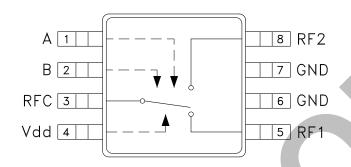


HMC574MS8 / 574MS8E

v02.0308


GaAs MMIC 5 WATT T/R SWITCH DC - 3 GHz

Typical Applications

The HMC574MS8 / HMC574MS8E is ideal for:

- Cellular/3G Infrastructure
- Private Mobile Radio Handsets
- WLAN, WiMAX & WiBro
- Automotive Telematics
- Test Equipment

Functional Diagram

Features

Low Insertion Loss: 0.3 dB

High Third Order Intercept: +65 dBm

Isolation: 30 dB

Single Positive Supply: +3 to +8V

SMT Package: MSOP8

Included in the HMC-DK005 Designer's Kit

General Description

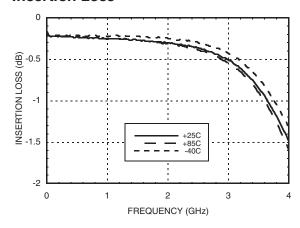
The HMC574MS8 & HMC574MS8E are low-cost SPDT switches in 8-lead MSOP packages for use in transmit/receive applications which require very low distortion at high incident power levels. The device can control signals from DC to 3 GHz and is especially suited for Cellular/3G infrastructure, WiMAX and WiBro applications with only 0.3 dB typical insertion loss. The design provides 5 watt power handling performance and +65 dBm third order intercept at +8 Volt bias. RF1 and RF2 are reflective shorts when "Off".

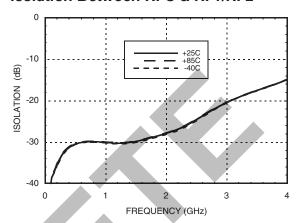
Electrical Specifications,

 $T_A = +25^{\circ}$ C, VctI = 0/+5 Vdc, Vdd = +5 Vdc (Unless Otherwise Stated), 50 Ohm System

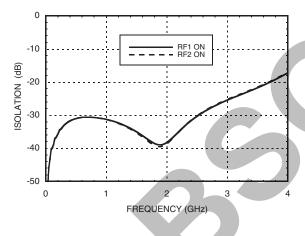
Parameter		Frequency	Min.	Тур.	Max.	Units
Insertion Loss		DC - 1.0 GHz DC - 2.0 GHz DC - 2.5 GHz DC - 3.0 GHz		0.25 0.3 0.4 0.5	0.5 0.6 0.7 0.8	dB dB dB dB
Isolation		DC - 1.0 GHz DC - 2.0 GHz DC - 2.5 GHz DC - 3.0 GHz	26 24 21 16	30 28 25 20		dB dB dB dB
Return Loss		DC - 1.0 GHz DC - 2.0 GHz DC - 2.5 GHz DC - 3.0 GHz		35 25 18 16		dB dB dB dB
Input Power for 1dB Compression	VctI = 0/+3V VctI = 0/+5V VctI = 0/+8V	0.5 - 3.0 GHz	33 35 37	36 38 39		dBm dBm dBm
		0.5 - 3.0 GHz		55 63 65		dBm dBm dBm
Switching Characteristics		DC - 3.0 GHz				
	tRISE, tFALL (10/90% RF) F (50% CTL to 10/90% RF)			80 120		ns ns

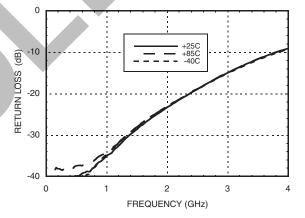
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

