to Vout1, Vout2, Vout3 falling	92.5	94.0	95.5	\%
Under voltage hysteresis	VPguvils	-	0.5	1.0	1.5	\%
Leakage current	ILEAKPG	$\mathrm{V}_{\mathrm{PG}}=5.0 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
Output low voltage	Volpg	$\mathrm{IPG}=3 \mathrm{~mA}$	-	0.15	0.30	V
Propagation time	TPPG	5% outside of the threshold, Power fail	-	4 (*1)	8 (*1)	$\mu \mathrm{s}$
Power-on reset time	TRPG	Power good	8	10	12	ms
Power Good Monitor (PG3)						
Over voltage threshold	VPGOV	Ratio of power fail threshold to Vоит3 rising	104.5	106.0	107.5	\%
Over voltage hysteresis	VPGOVHYS	-	0.5	1.0	1.5	\%
Under voltage threshold	Vpguv	Ratio of power fail threshold to Vоитз falling	93.7	95.2	96.7	\%
Under voltage hysteresis	Vpguvhrs	-	0.5	1.0	1.5	\%
Leakage current	ILEAKPG	$\mathrm{V}_{\mathrm{PG}}=5.0 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
Output low voltage	Volpg	$\mathrm{IPG}^{\text {P }} 3 \mathrm{~mA}$	-	0.15	0.30	V
Propagation time	TPPG	5% outside of the threshold, Power fail	-	4 (*1)	8 (*1)	$\mu \mathrm{s}$
Power-on reset time	TRPG	Power good	8	10	12	ms
Power Good Monitor (PG4)						
Over voltage threshold	Vpgov	Ratio of power fail threshold to Vout4 rising	104.5	106.0	107.5	\%
Over voltage hysteresis	Vpgovhys	-	0.5	1.0	1.5	\%
Under voltage threshold	VPGUV	Ratio of power fail threshold to Vout4 falling	94.0	95.5	97.0	\%
Under voltage hysteresis	VPGUVHYS	-	0.5	1.0	1.5	\%
Leakage current	ILEAKPG	$\mathrm{V}_{\mathrm{PG}}=5.0 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
Output low voltage	Volpg	$\mathrm{IPG}^{\text {a }}=3 \mathrm{~mA}$	-	0.15	0.30	V
Propagation time	TPPG	5% outside of the threshold, Power fail	-	4 (*1)	8 (*1)	$\mu \mathrm{s}$
Power-on reset time	TRPG	Power good	8	10	12	ms
Reset (RST)						
Over voltage threshold	VRSOV	Ratio of power fail threshold to VoutLi rising	104.5	106.0	107.5	\%
Over voltage hysteresis	VRSOVHYS	-	0.5	1.0	1.5	\%
Under voltage threshold	Vrsuv	Ratio of power fail threshold to VoutL falling	92.5	94.0	95.5	\%
Under voltage hysteresis	Vrsuvhrs	-	0.5	1.0	1.5	\%
Leakage current	ILEAKRSt	$\mathrm{V}_{\text {RST }}=5.0 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
Output low voltage	Volrst	$\mathrm{IPG}^{\text {a }}=3 \mathrm{~mA}$	-	0.15	0.30	V
Propagation time	TPRST	5% outside of the threshold, Power fail	-	4 (*1)	8 (*1)	$\mu \mathrm{s}$
Power-on reset time	TRD	Power good	25.6	32.0	38.4	ms

S6BP401A

Parameter	Symbol	Condition	Value			Unit
			Min	Typ	Max	
Watchdog Timer (WDI)						
Watchdog sampling time	Tsam	-	0.40	0.50	0.60	ms
Ignore window time	Tiw	-	25.6	32.0	38.4	ms
Open window time	Tow	-	25.6	32.0	38.4	ms
Long open window time	TLow	-	102.4	128.0	153.6	ms
Closed window time	Tcw	-	25.6	32.0	38.4	ms
Window watchdog trigger time	Twd	-	38.4	48	51.2	ms
Input high voltage	$\mathrm{V}_{\text {IHWDI }}$	-	2.0	-	V Vcc	V
Input low voltage	VILWDI	- -	0	-	0.4	V
Input current	linwdi	$\mathrm{V}_{\mathrm{WDI}}=5.0 \mathrm{~V}$	33	50	100	$\mu \mathrm{A}$
Pull down resistance	RPDWDI	-	50	100	150	k Ω

DD1: Buck DC/DC Converter

Output voltage accuracy	Vout1	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{vcc}}=5.0 \mathrm{~V}, \\ & \mathrm{l}_{\mathrm{ouT} 1}=10 \mathrm{~mA} \end{aligned}$	-1.8	0	+1.8	\%
DC regulation	Vreg1	$\begin{aligned} & \mathrm{V}_{\mathrm{VCC}}=\mathrm{V}_{\mathrm{PVCC1}}=4.5 \text { to } 5.5 \mathrm{~V}, \\ & \text { lout1 }=0 \text { to } 2.0 \mathrm{~A} \end{aligned}$	-15 (*1)	0	+5 (*1)	mV
FB1 input resistance	RfB1	$\mathrm{V}_{\mathrm{FB} 1}=2.0 \mathrm{~V}$	95	190	285	$\mathrm{k} \Omega$
Switching FET	Ronhs 1	$\mathrm{LLx} 1=20 \mathrm{~mA}$ (PVCC1 to LX1)	-	100	190	$\mathrm{m} \Omega$
ON resistance	Ronls1	$\mathrm{ILX1}^{\prime}=-20 \mathrm{~mA}$ (LX1 to PGND1)	-	65	125	$\mathrm{m} \Omega$
Switching FET leakage current	ILEAK1	$\mathrm{IPVCC}^{1}=5.0 \mathrm{~V}$	-	1	10	$\mu \mathrm{A}$
Maximum output current	lout1	$\mathrm{L}=1.5 \mu \mathrm{H}$	2 (*1)	-	-	A
LX1 peak current limit	lıimiti	$\mathrm{L}=1.5 \mu \mathrm{H}$	2.5 (*1)	-	-	A
Over voltage protection threshold	Vovp1	Vout1 rising, Switching termination threshold	125.0	130.0	135.0	\%
Over voltage protection hysteresis	VovphYs1	- -	2.0	5.0	8.0	\%
FB1 discharge resistance	RDIS1	-	160	400	640	Ω
Soft-start time coefficient	Tcoess1	$\mathrm{T}_{\text {SS } 1}=\mathrm{V}_{\text {OUT } 1} \times \mathrm{T}_{\text {coess }}$	0.9	1.0	1.1	ms / V

