

HMC646LP2 / 646LP2E

v02.1009

GaAs MMIC 40W FAILSAFE SWITCH, 0.1 - 2.1 GHz

Typical Applications

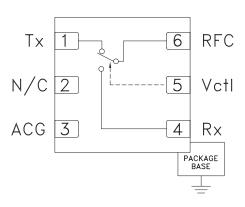
The HMC646LP2(E) is ideal for:

- LNA Protection & T/R Switching
- TD-SCDMA / 3G Infrastructure
- Satellite Subscriber Terminals
- Private Mobile Radio & Public Safety Handsets
- Automotive Telematics

Features

High Input P0.1dB: +46 dBm Tx

Low Insertion Loss: 0.4 dB


High IIP3: +74 dBm

Single Positive Control: 0/+3V to 0/+8V

Failsafe operation; Tx 'On' when unpowered

2x2mm DFN SMT Package

Functional Diagram

General Description

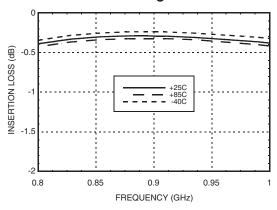
The HMC646LP2(E) is an SPDT switch in a leadless DFN surface mount plastic package for use in transmit / receive and LNA protection applications which require very low distortion and high power handling of up to 40 watts with less than 10% duty cycle. This robust switch can control signals from 100 - 2100 MHz* and is ideal for TD-SCDMA / 3G repeaters, PMR, automotive telematics, and satellite subscriber terminal applications. The design provides exceptional P0.1dB of +46 dBm and +74 dBm IIP3 on the Transmit (Tx) port. The failsafe topology provides a low loss path from Tx to RFC, when no DC power is available.

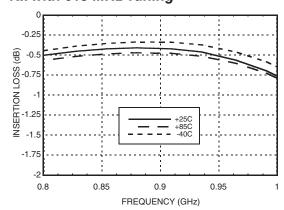
Electrical Specifications, $T_A = +25$ °C, Vdd = 5V, Vctl = 0/+5 Vdc, 50 Ohm System*

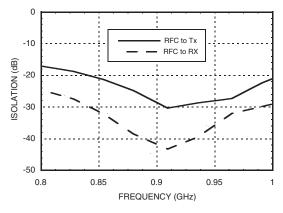
Parame	ter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max	Units
Frequency Range			869 - 960)	1525 - 1661		2010 - 2025		MHz		
Insertion Loss	Tx - RFC RFC - Rx		0.3 0.4	0.6 0.7		0.6 0.8	0.9 1.1		0.7 1.3	1.0 1.7	dB dB
Isolation	Tx - RFC RFC - Rx	20 28	27 38		15 20	22 30		12 25	17 32		dB dB
Return Loss	Tx - RFC RFC - Rx		17 25			27 20			25 12		dB dB
Input Power for 0.1 dB Compression	Tx - RFC RFC - Rx		44 20			46 20			46 20		dBm dBm
Input Third Order Intercept (Two-tone input power = +17 dBm each tone)	Tx - RFC RFC - Rx		71 41			74 42			74 34		dBm dBm
tO	RISE, tFALL (10/90% RF) N, (50% CTL to 90% RF) FF (50% CTL to 10% RF)		100 320 320			100 320 320			100 320 320		ns ns ns

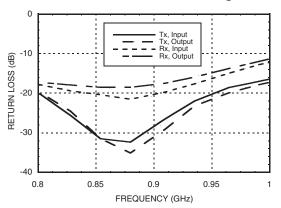
^{*} Specifications and data reflect HMC646LP2(E) measured using the respective application circuits for each designated frequency band found herein