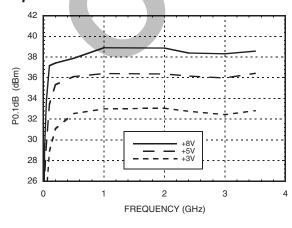

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

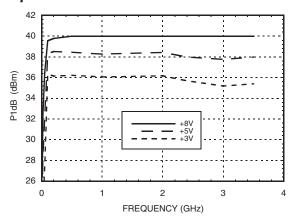


GaAs MMIC 5 WATT T/R SWITCH DC - 3 GHz


Insertion Loss

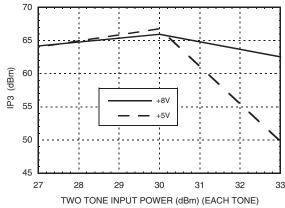

Isolation Between RFC & RF1/RF2


RF1 to RF2 Isolation

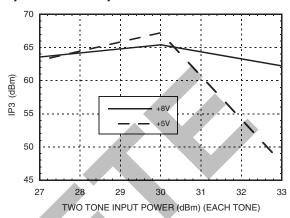

Return Loss

Input P0.1dB vs. Vdd

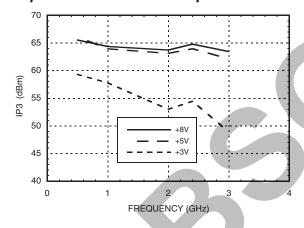
Input P1dB vs. Vdd

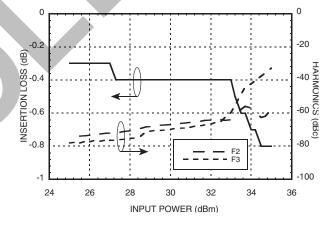

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

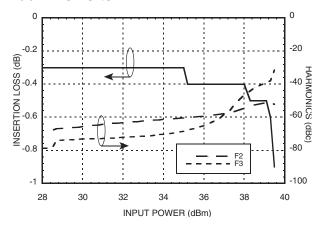

V02.0308

GaAs MMIC 5 WATT T/R SWITCH DC - 3 GHz


Input IP3 vs. Input Power @ 900 MHz


Input IP3 vs. Input Power @ 1900 MHz

Input Third Order Intercept


2nd & 3rd Harmonics @ 900 MHz Vdd = +3 Volts

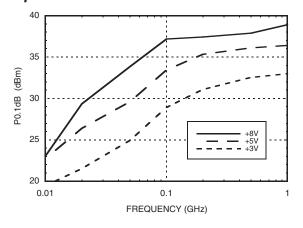
2nd & 3rd Harmonics @ 900 MHz Vdd = +5 Volts

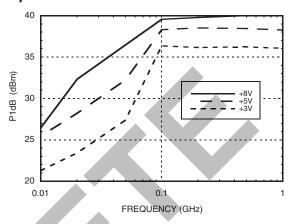
2nd & 3rd Harmonics @ 900 MHz Vdd = +8 Volts

10

SWITCHES - SM

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D



GaAs MMIC 5 WATT T/R SWITCH DC - 3 GHz

Input P0.1dB vs. Vdd

Input P1dB vs. Vdd

Absolute Maximum Ratings

Max. Input Power $V_{dd} = 0/+8V$	0.5 - 2.5 GHz	39 dBm
Bias Voltage Rang	e (Vdd)	-0.2 to +10 Vdc
Control Voltage Ra	inge (A & B)	-0.2 to +Vdd Vdc
Hot Switching Pow V _{dd} = +8V	39 dBm	
Channel Temperat	150 °C	
Continuous Pdiss (derate 10 mW/°C	,	0.65W
Thermal Resistance	e	100 °C/W
Storage Temperatu	ure	-65 to +150 °C
Operating Tempera	ature	-40 to +85 °C
ESD Sensitivity (H	BM)	Class 1A

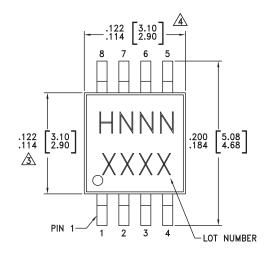
DC Blocks are required at ports RFC, RF1 and RF2

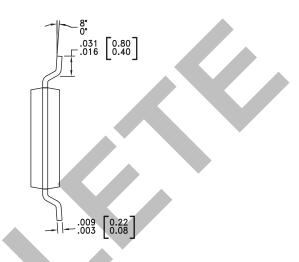
Bias Voltage & Current

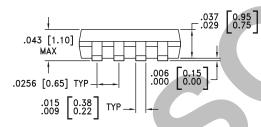
	Vdd (Vdc)	Typical Idd (μA)
ı	+3	2
	+5	10
I	+8	40

Control Voltages

State	Bias Condition
Low	0 to +0.2 Vdc @ 10 μA Typical
High	Vdd ± 0.2 Vdc @ 10 μA Typical


Truth Table


Control Input (Vctl)		Signal Path State	
Α	В	RFC to RF1	RFC to RF2
High	Low	Off	On
Low	High	On	Off