DD2: Buck DC/DC Converter

Output voltage accuracy	Vout2	$\begin{aligned} & \mathrm{V}_{\mathrm{vcc}}=5.0 \mathrm{~V}, \\ & \text { lout2 }=10 \mathrm{~mA} \end{aligned}$	-1.8	0	+1.8	\%
DC regulation	$V_{\text {ReG2 }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{VCC}}=\mathrm{V}_{\mathrm{PVCC2}}=4.5 \text { to } 5.5 \mathrm{~V} \\ & \text { lout2 }=0 \text { to } 3.0 \mathrm{~A} \end{aligned}$	-15 (*1)	0	+5 (*1)	mV
FB2 input resistance	RfB2	$\mathrm{V}_{\mathrm{FB} 2}=2.0 \mathrm{~V}$	95	190	285	$\mathrm{k} \Omega$
Switching FET	Ronhs2	ILx2 $=20 \mathrm{~mA}$ (PVCC2 to LX2)	-	85	165	$\mathrm{m} \Omega$
ON resistance	Ronls2	ILx2 $=-20 \mathrm{~mA}$ (LX2 to PGND2)	-	55	105	$\mathrm{m} \Omega$
Switching FET leakage current	ILEAK2	$\mathrm{IPVCC2}^{\text {a }}=5.0 \mathrm{~V}$	-	1	10	$\mu \mathrm{A}$
Maximum output current	lout2	$\mathrm{L}=1.5 \mu \mathrm{H}$	3 (*1)	-	-	A
LX2 peak current limit	ILımit2	$\mathrm{L}=1.5 \mu \mathrm{H}$	3.5 (*1)	-	-	A
Over voltage protection threshold	Vovp2	Vout2 rising, Switching termination threshold	125.0	130.0	135.0	\%
Over voltage protection hysteresis	VovphYs2	-	2.0	5.0	8.0	\%
FB2 discharge resistance	RDIS2	-	160	400	640	Ω
Soft-start time coefficient	Tcoess2	$\mathrm{T}_{\text {ss2 }}=\mathrm{V}_{\text {Out2 }} \times \mathrm{T}_{\text {coess2 }}$	0.9	1.0	1.1	ms/V

Parameter	Symbol	Condition	Value			Unit
			Min	Typ	Max	
DD3: Buck DC/DC Converter						
Output voltage accuracy	Vоитз	$\begin{aligned} & \mathrm{V}_{\mathrm{vcc}}=5.0 \mathrm{~V}, \\ & \text { lout } 3=10 \mathrm{~mA} \end{aligned}$	-1.8	0	+1.8	\%
DC regulation	Vreg3	$\begin{aligned} & \mathrm{V}_{\mathrm{VCC}}=\mathrm{V}_{\mathrm{PVCC3}}=4.5 \text { to } 5.5 \mathrm{~V}, \\ & \text { lout3 }=0 \text { to } 2.0 \mathrm{~A} \end{aligned}$	-15 (*1)	0	+5 (*1)	mV
FB3 input resistance	Rfb3	$\mathrm{V}_{\mathrm{FB} 3}=2.0 \mathrm{~V}$	95	190	285	$\mathrm{k} \Omega$
Switching FET	Ronhs3	l Lx3 $=20 \mathrm{~mA}$ (PVCC3 to LX3)	-	100	190	$\mathrm{m} \Omega$
ON resistance	Ronls3	$\mathrm{ILX3}=-20 \mathrm{~mA}$ (LX3 to PGND3)	-	65	125	$\mathrm{m} \Omega$
Switching FET leakage current	ILeak3	$\mathrm{IPvCC3}^{\text {a }}=5.0 \mathrm{~V}$	-	1	10	$\mu \mathrm{A}$
Maximum output current	lout3	$\mathrm{L}=1.5 \mu \mathrm{H}$	2 (*1)	-	-	A
LX3 peak current limit	ІІІмıт3	$\mathrm{L}=1.5 \mu \mathrm{H}$	2.5 (*1)	-	-	A
Over voltage protection threshold	Vovp3	Vоuтз rising, Switching termination threshold	125.0	130.0	135.0	\%
Over voltage protection hysteresis	VovphYs3	-	2.0	5.0	8.0	\%
FB3 discharge resistance	Rdis3	-	160	400	640	Ω
Soft-start time coefficient	Tcoess3	$\mathrm{T}_{\text {SS3 }}=\mathrm{V}_{\text {OUT }} \times \mathrm{T}_{\text {coess3 }}$	0.9	1.0	1.1	ms/V
DD4: Buck DC/DC Converter						
Output voltage accuracy	Vout4	$\begin{aligned} & \mathrm{V}_{\mathrm{VCc}}=5.0 \mathrm{~V}, \\ & \text { louT4 }=10 \mathrm{~mA} \end{aligned}$	-1.8	0	+1.8	\%
DC regulation	$V_{\text {REG4 }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{VCC}}=\mathrm{V}_{\mathrm{PVCC4}}=4.5 \text { to } 5.5 \mathrm{~V}, \\ & \text { lout4 }=0 \text { to } 1.0 \mathrm{~A} \end{aligned}$	-15 (*1)	0	+5 (*1)	mV
FB4 input resistance	RFB4	$\mathrm{V}_{\mathrm{FB4} 4}=2.0 \mathrm{~V}$	95	190	285	$\mathrm{k} \Omega$
Switching FET	Ronhs4	$\mathrm{ILX4} 4=20 \mathrm{~mA}$ (PVCC4 to LX4)	-	100	190	$\mathrm{m} \Omega$
ON resistance	Ronls4	$\mathrm{ILX4}=-20 \mathrm{~mA}$ (LX4 to PGND4)	-	65	125	$\mathrm{m} \Omega$
Switching FET leakage current	ILEAK4	IPvccu $=5.0 \mathrm{~V}$	-	1	10	$\mu \mathrm{A}$
Maximum output current	lout4	$\mathrm{L}=1.5 \mu \mathrm{H}$	1 (*1)	-	-	A
LX4 peak current limit	ILimit4	$\mathrm{L}=1.5 \mu \mathrm{H}$	1.5 (*1)	-	-	A
Over voltage protection threshold	Vovp4	Vout4 rising, Switching termination threshold	125.0	130.0	135.0	\%
Over voltage protection hysteresis	Vovphys4	-	2.0	5.0	8.0	\%
FB4 discharge resistance	Rdis4	-	160	400	640	Ω
Soft-start time coefficient	Tcoess4	$\mathrm{T}_{\text {SS4 }}=\mathrm{V}_{\text {OUT4 }} \times \mathrm{T}_{\text {coess }}$	0.9	1.0	1.1	ms/V

