MB39C022G/J/L/N

Buck DC/DC Converter + Low Noise LDO

The MB39C022 is a 2 channels power supply IC. It consists of one channel Buck DC/DC Converter and one channel LDO regulator. The DC/DC converter has fast transient response with current mode control topology. Moreover, the integrated LDO provides an auxiliary output supply for noise sensitive circuit.

Features

- Power supply voltage range
: 2.5 V to 5.5 V
■ For Buck DC/DC included SW FET (CH1) : output 0.8 V to $4.5 \mathrm{~V}, 600 \mathrm{~mA}$ Max DC
■ For LDO (CH2) : output 3.30 V (MB39C022G) 300 mA Max DC : output 2.85 V (MB39C022J) 300 mA Max DC
: output 1.80 V (MB39C022L) 300 mA Max DC
: output 1.20 V (MB39C022N) 300 mA Max DC
Error amplifier threshold voltage $\quad: 0.3 \mathrm{~V} \pm(2.5 \%)(\mathrm{CH} 1)$
■ Fast line transient response with current mode topology (CH1)
- PFM mode at light load current with VO1/VIN1 $\leq 80 \%(\mathrm{IO} 1 \leq 10 \mathrm{~mA})(\mathrm{CH} 1)$

■ Power-on-reset with 66 ms delay (CH1)

- Built-in short circuit protect (CH 2)

Built-in over current protect (CH1, CH2)

- Built-in thermal protection function
- Small size plastic SON-10 ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) package

Applications

- Portable Equipment
- PND, GPS
- PMP

■ Mobile TV, USB-dongle (CMMB, DVB-T, DMB-T)

- Smart-phone

■ MP3

MB39C022G/J/L/N

Contents

Pin Assignment 3
Pin Descriptions 4
I/O Terminal Equivalent Circuit Diagram 5
Block Diagram 6
Function Descriptions 7
PFM/PWM Logic Control Block (CH1) 7
Level converter and lout Comparator circuit (CH1) 7
Error Amp. circuit (CH1) 7
LDO Block (CH2) 7
POR Block 7
Reference Voltage Block (VREF) 7
Under Voltage Lockout Protection Circuit Block (UVLO) 8
Over Temperature Protection Block (OTP) 8
Control Block (CTL) 8
Absolute Maximum Ratings 9
Recommended Operating Conditions 10
Electrical Characteristics 11
Test Circuit For Measuring Typical Operating Characteristics 13
Application Notes 14
Selection of components 14
DC/DC Output voltage setting 15
Power On Reset (POR) 15
Power dissipation and heat considerations 16
Board layout, design example 17
Example Of Standard Operation Characteristics 18
DC/DC Conversion Efficiency 18
DC/DC Load Regulation 18
DC/DC Line Regulation 19
DC/DC Switching Waveform 19
LDO Load Regulation 20
LDO Line Regulation 20
LDO Power Supply Rejection Ratio 21
DC/DC Load Transient Waveforms 21
DC/DC Power MOS FET ON Resistance 22
Application Circuits Examples 24
Usage Precautions 26
Ordering Information 27
RoHS Compliance Information of
Lead(Pb) Free Version 27
Package Dimension 28

MB39C022G/J/L/N

1. Pin Assignment

2. Pin Descriptions

Block	Pin No.	Pin name	I/O	Descriptions
CH1 (Buck DC/DC)	6	FB	1	CH1 Error Amplifier input pin
	9	LX	0	CH1 Inductor connection pin
CH2 (LDO)	3	VOUT2	0	CH2 LDO output pin
Control	7	EN1	1	CH1 Control pin (L : shutdown / H : operation)
	1	EN2	1	CH2 Control pin (L : shutdown / H : operation)
Power	8	VIN1	-	CH1 Power supply pin
	2	VIN2	-	CH2 Power supply pin
	10	GND1	-	CH1 Ground pin
	5	GND2	-	CH2 Ground pin
Power-on Reset	4	POR	0	CH1 Power on reset output pin (NMOS open drain)

3. I/O Terminal Equivalent Circuit Diagram

4. Block Diagram

5. Function Descriptions

5.1 PFM/PWM Logic Control Block (CH1)

The built-in P-ch and N-ch MOS FETs are controlled for synchronization rectification according to the frequency (2.0 MHz) oscillated from the built-in oscillator (square wave oscillation circuit). Under light load, it operates intermittently.
This circuit protects the through current caused by synchronous rectification and the reverse current in Discontinuous Conduction Mode.
Since the PWM control circuit of this IC is in the control method in current mode, the current peak value is monitored and controlled as required.