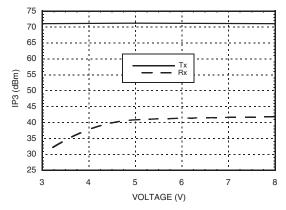
GaAs MMIC 40W FAILSAFE


SWITCH, 0.1 - 2.1 GHz


v02.1009

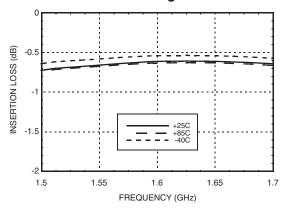

Insertion Loss vs. Temperature, Tx with 915 MHz Tuning

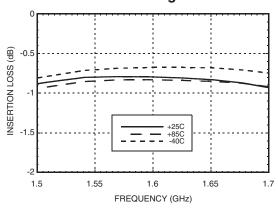

Insertion Loss vs. Temperature, Rx with 915 MHz Tuning


Isolation with 915 MHz Tuning

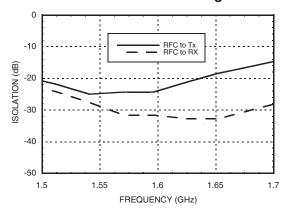
Return Loss with 915 MHz Tuning

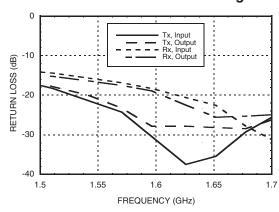
Input IP3 vs. Voltage with 915 MHz Tuning

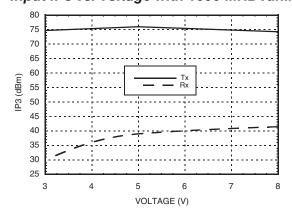




GaAs MMIC 40W FAILSAFE SWITCH, 0.1 - 2.1 GHz


Insertion Loss vs. Temperature, Tx with 1600 MHz Tuning

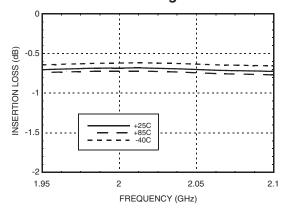

Insertion Loss vs. Temperature, Rx with 1600 MHz Tuning

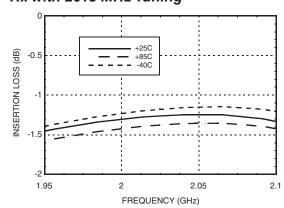

Isolation with 1600 MHz Tuning

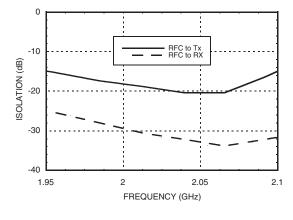
Return Loss with 1600 MHz Tuning

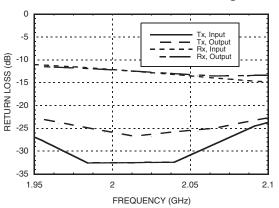
Input IP3 vs. Voltage with 1600 MHz Tuning

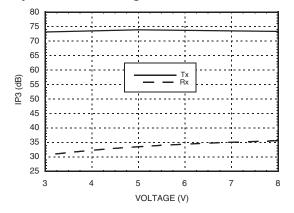
GaAs MMIC 40W FAILSAFE


SWITCH, 0.1 - 2.1 GHz


v02.1009


Insertion Loss vs. Temperature, Tx with 2015 MHz Tuning


Insertion Loss vs. Temperature, Rx with 2015 MHz Tuning


Isolation with 2015 MHz Tuning

Return Loss with 2015 MHz Tuning

Input IP3 vs. Voltage with 2015 MHz Tuning

GaAs MMIC 40W FAILSAFE SWITCH, 0.1 - 2.1 GHz

Absolute Maximum Ratings

Max. CW Input Power Tx Port Rx Port		
Max Channel Temp.		
Thermal Resistance Tx Port Rx Port		
Continuous Dissipated Power		
	+10V Vdc	
Control Voltage Range (Vctl)		
Storage Temperature		
Operating Temperature		
	Tx Port Rx Port Tx Port	

Truth Table

Contro	l Input	Signal Path State		
Vctl	Vdd	RFC To Tx	RFC to Rx	
0.0	0.0	ON	OFF	
0.0	Vdd	OFF	ON	
Vdd	Vdd	ON	OFF	
Vdd = +3V to +8V Control Input Voltage Tolerances are ± 0.2 Vdc.				

DC blocking capacitors are required at ports RFC, Tx and Rx.