Parameter	Symbol	Condition	Value			Unit
			Min	Typ	Max	
LD1: LDO Regulator						
Output voltage accuracy	Voutli	$\begin{aligned} & \mathrm{V}_{\mathrm{VCC}}=5.0 \mathrm{~V}, \\ & \text { loutL1 }=10 \mathrm{~mA} \end{aligned}$	-1.8	0	+1.8	\%
DC regulation	$V_{\text {Regli }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{VCC}}=4.5 \text { to } 5.5 \mathrm{~V} \text {, } \mathrm{V}_{\mathrm{PVCCL1}}=2.97 \text { to } \mathrm{V} \mathrm{VCc} \\ & \text { louTL1 }=0 \text { to loutL1 } \end{aligned}$	-15 (*1)	0	+5 (*1)	mV
Output FET leakage current	ILEAKL1	Ipvccli $=5.0 \mathrm{~V}$	-	1	10	$\mu \mathrm{A}$
Maximum output current	loutli	$\mathrm{V}_{\text {PVCCL1 }}-\mathrm{V}_{\text {OUTL1 }} \geq 1.6 \mathrm{~V}$	200 (*1)	-	-	mA
		$0.17 \mathrm{~V} \leq \mathrm{V}_{\text {PVCCL1 }}-\mathrm{V}_{\text {OUTL1 }}<1.6 \mathrm{~V}$	100 (*1)	-	-	mA
Output current limit	ILimitL1	$\mathrm{V}_{\text {PVCCL1 }}-\mathrm{V}_{\text {OUTL1 }} \geq 1.6 \mathrm{~V}$	210 (*1)	-	-	mA
		$0.17 \mathrm{~V} \leq \mathrm{V}_{\text {PVCCL1 }}-\mathrm{V}_{\text {OUTL1 }}<1.6 \mathrm{~V}$	105 (*1)	-	-	mA
LDO1 discharge resistance	RdISL1	-	160	400	640	Ω
Soft-start time coefficient	Tcoessli	TssL1 $=$ Voutl \times TcoessL1	0.9	1.0	1.1	ms / V
LD2: LDO Regulator						
Output voltage accuracy	Voutl2	$\begin{aligned} & \mathrm{V}_{\mathrm{VCC}}=5.0 \mathrm{~V}, \\ & \text { louTL2 }=10 \mathrm{~mA} \end{aligned}$	-1.8	0	+1.8	\%
DC regulation	Vregl2	$\mathrm{V}_{\mathrm{VCC}}=4.5$ to 5.5 V , $\mathrm{V}_{\mathrm{PVCCL2}}=2.97$ to V VCc loutl2 $=0$ to loutl2	-15 (*1)	0	+5 (*1)	mV
Output FET leakage current	ILEAKL2	$\mathrm{IPVCCL2}=5.0 \mathrm{~V}$	${ }^{-}$	1	10	$\mu \mathrm{A}$
Maximum output current	loutt2	$\mathrm{V}_{\text {PVCCL2 }}-\mathrm{V}_{\text {OUTL2 }} \geq 1.6 \mathrm{~V}$	500 (*1)	-	-	mA
		$0.17 \mathrm{~V} \leq \mathrm{V}_{\text {PVCCL2 }}-\mathrm{V}_{\text {OUTL2 }}<1.6 \mathrm{~V}$	400 (*1)	-	-	mA
Output current limit	ILImitle	$\mathrm{V}_{\text {PVCCL2 }}-\mathrm{V}_{\text {OUTL2 }} \geq 1.6 \mathrm{~V}$	525 (*1)	-	-	mA
		$0.17 \mathrm{~V} \leq \mathrm{V}_{\text {PVCCL2 }}-\mathrm{V}_{\text {OUTL2 }}<1.6 \mathrm{~V}$	420 (*1)	-	-	mA
LDO2 discharge resistance	Rdist2	-	160	400	640	Ω
Soft-start time coefficient	Tcoessl2	TssL2 $=$ Voutl2 \times Tcoessl2	0.9	1.0	1.1	ms / V

*1: The electrical characteristic is ensured by statistical characterization and indirect tests.