5.2 Level converter and lout Comparator circuit (CH1)

The Level converter circuit detects the current (ILX) which flows to the external inductor from the built-in P-ch MOS FET. By comparing VIDET obtained through I-V conversion of peak current I IPK of ILX with the Error Amp. output, the lout Comparator turns off the built-in P-ch MOS FET via the PWM Logic Control circuit.

5.3 Error Amp. circuit (CH1)

The error amplifier (Error Amp.) detects the output voltage from the DC/DC converter and output to the current comparators (ICOMP). The output voltage setting resistor externally connected to FB allows an arbitrary output voltage to be set.

5.4 LDO Block (CH2)

The integrated low noise low dropout regulator (LDO) is available up to 300 mA current capability and 700 mA over current protection (OCP) 350 mA short circuit protection (SCP). The LDO output VOUT2 requires a $4.7 \mu \mathrm{~F}$ capacitor for MB39C022G and MB39C022N and a $1.0 \mu \mathrm{~F}$ capacitor for MB39C022J and MB39C022L for stability. MB39C022G, MB39C022J, MB39C022L and MB39C022N have fixed $3.3 \mathrm{~V}, 2.85 \mathrm{~V}, 1.8 \mathrm{~V}$ and 1.2 V output voltages respectively, eliminating the need for an external resistor divider.

5.5 POR Block

The POR circuit monitors the VO1 through the FB pin voltage. When the FB pin voltage reaches 97% of $\mathrm{V}_{\text {FBTH }}$, POR pin becomes high level after the hold time of 66 ms . The POR pin is an open-drain output and pulled up to VIN or VO1 with an external resistor.

Timing Chart : (POR pin pulled up to VIN with resistor)

5.6 Reference Voltage Block (VREF)

A high accuracy reference voltage is generated with BGR (bandgap reference) circuit.

5.7 Under Voltage Lockout Protection Circuit Block (UVLO)

The circuit protects against IC malfunction and system destruction/deterioration in a transitional state or a momentary drop of when the internal reference voltage starts. It detects a voltage drop at the VIN1 pin and stops IC operation. When voltages at the VIN1 pin exceed the threshold voltage of the under voltage lockout protection circuit, the system is restored.

5.8 Over Temperature Protection Block (OTP)

The circuit protects an IC from heat-destruction. If the junction temperature reaches $135^{\circ} \mathrm{C}$, the circuit turns off the CH 1 and CH 2 operation, When the junction temperature comes down to $+110^{\circ} \mathrm{C}$, the CH 1 and CH 2 are returned to the normal operation.

5.9 Control Block (CTL)

■ Control function table

EN1	EN2	CH1 and POR	CH2	VREF, UVLO, OTP
L	L	OFF	OFF	OFF
H	L	ON	OFF	ON
L	H	OFF	ON	ON
H	H	ON	ON	ON

6. Absolute Maximum Ratings

Parameter	Symbol	Condition	Rating		Unit
			Min	Max	
Power supply voltage	VIN1	VIN1 pin	-0.3	+ 6.0	V
	VIN2	VIN2 pin	-0.3	$\mathrm{VIN} 1+0.3$	V
Input voltage	VFB	FB pin	-0.3	VIN1 + 0.3	V
	VEN1	EN1 pin	-0.3	+ 6.0	V
	VEN2	EN2 pin	-0.3	+ 6.0	V
POR pull-up voltage	VPOR	POR pin	-0.3	+ 6.0	V
LX voltage	VLX	LX pin	-0.3	VIN1 + 0.3	V
LX peak current	ILX	LX pin AC	-	1.6	A
VOUT2 peak current	IO2	VOUT2 pin AC	-	0.8	A
Power dissipation	PD	$\mathrm{Ta} \leq+25^{\circ} \mathrm{C}$	-	$2632 * 1,{ }^{2}$	mW
			-	980*1, *3	
		$\mathrm{Ta}=+85^{\circ} \mathrm{C}$	-	$1053 * 1, * 2, * 4$	
			-	$392 * 1, * 3, * 4$	
Storage temperature	$\mathrm{T}_{\text {STG }}$	-	-55	+ 125	${ }^{\circ} \mathrm{C}$