GaAs MMIC 5 WATT T/R SWITCH DC - 3 GHz

Outline Drawing

ANALOG DEVICES

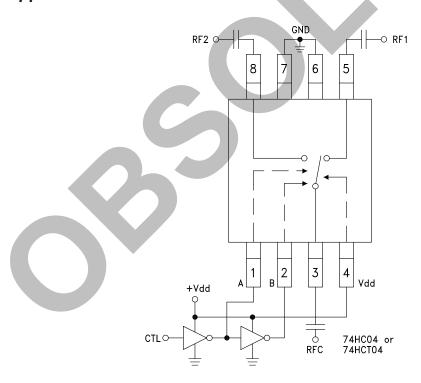
NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 5. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

Package Information

Part Number		Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC574MS8		Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H574 XXXX
HMC574MS8E	RoHS-compliant Low Stress Injection Molded Plastic		100% matte Sn	MSL1 [2]	H574 XXXX

- [1] Max peak reflow temperature of 235 $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

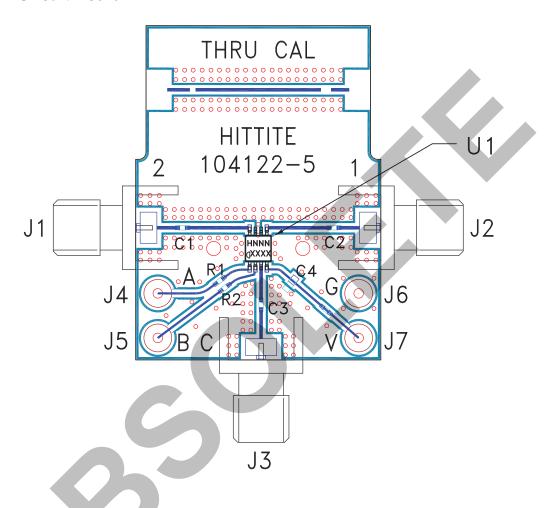


GaAs MMIC 5 WATT T/R SWITCH DC - 3 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	А	See truth table and control voltage table.	R O
2	В	See truth table and control voltage table.	c
3, 5, 8	RFC, RF1, RF2	This pin is DC coupled and matched to 50 Ohm. Blocking capacitors are required.	
4	Vdd	Supply Voltage.	
6, 7	GND	This pin must be connected to RF/DC ground.	GND =

Typical Application Circuit



Notes:

- 1. Set logic gate and switch Vdd = +3V to +5V and use HCT series logic to provide a TTL driver interface.
- 2. Control inputs A/B can be driven directly with CMOS logic (HC) with Vdd of +3 to +8 Volts applied to the CMOS logic gates and to pin 4 of the RF switch.
- 3. DC Blocking capacitors are required for each RF port as shown. Capacitor value determines lowest frequency of operation.
- 4. Highest RF signal power capability is achieved with Vdd set to +8V. The switch will operate properly (but at lower RF power capability) at bias voltages down to +3V.

GaAs MMIC 5 WATT T/R SWITCH DC - 3 GHz

Evaluation Circuit Board

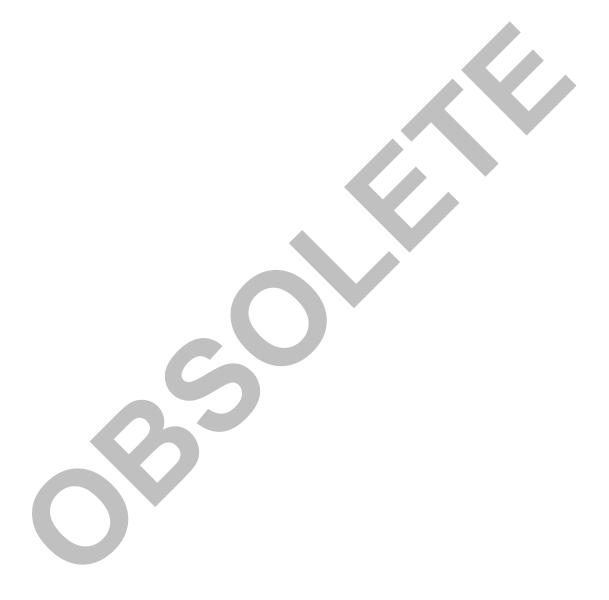
List of Materials for Evaluation PCB 104124 [1]

Item	Description
J1 - J3	PCB Mount SMA RF Connector
J4 - J7	DC Pin
C1 - C3	100 pF capacitor, 0402 Pkg.
C4	10,000 pF capacitor, 0603 Pkg.
R1, R2	100 Ohm resistor, 0402 Pkg.
U1	HMC574MS8 / HMC574MS8E T/R Switch
PCB [2]	104122 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 ohm impedance and the package ground leads and package bottom should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.


10

Notes:

GaAs MMIC 5 WATT T/R SWITCH DC - 3 GHz