9. Operating Mode List

Table 9-1 shows the operation list of S6BP401A.

Table 9-1 Operation Mode List

Condition					Operating Block				
TJ	SYNC	ENL1	$\begin{aligned} & \text { EN1/ } \\ & \text { EN2/ } \\ & \text { EN3/ } \\ & \text { EN4/ } \\ & \text { ENL2 } \end{aligned}$	Chip Control	VREG LDO	Watchdog Trigger Monitor	Freq. Sync.	LD1	$\begin{aligned} & \text { DD1/ } \\ & \text { DD2/ } \\ & \text { DD3/ } \\ & \text { DD4/ } \\ & \text { LD2 } \end{aligned}$
< T TSD	L or H	L	L	OFF	OFF	OFF	OFF	OFF	OFF
< T TSD	L or H	L	H	ON	ON	OFF	OFF	OFF	ON
< TTSD	L or H	H	L	ON	ON	ON	OFF	ON	OFF
< T TSD	L or H	H	H	ON	ON	ON	OFF	ON	ON
< T TSD	clock	L	L	OFF	OFF	OFF	OFF	OFF	OFF
< T TSD	clock	L	H	ON	ON	OFF	ON	OFF	ON
< T TSD	clock	H	L	ON	ON	ON	ON	ON	OFF
< T TSD	clock	H	H	ON	ON	ON	ON	ON	ON
$\geq \mathrm{T}_{\text {TSD }}$	L or H	L	L	OFF	OFF	OFF	OFF	OFF	OFF
$\geq \mathrm{T}_{\text {TSD }}$	L or H	L	H	ON	ON	OFF	OFF	OFF	OFF
\geq T $_{\text {TSD }}$	L or H	H	L	ON	ON	OFF	OFF	OFF	OFF
$\geq \mathrm{T}_{\text {TSD }}$	L or H	H	H	ON	ON	OFF	OFF	OFF	OFF
\geq TTSD	clock	L	L	OFF	OFF	OFF	OFF	OFF	OFF
$\geq \mathrm{T}_{\text {TSD }}$	clock	L	H	ON	ON	OFF	OFF	OFF	OFF
\geq TTSD	clock	H	L	ON	ON	OFF	OFF	OFF	OFF
\geq TTSD	clock	H	H	ON	ON	OFF	OFF	OFF	OFF

S6BP401A

10.Function

10.1 Turning ON and OFF Sequence

When all of the enable input terminals (EN1, EN2, EN3, EN4, ENL1 and ENL2) are "Low", the device is in shutdown state. When any one or more than one of them go "High," the device is initialized, then the internal linear regulator (VREG) starts generating 1.8 V internal supply voltage. After that, each DC/DC converters and LDOs state is transitioned to the state which can be started.

In order for the device to start, the VCC terminal voltage must be higher than the under-voltage lockout threshold (VuvLof + Vuvhrs).
Figure 10-1 depicts the turning-on and off sequence where the enable signals are connected to VCC. Figure 10-2 depicts that where the enable signals are respectively controlled after the IC is powered.

Figure 10-1 Turning ON and OFF Sequence (where EN1 and ENL1 are Connected to VCC)

[^0]Figure 10-2 Turning ON and OFF Sequence (where EN1 and ENL1 are Respectively Controlled)

*1: Given that the system employs the same external parts with those specified in "11. Application Circuit Example".

10.2 Over Current Protection

The over current protection of the DC/DC converters detects the inductor peak current with on-resistance of Internal high side switching FET. If the DC/DC converter is over current state, the corresponding output voltage is decreased. If the device returns from over current state, the output voltage is target voltage.

Each LDOs equips foldback current limiter in order to prevent the IC itself from being damaged or destroyed. The curve of output current and output voltage in over current state is shown in the Figure 10-3.

Figure 10-3 LDO Foldback Over Current Protection Characteristic

10.3 Over Voltage Protection

The over voltage protection of the DC/DC converters detects the output voltage. If the DC/DC converter is over voltage state, the corresponding channel stops switching and inductor connecting terminal (LX1, LX2, LX3, LX4) is held at high impedance. If the device returns from over voltage state, the channel returns switching automatically.

Figure 10-4 Over Voltage Protection Timing Chart

S6BP401A

10.4 Thermal Shutdown (TSD)

If the junction temperature reaches $+165^{\circ} \mathrm{C}$, all DC/DC converters and LDOs stop outputting voltage. Then the discharge operation is carried out to discharge the output capacitor (The discharge operation continues until the state of the thermal shutdown released.) When the junction temperature drops below $+155^{\circ} \mathrm{C}$, the soft-starters activate regulators and start generating voltage gradually if the enable is "High."

Figure 10-5 Thermal Shutdown Timing Chart

10.5 Under Voltage Lockout (UVLO)

If the VCC terminal voltage (Vvcc) drops below the lower UVLO threshold (VuvLof), all DC/DC converters (DD1, DD2, DD3, DD4), LDOs (LD1, LD2), windowed watchdog timer (WDT) and the internal linear regulator (VREG) stop working. When the VCC terminal voltage ($\mathrm{V}_{\mathrm{vcc}}$) is raised higher than the higher UVLO threshold (Vuvlof + Vuvhrs), the device returns automatically.

