HMC574AMS8E

v01.0316

GaAs MMIC 5 WATT T/R SWITCH DC - 3 GHz

Typical Applications

The HMC574AMS8E is ideal for:

- Cellular/3G Infrastructure
- Private Mobile Radio Handsets
- WLAN, WiMAX \& WiBro
- Automotive Telematics
- Test Equipment

Functional Diagram

Features

Low Insertion Loss: 0.3 dB
High Third Order Intercept: +63 dBm
Isolation: 30 dB
Single Positive Supply: +3 to +8V
SMT Package: MSOP8

General Description

The HMC574AMS8E is low-cost SPDT switch in 8-lead MSOP packages for use in transmit/ receive applications which requires very low distortion at high incident power levels. The device can control signals from DC to 3 GHz and is especially suited for Cellular/3G infrastructure, WiMAX and WiBro applications with only 0.3 dB typical insertion loss. The design provides 5 watt power handling performance and +63 dBm third order intercept at +8 Volt bias. RF1 and RF2 are reflective shorts when "Off".

Electrical Specifications,
$T_{A}=+25^{\circ} \mathrm{C}$, Vctl $=\mathbf{0 / + 5} \mathrm{Vdc}, \mathrm{Vdd}=+5 \mathrm{Vdc}$ (Unless Otherwise Stated), 50 Ohm System

Parameter	Frequency	Min.	Typ.	Max.	Units
Insertion Loss	$\begin{aligned} & \text { DC }-1.0 \mathrm{GHz} \\ & \text { DC }-2.0 \mathrm{GHz} \\ & \text { DC }-2.5 \mathrm{GHz} \\ & \text { DC }-3.0 \mathrm{GHz} \end{aligned}$		$\begin{gathered} \hline 0.25 \\ 0.3 \\ 0.4 \\ 0.5 \\ \hline \end{gathered}$	$\begin{aligned} & 0.5 \\ & 0.6 \\ & 0.7 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
Isolation	$\begin{aligned} & \text { DC }-1.0 \mathrm{GHz} \\ & \text { DC }-2.0 \mathrm{GHz} \\ & \text { DC }-2.5 \mathrm{GHz} \\ & \text { DC }-3.0 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 26 \\ & 24 \\ & 21 \\ & 16 \end{aligned}$	$\begin{aligned} & 30 \\ & 28 \\ & 25 \\ & 20 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \hline \end{aligned}$
Return Loss	$\begin{aligned} & \text { DC }-1.0 \mathrm{GHz} \\ & \mathrm{DC}-2.0 \mathrm{GHz} \\ & \mathrm{DC}-2.5 \mathrm{GHz} \\ & \mathrm{DC}-3.0 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & \hline 35 \\ & 30 \\ & 25 \\ & 22 \\ & \hline \end{aligned}$		dB dB dB dB
$\begin{array}{ll}\text { Input Power for 1dB Compression } & \mathrm{Vctl}=0 /+3 \mathrm{~V} \\ \mathrm{Vctl}=0 /+5 \mathrm{~V} \\ \mathrm{Vctl}=0 /+8 \mathrm{~V}\end{array}$	0.5-3.0 GHz	$\begin{aligned} & 31 \\ & 35 \\ & 37 \end{aligned}$	$\begin{aligned} & 34 \\ & 38 \\ & 39 \end{aligned}$		dBm dBm dBm
Input Third Order Intercept $\mathrm{Vctl}=0 /+3 \mathrm{~V}, \mathrm{P}_{\text {tone }}=+23 \mathrm{dBm}$ $\mathrm{P}_{\text {tone }}=$ Two-tone Input Power (Each $\mathrm{Vctl}=0 /+5 \mathrm{~V}, \mathrm{P}_{\text {tone }}=+27 \mathrm{dBm}$ Tone) $\mathrm{VctI}=0 /+8 \mathrm{~V}, \mathrm{P}_{\text {tone }}=+27 \mathrm{dBm}$	$0.5-3.0 \mathrm{GHz}$		$\begin{aligned} & 63 \\ & 63 \\ & 63 \\ & \hline \end{aligned}$		dBm dBm dBm
Switching Characteristics tRISE, tFALL (10/90\% RF) tON, tOFF (50\% CTL to $10 / 90 \%$ RF)	DC - 3.0 GHz		$\begin{aligned} & 40 \\ & 70 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

[^0] Application Support: Phone: 1-800-ANALOG-D

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

- HMC574A Evaluation Board

DOCUMENTATION

Data Sheet

- HMC574AMS8E: GaAs MMIC 5 Watt T/R Switch DC - 3 GHz Data Sheet

TOOLS AND SIMULATIONS

- HMC574A S-Parameters

REFERENCE MATERIALS

Product Selection Guide

- RF, Microwave, and Millimeter Wave IC Selection Guide 2017

Quality Documentation

- Semiconductor Qualification Test Report: PHEMT-J (QTR: 2013-00285)