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

TOP VIEW **BOTTOM VIEW** .081 [2.05] .077 [1.95] HMC PART .014 [0.35] REF .012 [0.30] .008 [0.20] NUMBER (DIGITS ONLY) 5 .081 [2.05] .057 [1.45] .053 [1.35] 2 .030 [0.75] .022 [0.55] EXPOSED .033 [0.85] .029 [0.75] LOT NUMBER **GROUND PADDLE** SIDE VIEW

.039 [0.00] .000 [

NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM.
 PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC646LP2	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	646 XXX
HMC646LP2E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	646 XXX

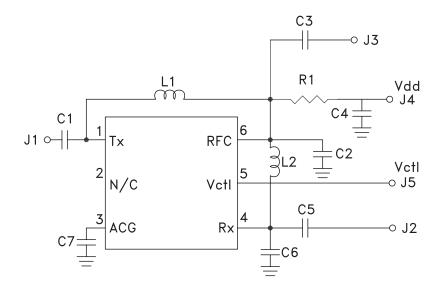
- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 3-Digit lot number XXX

HMC646LP2 / 646LP2E

v02.1009

GaAs MMIC 40W FAILSAFE SWITCH, 0.1 - 2.1 GHz

Pin Descriptions

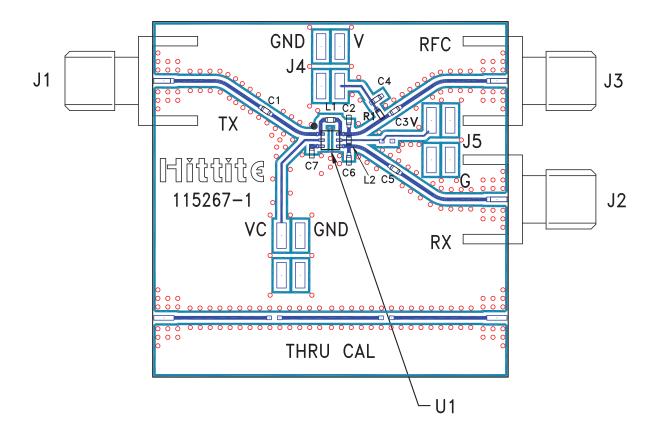

Pin Number	Function	Description	Interface Schematic
1	Tx	This pin is DC coupled and matched to 50 Ohms.	
2	N/C	Not Connected	
3	ACG	External capacitor to ground is required. See application circuit herein.	
4	Rx	This pin is DC coupled and matched to 50 Ohms.	
5	Vctl	See truth table.	Vctl O—VV—
6	RFC	This pin is DC coupled and matched to 50 Ohms.	
	GND	Package bottom has exposed metal paddle that must be connected to PCB RF ground.	○ GND =

GaAs MMIC 40W FAILSAFE SWITCH, 0.1 - 2.1 GHz

Application Circuit

Components for Selected Frequencies

Tuned Frequency	915 MHz	1600 MHz	2015 MHz
Evaluation PCB Number	118098	118099	118100
C1, C3, C5 ^[1]	1000 pF	330 pF	330 pF
C2	2.7 pF	1.5 pF	1.1 pF
C4	1000 pF	100 pF	100 pF
C6	1.8 pF	0.5 pF	0.5 pF
C7	15 pF	4.7 pF	2.7 pF
L1	15 nH	3.9 nH	1.8 nH
L2	9 nH	4.3 nH	3.3 nH
R1	10 k	10 k	10 k


[1] DC blocking capacitors

GaAs MMIC 40W FAILSAFE SWITCH, 0.1 - 2.1 GHz

Evaluation PCB

List of Materials for Evaluation PCB [1]

Item	Description
J1 - J3	PCB Mount SMA RF Connector
J4 - J5	2mm DC Header
C1 - C7 [2]	Capacitor, 0402 Pkg.
L1 - L2 ^[2]	Inductor, 0402 Pkg.
R1 ^[2]	Resistor, 0402 Pkg.
U1	HMC646LP2(E) T/R Switch
PCB [3]	110780 Evaluation PCB

[1] When requesting an evaluation board, please reference the appropriate evaluation PCB number listed in the table "Components for Selected Frequencies."

[2] Please refer to "Components for Selected Frequencies" table for values

[3] Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 ohm impedance and the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.