10.6 Soft-Start Operation

S6BP401A equips load-independent soft-start function in order to prevent the DC/DC converters and LDOs from having rush current at the start-up. The soft-start timing is shown in the Figure 10-6, and is given by the following equation;

$$
T_{S S}=V_{\text {OUT }} \times T_{\text {COESS }}, \text { where }
$$

Tss [ms]: Soft-start time
Vout [V]: Output voltage (Vout1, Vout2, Vout3, Vout4, Voutl1, Voutl2)
Tcoess [ms/V]: Soft-start time coefficient (Tcoess1, $\mathrm{T}_{\text {coess2, }}$ Tcoess3, $\mathrm{T}_{\text {coess4, }} \mathrm{T}_{\text {coessl1 }}, \mathrm{T}_{\text {coessl2 }}$)

Figure 10-6 Soft-Start Operation Timing Chart
(

10.7 Discharge Operation

When an enable signal goes "Low", the corresponding output capacitor is discharged by the internal discharge resistor and the output voltage is decreased gradually. Note that the discharge time is not consistent: it depends on the output load current.

As for a DC/DC converter, the output capacitor is discharged from FB1, FB2, FB3 and FB4 terminal to PGND1, PGND2, PGND3 and PGND4 terminal respectively. As for a LDO, the output capacitor is dis-charged from LDO1, LDO2 terminal to GND terminal.

The discharge time required to decrease the output voltage by 90% without any explicit load given by the following equation;

$$
T_{D I S}=2.3 \times R_{\text {DIS }} \times C_{\text {OUT }}, \text { where }
$$

TDIS [ms]: \quad Discharge time
$R_{D I S}[k \Omega]: \quad$ Discharge resistance ($\left.R_{D I S 1}, R_{D I S 2}, R_{D I S 3}, R_{D I S 4}, R_{D I S L 1}, R_{D I S L 2}\right)$
Cout $[\mu \mathrm{F}]: \quad$ Output capacitor
Figure 10-7 Discharge Diagram (DC/DC Converter)

Figure 10-8 Discharge Diagram (LDO)

10.8 Power Good Monitor and Reset Function

Each DC/DC converters and LDOs has power good function to indicate whether the output voltage is in the expected range. The Table 10-1 describes the power good pin names and their functions of each DC/DC converters and LDOs. The Figure 10-9 and Figure 10-10 depict power-good timing chart.

Table 10-1 Power Good Monitor and Reset Function Pin List

Channel	Pin Name	Description
DD1	PG1	Enabling DD1 is followed by rising of the DD1 output voltage (Vout1). Once Vout1 reaches within the power good range (VPGUV $+V_{\text {PGUVHYs }}<$ Vout1 $^{<} \mathrm{V}_{\text {PGov }}-\mathrm{VPGOVHYS}^{\prime}$), the power good monitor output (PG1 terminal) changes its state from "Low" to "Open" after a power-on-reset time ($T_{R P G}$). When Vout1 is out of the power good range ($\mathrm{V}_{\text {OUT1 }} \leq \mathrm{V}_{\text {PGUV }}$ or $\mathrm{V}_{\text {OUT1 }} \geq \mathrm{V}_{\text {PGOV }}$), PG1 terminal changes its state from "Open" to "Low" after the propagation delay (TPPG). The glitch within TPPG does not affect the power good monitor output.
DD2	PG2	Enabling DD2 is followed by rising of the DD2 output voltage (Vout2). Once Vout2 reaches within the power good range ($\mathrm{V}_{\text {PGUV }}+\mathrm{V}_{\text {PGUVHYS }}<\mathrm{V}_{\text {OUT2 }}<\mathrm{V}_{\text {PGOV }}-\mathrm{V}_{\text {PGOVHYS }}$), the power good monitor output (PG2 terminal) changes its state from "Low" to "Open" after a power-on-reset time (TRPG). When Vout2 is out of the power good range (Vout2 $\leq V_{\text {PGUV }}$ or $V_{\text {out2 }} \geq V_{\text {PGov }}$), PG2 terminal changes its state from "Open" to "Low" after the propagation delay (TPPG). The glitch within TPPG does not affect the power good monitor output.
DD3	PG3	Enabling DD3 is followed by rising of the DD3 output voltage (Vоит3). Once Vоut3 reaches within the power good range ($\mathrm{V}_{\text {PGUV }}+\mathrm{V}_{\text {PGUVHYS }}<\mathrm{V}_{\text {оUT3 }}<\mathrm{V}_{\text {PGOV }}-\mathrm{V}_{\text {PGOVHYS }}$), the power good monitor output (PG3 terminal) changes its state from "Low" to "Open" after a power-on-reset time (TRPG). When Vout3 is out of the power good range ($V_{\text {оит }} \leq V_{\text {PGUV }}$ or $V_{\text {оит }} \geq \mathrm{V}_{\text {PGOV }}$), PG3 terminal changes its state from "Open" to "Low" after the propagation delay (TPPG). The glitch within TPPG does not affect the power good monitor output.
DD4	PG4	Enabling DD4 is followed by rising of the DD4 output voltage (Vout4). Once Vout4 reaches within the power good range (VPGUV $+V_{\text {PGUVHYs }}<V_{\text {OUT4 }}<V_{\text {PGOV }}-V_{\text {PGOVHYs }}$), the power good monitor output (PG4 terminal) changes its state from "Low" to "Open" after a power-on-reset time ($T_{R P G}$). When Vout4 is out of the power good range (Vout4 $\leq V_{\text {PGUV }}$ or Vout4 \geq VPGov), PG4 terminal changes its state from "Open" to "Low" after the propagation delay (TPPG). The glitch within TPPG does not affect the power good monitor output.