DESIGN RESOURCES

- HMC574A Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC574A EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT \square

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

Insertion Loss

RF1 to RF2 Isolation

Input P0.1dB vs. Vdd

Isolation Between RFC \& RF1/RF2

Input P1dB vs. Vdd

Input IP3 vs. Input Power @ 900 MHz

Input Third Order Intercept

2nd \& 3rd Harmonics @ 900 MHz
Vdd = +5 Volts

Input IP3 vs. Input Power @ 1900 MHz

2nd \& 3rd Harmonics @ 900 MHz Vdd = +3 Volts

2nd \& 3rd Harmonics @ 900 MHz
Vdd = +8 Volts

GaAs MMIC 5 WATT T/R SWITCH DC - 3 GHz

Input P0.1dB vs. Vdd

Absolute Maximum Ratings

Max. Input Power $V_{d d}=0 /+8 \mathrm{~V}$	0.5-2.5 GHz	39 dBm
Bias Voltage Range (Vdd)		-0.2 to +10 Vdc
Control Voltage Range (A \& B)		-0.2 to +Vdd Vdc
Channel Temperature		$150{ }^{\circ} \mathrm{C}$
Continuous Pdiss ($\mathrm{T}=+85^{\circ} \mathrm{C}$) (derate $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $85^{\circ} \mathrm{C}$)		0.775W
Thermal Resistance		$83.9{ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature		-65 to $+150{ }^{\circ} \mathrm{C}$
Operating Temperature		-40 to $+85^{\circ} \mathrm{C}$
ESD Sensitivity (HBM)		Class 1A

DC Blocks are required at ports RFC, RF1 and RF2

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Input P1dB vs. Vdd

Bias Voltage \& Current

Vdd (Vdc)	Typical Idd $(\mu \mathrm{A})$
+3	0.5
+5	1
+8	20

Control Voltages

State	Bias Condition
Low	0 to $+0.2 \mathrm{Vdc} @ 1 \mu \mathrm{~A}$ Typical
High	Vdd $\pm 0.2 \mathrm{Vdc} @ 1 \mu \mathrm{~A}$ Typical

Truth Table

Control Input (Vctl)		Signal Path State	
A	B	RFC to RF1	RFC to RF2
High	Low	Off	On
Low	High	On	Off

GaAs MMIC 5 WATT T/R SWITCH DC - 3 GHz

Outline Drawing

NOTES:

1. PACKAGE BODY MATERIAL: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILICON IMPREGNATED.
2. LEAD MATERIAL: COPPER ALLOY.
3. LEAD PLATING: 100\% MATTE TIN.
4. DIMENSIONS ARE IN INCHES [MILLIMETERS].
5. CHARACTERS TO BE HELVETICA MEDIUM, . O30 HIGH, LASER OR WHITE INK, LOCATED

APPROXIMATELY AS SHOWN.
合 DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15 mm PER SIDE.
A. DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25 mm PER SIDE.
8. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ${ }^{[2]}$
HMC574AMS8E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 $^{[1]}$	$\frac{\text { H574A }}{\text { XXXX }}$

[1] Max peak reflow temperature of $260^{\circ} \mathrm{C}$
[2] 4-Digit lot number XXXX

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	A	See truth table and control voltage table.	
2	B	See truth table and control voltage table.	
3, 5, 8	RFC, RF1, RF2	This pin is DC coupled and matched to 50 Ohm. Blocking capacitors are required.	
4	Vdd	Supply Voltage.	
6, 7	GND	This pin must be connected to RF/DC ground.	$\frac{9 \text { GND }}{=}$

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106

Typical Application Circuit

Notes:

1. Set logic gate and switch $\mathrm{Vdd}=+3 \mathrm{~V}$ to +5 V and use HCT series logic to provide a TTL driver interface.
2. Control inputs A / B can be driven directly with $C M O S$ logic $(H C)$ with Vdd of +3 to +8 Volts applied to the CMOS logic gates and to pin 4 of the RF switch.
3. DC Blocking capacitors are required for each RF port as shown. Capacitor value determines lowest frequency of operation.
4. Highest RF signal power capability is achieved with Vdd set to +8 V . The switch will operate properly (but at lower RF power capability) at bias voltages down to +3 V .

List of Materials for
Evaluation PCB
EV1HMC574AMS8 ${ }^{[1]}$

Item	Description
J1 - J3	PCB Mount SMA RF Connector
J4 - J7	DC Pin
C1 - C3	100 pF capacitor, 0402 Pkg.
C4	10,000 pF capacitor, 0603 Pkg.
R1, R2	100 Ohm resistor, 0402 Pkg.
U1	HMC574AMS8E T/R Switch
PCB [2]	104122 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB
[2] Circuit Board Material: Rogers 4350
The circuit board used in the application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 Ohm impedance and the package ground leads and package bottom should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Analog Devices Inc upon request.

[^0]: For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com