*1: When mounted on four layer epoxy board of $11.7 \mathrm{~cm} \times 8.4 \mathrm{~cm}$
${ }^{* 2}$: At connect the exposure pad and with thermal via (Thermal via 4 pcs).
*3: At connect the exposure pad and not thermal via.
*4: Power dissipation value between $+25^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$ is obtained by connecting these two points with a straight line
Notes:

- The use of negative voltages below -0.3 V to the GND pin may create parasitic transistors on LSI lines, which can cause abnormal operation.
- If LX terminal is short-circuited to VIN1 or VIN2 or GND line, there is a possibility to destroy it. Such usage is prohibit

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

7. Recommended Operating Conditions

Parameter	Symbol	Condition	Value			Unit
			Min	Typ	Max	
Power supply voltage	VIN1	VIN1 $\mathrm{pin}^{* 1, * 3, * 4, * 5}$	2.5	3.7	5.5	V
	VIN2	VIN2 pin*2, *3				
Input voltage	VFB	FB pin	-	0.30	-	V
	VEN1	EN1 pin	0	-	5.5	V
	VEN2	EN2 pin	0	-	5.5	V
Output voltage	VO1	CH1 : Buck DC/DC*1, *5	0.8	-	4.5	V
Output current	ILX	LX pin DC	-	-	0.6	A
	IVOUT2	VOUT2 pin DC	-	-	0.3	A
Operating ambient temperature	Ta	-	-40	+25	+ 85	${ }^{\circ} \mathrm{C}$

${ }^{* 1}$: The minimum VIN1 has to meet two conditions: VIN1 \geq (VIN1 Min) and VIN1 \geq VO1 +0.5 V
*2 : The minimum VIN2 has to meet two conditions : VIN2 \geq (VIN2 Min) and VIN2 \geq VO2 + Vdrop (VO2 and Vdrop values are specified in "Electrical Characteristics")
*3: VIN1 \geq VIN2
*4 : VIN1 startup rise time $\leq 1 \mathrm{~ms}$ is recommended
${ }^{* 5}$: PFM mode at light load current with VO1/VIN1 $\leq 80 \%$ (IO1 $\leq 10 \mathrm{~mA}$)

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

8. Electrical Characteristics

	Parameter						Value		
	Parameter	Symbol	Pin No.	Cond		Min	Typ	Max	
	Threshold voltage	VTH	6	FB pin		- 2.5%	0.3	+ 2.5\%	V
	Input Bias current	IFB	6	$\mathrm{FB}=0 \mathrm{~V}$		- 100	0	+ 100	nA
	SW PMOS-Tr On resistor	RPON	8,9	$\mathrm{ILX}=-100 \mathrm{~m}$		-	0.35	-	Ω
[Buck DC/DC]	SW NMOS-Tr On resistor	RNON	9,10	$\mathrm{ILX}=100 \mathrm{~mA}$		-	0.25	-	Ω
	Line regulation	Vline1	-	$\mathrm{VIN} 1=2.5 \mathrm{~V}$ to	$5 \mathrm{~V}^{* 1}$	-	10	-	mV
	Load regulation	Vload1	-	$\mathrm{IO1}=100 \mathrm{~mA}$	600 mA	-	10	-	mV
	Over current protect	ILIM1	9	VOUT1 $\times 0.9$		0.9	1.2	1.5	A
$\begin{aligned} & \mathrm{CH} 2 \\ & {[\mathrm{LDO} \text {] }} \end{aligned}$	Output voltage	VO2	3	$\begin{aligned} & \mathrm{IO} 2=0 \mathrm{~mA} \text { to }-300 \mathrm{~mA} \\ & \text { MB39C022G } \end{aligned}$		-2.5\%	3.30	+ 2.5\%	V
				$\begin{aligned} & \mathrm{IO} 2=0 \mathrm{~mA} \text { to }-300 \mathrm{~mA} \\ & \text { MB39C022 } \end{aligned}$		-2.5%	2.85	+2.5\%	V
				$\begin{aligned} & \mathrm{IO2}=0 \mathrm{~mA} \text { to }-300 \mathrm{~mA} \\ & \mathrm{MB} 39 \mathrm{C} 022 \mathrm{~L} \end{aligned}$		-2.5%	1.80	+2.5\%	V
				$\begin{aligned} & \mathrm{IO} 2=0 \mathrm{~mA} \text { to }-300 \mathrm{~mA} \\ & \text { MB39C022N } \end{aligned}$		-2.5%	1.20	+ 2.5\%	V
	Line regulation	Vline2	3	VIN2 $=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V}^{* 2}$		-	-	10	mV
	Load regulation	Vload2	3	$\mathrm{O} 2=0 \mathrm{~mA}$ to -300 mA		-	-	25	mV
	Drop out voltage	Vdrop	3	$\begin{aligned} & \mathrm{IO} 2=-300 \mathrm{~mA}, \\ & \mathrm{VIN2}=\mathrm{VO} 2: \\ & \text { MB39C022G, MB39C022J } \end{aligned}$		-	200	-	mV
	Power supply rejection ratio	PSRR	3	MB39C022G*3	$\mathrm{f}=1 \mathrm{kHz}$	-	70*4	-	dB
					$\mathrm{f}=10 \mathrm{kHz}$	-	70*4	-	dB
				MB39C022J*3	$\mathrm{f}=1 \mathrm{kHz}$	-	65*4	-	dB
					$\mathrm{f}=10 \mathrm{kHz}$	-	65*4	-	dB
				MB39C022L*3	$\mathrm{f}=1 \mathrm{kHz}$	-	60*4	-	dB
					$\mathrm{f}=10 \mathrm{kHz}$	-	$60 * 4$	-	dB
				MB39C022N*3	$\mathrm{f}=1 \mathrm{kHz}$	-	$55^{* 4}$	-	dB
					$\mathrm{f}=10 \mathrm{kHz}$	-	55*4	-	dB
	Output noise voltage	Vnoise	3	$\begin{aligned} & \mathrm{f}=10 \mathrm{~Hz} \text { to } 100 \mathrm{kHz}, \\ & \mathrm{EN} 1=0 \mathrm{~V} \end{aligned}$		-	55*4	-	$\mu \mathrm{Vrms}$
	Over current protect	ILIM2	3	$\mathrm{VO} 2 \times 0.9$		500	700	980	mA
	Short circuit protect	ISCP2	3	$\mathrm{VO} 2=0 \mathrm{~V}$		150	350	700	mA