Channel	Pin Name	Description
LD1	RST	Enabling LD1 is followed by rising of the LD1 output voltage (VoutL1). Once VoutL1 reaches within the power good range ($V_{\text {RSUV }}+V_{\text {RSUVHYS }}<V_{\text {OUTL1 }}<V_{\text {RSOV }}-V_{\text {RSOVHYS }}$), the RST terminal changes its state from "Low" to "Open" after a power-on-reset time ($T_{R D}$). When $V_{\text {outL1 }}$ is out of the power good range ($\mathrm{V}_{\text {outL1 }} \leq \mathrm{V}_{\text {RSUV }}$ or $V_{\text {OUTL1 }} \geq \mathrm{V}_{\text {RSOV }}$), RST terminal changes "Open" to "Low" after the propagation delay (TPRST). The glitch within TPRST does not affect the power good monitor output.
LD2	PGL2	Enabling LD2 is followed by rising of the LD2 output voltage (VoutL2). Once VoutL2 reaches within the power good range (VPGUV + VPGUVHYs < VoutL2 < VPGov - VPGOVHYs), the power good monitor output (PGL2 terminal) changes its state from "Low" to "Open" through the power-on-reset time ($T_{\text {RPG }}$). When Voutl2 is out of the power good range (VoutL2 $\leq V_{\text {PGUV }}$ or $V_{\text {OUTL2 }} \geq \mathrm{V}_{\text {PGOV }}$), PGL2 terminal changes "Open" to "Low" after the propagation delay (TPPG). The glitch within $T_{\text {PPG }}$ does not affect the power good monitor output.

Figure 10-9 Power-Good Monitor Output Timing Chart (PG1, PG2, PG3, PG4, PGL2)

Figure 10-10 Power-Good Monitor Output Timing Chart (RST)

S6BP401A

10.9 Watchdog Timer

S6BP401A employs a digital windowed watchdog timer. The digital windowed watchdog timer starts monitoring trigger signal, when the LD1 output voltage (VoutL1) reaches the power good level after enabling LD1.

Figure 10-11 shows the state diagram of the digital watchdog timer. There are six states in the diagram. In the normal operation, the state is expected to move back and forth between "CW" and "OW",
At first, as described in the section 10.8, enabling LD1 brings "RESET" state, and the "RESET" state is kept for the "Reset Time ($T_{R D}$)" outputting "Low" from RST terminal.

In the second, after $T_{\text {RD }}$ in the "RESET" state, the state will transition to "Ignore Window (IW)", and let RST terminal be "Open". The "IW" state will be elapsed in the "Ignore Window Time (Tiw.)"

In the third, after elapsing, the state will transition to "Long Open Window (LOW)" state, and let RST terminal be "Open." In this state, a trigger signal is expected to be input: if an input trigger arrives, the state will immediately transition to the "Closed Window (CW)" state. Without an input trigger in the "Long Open Window Time (TLow,)" the state will be elapsed and will transition to "RESET" state.

In the "CW" state, a trigger signal is expected NOT to be input: if an input trigger arrives, the state will immediately transition to the "RESET" state. Without an input trigger in the "Closed Window Time (Tcw,)" the state will be elapsed and will transition to "Open Window (OW)" state.

In the "OW" state, a trigger signal is expected to be input: if an input trigger arrives, the state will immediately transition to the "Closed Window (CW)" state. Without an input trigger in the "Open Window Time (Tow,)" the state will be elapsed and will transition to "RESET" state.

Figure 10-14 shows that to avoid wrong triggering due to glitch noise two "High" samples followed by two "Low" samples to input WDI pin are decoded as a trigger.
In any states above, a power failure of LD1 will cause a transition to "OFF" state, and output "Low" from RST terminal until LD1 goes well.

Figure 10-11 Watchdog Timer State Diagram

Figure 10-12 Window Watchdog Timing Chart (WDI)

Figure 10-13 Window Watchdog Timing Chart (LD1)

Figure 10-14 De-glitch of Window Watchdog Trigger Pulse

S6BP401A

10.10Internal Linear Regulator Output (VREG)

S6BP401A equips a 1.8 V linear regulator as the power source for its internal circuit. A low ESR $1.0 \mu \mathrm{~F}$ ceramic capacitor should be connected from VREG pin to GND. VREG is not designed to supply to external load.

Unless the VREG terminal voltage is in the range between the over voltage lockout level Vvregovr and the under voltage lockout level Vvreguvf, S6BP401A considers it abnormal and halts all DC/DC converters, LDOs and windowed watchdog timer. When the VREG terminal voltage returns to the power good voltage range (VVreguvr $\leq V_{\text {VReg }} \leq V_{\text {vregovf }}$), S6BP401A returns the DC/DC converters, LDOs and window watchdog timer to the normal mode. Soft-start circuits of each regulator gradually generates supply voltage as described in the section 10.6.

Figure 10-15 VREG OVLO/UVLO Timing Chart

11. Application Circuit Example

Figure 11-1 Application Circuit Example

Table 11-1 Parts List

Symbol	Parts	Part Number	Specifications	Vendor
C1	Ceramic Capacitor	CGA5L1X7R1C106K160AC	$10 \mu \mathrm{~F}$	TDK
C2	Ceramic Capacitor	CGA6P1X7R1C226M250AC	$22 \mu \mathrm{~F}$	TDK
C3	Ceramic Capacitor	CGA6P1X7R1C226M250AC	$22 \mu \mathrm{~F}$	TDK
C7	Ceramic Capacitor	CGA5L1X7R1C106K160AC	$10 \mu \mathrm{~F}$	TDK
C8	Ceramic Capacitor	CGA6P1X7R1C226M250AC	$22 \mu \mathrm{~F}$	TDK
C9	Ceramic Capacitor	CGA6P1X7R1C226M250AC	$22 \mu \mathrm{~F}$	TDK
C10	Ceramic Capacitor	CGA6P1X7R1C226M250AC	$22 \mu \mathrm{~F}$	TDK
C15	Ceramic Capacitor	CGA5L1X7R1C106K160AC	$10 \mu \mathrm{~F}$	TDK
C16	Ceramic Capacitor	CGA6P1X7R1C226M250AC	$22 \mu \mathrm{~F}$	TDK
C17	Ceramic Capacitor	CGA6P1X7R1C226M250AC	$22 \mu \mathrm{~F}$	TDK
C21	Ceramic Capacitor	CGA5L1X7R1C106K160AC	$10 \mu \mathrm{~F}$	TDK
C22	Ceramic Capacitor	CGA6P1X7R1C226M250AC	$22 \mu \mathrm{~F}$	TDK
C23	Ceramic Capacitor	CGA6P1X7R1C226M250AC	$22 \mu \mathrm{~F}$	TDK
C27	Ceramic Capacitor	CGA3E1X7R1C105M080AC	$1 \mu \mathrm{~F}$	TDK
C28	Ceramic Capacitor	CGA3E1X7R1C105M080AC	$1 \mu \mathrm{~F}$	TDK
C30	Ceramic Capacitor	CGA3E1X7R1C105M080AC	$1 \mu \mathrm{~F}$	TDK
C31	Ceramic Capacitor	CGA5L1X7R1C106K160AC	$10 \mu \mathrm{~F}$	TDK
C33	Ceramic Capacitor	CGA3E1X7R1C105M080AC	$1 \mu \mathrm{~F}$	TDK
C34	Ceramic Capacitor	CGA3E1X7R1C105M080AC	$1 \mu \mathrm{~F}$	TDK
L1	Inductor	CLF6045T-1R5N-D	$1.5 \mu \mathrm{H}$	TDK
L2	Inductor	CLF6045T-1R5N-D	$1.5 \mu \mathrm{H}$	TDK
L3	Inductor	CLF6045T-1R5N-D	$1.5 \mu \mathrm{H}$	TDK
L4	Inductor	CLF6045T-1R5N-D	$1.5 \mu \mathrm{H}$	TDK
R5	Resistor	RG1608P-473-B	$47 \mathrm{k} \Omega$	SSM
R6	Resistor	RG1608P-473-B	$47 \mathrm{k} \Omega$	SSM
R7	Resistor	RG1608P-473-B	$47 \mathrm{k} \Omega$	SSM
R8	Resistor	RG1608P-473-B	$47 \mathrm{k} \Omega$	SSM
R9	Resistor	RG1608P-473-B	$47 \mathrm{k} \Omega$	SSM
R10	Resistor	RG1608P-473-B	$47 \mathrm{k} \Omega$	SSM

TDK : TDK Corporation
SSM : SUSUMU CO., LTD.

S6BP401A

12. Reference Data

The followings are the reference data measured under the conditions shown in "11. Application Circuit Example".

Figure 12-1 DC/DC Converter

S6BP401A

Figure 12-2 LDO Regulator

$10 \mu \mathrm{~s} / \mathrm{div}$
S6BP401AGraph043

$10 \mu \mathrm{~s} / \mathrm{div}$

LD2 Load Transient Response $V_{\text {vcc }}=V_{\text {PVCCL2 }}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
Preset output voltage $=2.800 \mathrm{~V}$

$400 \mu \mathrm{~s} / \mathrm{div}$

$400 \mu \mathrm{~s} / \mathrm{div}$ S6BP401AGraph0431

S6BP401AGraph0501

BP401AGraph050

S6BP401A

13. Ordering Information

Table 13-1 Ordering Information

Part Number (MPN) (*1)	Output Voltage [V]						Package
	DD1	DD2	DD3	DD4	LD1	LD2	
$\begin{array}{l}\text { S6BP401AB1SN1B000, } \\ \text { S6BP401AB1SN1B200 }\end{array}$	1.250	1.250	1.250	3.375	3.325	1.850	
$\begin{array}{l}\text { S6BP401AJOSN1B000, } \\ \text { S6BP401AJ0SN1B200 }\end{array}$	1.250	1.250	1.850	3.375	3.300	2.800	
$\begin{array}{l}\text { S6BP401AJ2SN1B000, } \\ \text { S6BP401AJ2SN1B200 }\end{array}$	1.200	1.100	1.800	3.300	3.300	2.800	Plastic, QFN (0.50 mm pitch),
40-pin (VND040)							

MPN: Marketing Part Number
*1: Please contact our sales division for the output voltage combination not mentioned in this table.

Part Numbering Conventions

These ICs follow the part numbering convention described in the following table. Each single-character is alphanumeric ($0,1,2, \ldots$, $9, A, B, \ldots, Z$) unless stated otherwise. The part numbers are defined as follows.

Figure 13-1 Part Numbering Conventions

14.Package Dimensions

15. Major Changes

Spansion Publication Number: S6BP401A_DS405-00024

Page	Section	Change Results
Revision 0.1 (February 19, 2015)		
-	-	Initial release

NOTE: Please see "Document History" about later revised information.