(Continued)
(Continued)

					$\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{VIN} 1=\mathrm{VIN} 2=3.7 \mathrm{~V}\right)$				
Parameter		Symbol	Pin No.	Condition	Value			Unit	
		Min			Typ	Max			
Power On Reset [POR]	Hold time		Thold	4	fosc $=2 \mathrm{MHz}$	52.8	66	79.2	ms
	Output voltage	VPOR	4	POR $=250 \mu \mathrm{~A}$	-	-	0.1	V	
	Output current	IPOR	4	POR = 5.5 V	-	-	1	$\mu \mathrm{A}$	
Under Voltage Lockout Protection Circuit Block [UVLO]	Threshold voltage	VTHL	2, 8	VIN1	1.95	2.10	2.25	V	
	Hysteresis width	VH	2, 8	-	-	0.20	-	V	
Over Temperature Protection Block [OTP]	Stop temperature	TOTPH	-	-	-	+ 135	-	${ }^{\circ} \mathrm{C}$	
	Hysteresis width	TOTPHYS	-	-	-	+ 25	-	${ }^{\circ} \mathrm{C}$	
Oscillator Block [OSC]	Output frequency	fosc	9	-	1.6	2.0	2.4	MHz	
Control Block [CTL]	Input voltage	VIH	1,7	EN1, EN2 ON	1.5	-	-	V	
		VIL	1,7	EN1, EN2 OFF	-	-	0.4	V	
	Input current	IEN	1,7	EN1, EN2 = 0 V	-100	0	+ 100	nA	
General	Shut down power supply current	ICC1	8	EN1, EN2 = 0 V	-	0	1	$\mu \mathrm{A}$	
		ICC1	2	EN1, EN2 = 0 V	-	0	1	$\mu \mathrm{A}$	
	Standby power supply current (DC/DC)	ICC2	8	$\begin{aligned} & \mathrm{EN} 1=\mathrm{VIN1}, \mathrm{EN} 2=0 \mathrm{~V} \\ & \mathrm{IO} 1=0 \mathrm{~mA}, \mathrm{VFB}=\mathrm{VIN} 1 \end{aligned}$	-	30	60	$\mu \mathrm{A}$	
		ICC2	2		-	0	1		
	Standby power supply current (LDO)	ICC3	8	$\begin{aligned} & \mathrm{EN} 1=0 \mathrm{~V}, \mathrm{EN} 2=\mathrm{VIN} 1 \\ & \mathrm{IO} 2=0 \mathrm{~mA} \end{aligned}$	-	10	18	$\mu \mathrm{A}$	
		ICC3	2		-	60	120		
	Power-on invalid current	ICC4	8	$\begin{aligned} & \mathrm{EN} 1, \mathrm{EN} 2=\mathrm{VIN} 1, \\ & \mathrm{VFB}=0.2 \mathrm{~V} \end{aligned}$	-	0.9	1.5	mA	
		ICC4	2		-	60	120	$\mu \mathrm{A}$	