Document History

Document Title: S6BP401A Power Management IC for Automotive ADAS Platform Document Number: 002-03341

Revision	ECN	Submission Date	Description of Change
**	4922113	09/16/2015	New Spec. Updated Ordering Information
*A	5085035	01/14/2016	Updated "3. Pin Functions" Updated "6. Absolute Maximum Ratings" Updated "7. Recommended Operating Conditions" Added "Development Support" Added "12. Reference Data" Updated "13. Ordering Information"
*B	5160391	03/04/2016	Added "AEC-Q100 compliant (Grade-1)" in "Features" Added the following values in " 8 . Electrical Characteristics" Supply Current Ivccs: Max value UVLO: Under Voltage Lockout (VCC) Vuvhys: Min and Max values Enable Inputs (EN1, EN2, EN3, EN4, ENL1, ENL2) Іifen: Min and Max values Synchronization Input (SYNC) $\mathrm{I}_{\mathrm{h}} \mathrm{ysnc}$: Min and Max values Power Good Monitor (PG1, PG2, PG3, PG4, PGL2, RST) VPGovhys: Min and Max values Vpguvhys: Min and Max values Watchdog Timer (WDI) Two: Min and Max values limwd: $^{\text {Min }}$ and Max values DD1: Buck DC/DC Converter $\mathrm{R}_{\text {FB1 }}$: Min and Max values Ronhs1: Max values Ronls1: Max values lleaki: Max value Vovphys1: Min and Max values Rols1: Min and Max values Tcoessi: Min and Max values DD2: Buck DC/DC Converter Rfb2: Min and Max values Ronhss: Max values Ronls2: Max values

Revision	ECN	Submission Date	Description of Change
*B	5160391	03/04/2016	ILEAK2: Max value Vovphys2: Min and Max values RDIS2: Min and Max values Tcoessz: Min and Max values DD3: Buck DC/DC Converter $R_{\text {FB3 }}$: Min and Max values Ronhss: Max values Ronls3: Max values ILEAK3: Max value Vovphyss: Min and Max values RDIS3: $^{\text {Min }}$ and Max values Tcoesss: Min and Max values DD4: Buck DC/DC Converter RFB4: Min and Max values $^{\text {and }}$ Ronhs4: Max values Ronls4: Max values ILEAK4: Max value Vovphys4: Min and Max values Rdis4: Min and Max values Tcoess4: Min and Max values LD1: LDO Regulator Ileakli: Max value R $_{\text {DISL1: }}$: Min and Max values Tcoessli: Min and Max values LD2: LDO Regulator Ileaklz: Max value RDISL2: Min and Max values Tcoessl2: Min and Max values Updated the following values in "8. Electrical Characteristics" DD1: Buck DC/DC Converter Ronhs1: Typ value Ronls1: Typ value DD2: Buck DC/DC Converter Ronhss: Typ value Ronls2: Typ value DD3: Buck DC/DC Converter Ronhss: Typ value Ronls3: Typ value DD4: Buck DC/DC Converter Ronhs4: Typ value Ronls4: Typ value Delete the following values in " 8 . Electrical Characteristics" Updated "Figure 10-1" and "Figure 10-2" Updated "10.5 Under Voltage Lockout (UVLO)" Added a part number, S6BP401AL2SN1B000, in "Table 13-1". Corrected an error in "Table 13-1". from S6BP401AW1SN1B000 to S6BP401AW0SN1B000
*C	5396389	08/09/2016	Deleted "Development Support" and added "More Information" Added "S6BP401AY2SN1B000" to "Table 13-1 Ordering information"
*D	5824031	07/19/2017	Adapted Cypress new logo.

Revision	ECN	Submission Date	Description of Change
*E	5929778	$11 / 22 / 2017$	Updated 14. Package Dimensions to the Cypress format Changed the suffix of the Part Number from "000" to "00A" in Table 13-1 Ordering information and Figure 13-1 Part numbering conventions
*F	6007678	$01 / 18 / 2018$	Added "S6BP401AL3SN1B00A" to "Table 13-1 Ordering Information" Fixed VVREG waveform in figure 10-15. VREG is in shutdown state when all of the enable input terminals are "Low".
*G	6174086	$05 / 14 / 2018$	Added the description for Figure 10-14 in "10.9 Watchdog Timer".
*H	6283903	$08 / 17 / 2018$	No update due to sunset review
*I	6771563	$01 / 16 / 2020$	Updated MPN in Table 13-1 Ordering information and Figure 13-1 Part numbering conventions.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm ${ }^{\circledR}$ Cortex ${ }^{\circledR}$ Microcontrollers
Automotive
Clocks \& Buffers
Interface
cypress.com/interface
Internet of Things
cypress.com/iot
Memory
cypress.com/memory
Microcontrollers cypress.com/mcu
PSoC
cypress.com/psoc
Power Management ICs
cypress.com/pmic
Touch Sensing
cypress.com/touch
USB Controllers
cypress.com/usb
Wireless Connectivity

PSoC ${ }^{\circledR}$ Solutions

PSoC 1 | PSoC 3 | PSoC 4 |PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Code Examples | Projects | Videos | Blogs | Training | Components

Technical Support

cypress.com/support

Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Abstract

© Cypress Semiconductor Corporation, 2015-2020. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting surgical implants, and other medical devices. "Critical Component" means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, its directors, officers, employees, agents, affiliates, distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property Device except to the limited extent that (i) Cypress's published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

[^0]: *1: Given that the system employs the same external parts with those specified in "11. Application Circuit Example".