${ }^{* 1}$: The minimum VIN1 has to meet two conditions: VIN1 \geq (VIN1 Min) and VIN1 \geq VO1 +0.5 V
*2 : The minimum VIN2 has to meet two conditions: VIN2 \geq (VIN2 Min) and VIN2 \geq VO2 + Vdrop (VO2 and Vdrop values are specified in "Electrical Characteristics")
${ }^{* 3}$: VIN2 $=\mathrm{VO} 2+1 \mathrm{~V},(\mathrm{MB} 39 \mathrm{C} 022 \mathrm{~N}: \mathrm{VIN2}=2.5 \mathrm{~V}), \mathrm{IO} 2=100 \mathrm{~mA}$
*4 : This value is not be specified. This should be used as a reference to support designing the circuits.

9. Test Circuit For Measuring Typical Operating Characteristics

Component	Item	Specification	
C1	Ceramic capacitor	$10 \mu \mathrm{~F}$	
C2	Ceramic capacitor	$4.7 \mu \mathrm{~F}$	
C3	Ceramic capacitor	22 pF	
C4	Ceramic capacitor	$4.7 \mu \mathrm{~F}$	
C5	Ceramic capacitor	$1 \mu \mathrm{~F}$	for MB39C022J, MB39C022L
		$4.7 \mu \mathrm{~F}$	for MB39C022G, MB39C022N
L1	Inductor	$2.2 \mu \mathrm{H}$	
R3	Resistor	$1 \mathrm{M} \Omega$	
R5	Resistor	$600 \mathrm{k} \Omega$	at VO1 $=1.2 \mathrm{~V} *$
R6	Resistor	$200 \mathrm{k} \Omega$	

* : The output voltage of VO1 can be adjusted by the external resistor divider R5.

$$
V_{\mathrm{O} 1}=\mathrm{V}_{\mathrm{ref}} \times \frac{(\mathrm{R} 5+\mathrm{R} 6)}{\mathrm{R} 6}=0.3 \mathrm{~V} \times \frac{(600 \mathrm{k} \Omega+200 \mathrm{k} \Omega)}{200 \mathrm{k} \Omega}=1.2 \mathrm{~V}
$$

10. Application Notes

10.1 Selection of components

Selection of an external inductor for DC/DC

This IC is designed to operate well with a $2.2 \mu \mathrm{H}$ inductor. Choosing larger values would lead to larger overshoot/undershoot during load transient. Choosing a smaller value would lead to larger ripple voltage.
The inductor should be rated for a saturation current higher than the LX peak current value during normal operating conditions, and should have a minimal DC resistance. ($100 \mathrm{~m} \Omega$ or less is recommended to improve efficiency.)
LX peak current value I_{PK} is obtained by the following formula.

L : External inductor value
Iout : Load current (DC)
V_{IN} : Power supply voltage
$\mathrm{V}_{\text {OUT }}$: Output setting voltage
D : ON - duty to be switched ($\left.=\mathrm{V}_{\mathrm{OUT}} / \mathrm{V}_{\text {IN }}\right)$
fosc : Switching frequency (2.0 MHz)
ex) At $\mathrm{V}_{\mathrm{IN}}=3.7 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}$, $\mathrm{I}_{\mathrm{OUT}}=0.6 \mathrm{~A}, \mathrm{~L}=2.2 \mu \mathrm{H}$, fosc $=2.0 \mathrm{MHz}$
The maximum peak current value I_{PK};

$$
\mathrm{I}_{\mathrm{PK}}=\mathrm{I}_{\mathrm{OUT}}+\frac{\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\mathrm{OUT}}\right) \times \mathrm{V}_{\mathrm{OUT}}}{2 \times \mathrm{L} \times \text { fosc } \times \mathrm{V}_{\text {IN }}}=0.6 \mathrm{~A}+\frac{(3.7 \mathrm{~V}-1.2 \mathrm{~V}) \times 1.2 \mathrm{~V}}{2 \times 2.2 \mu \mathrm{H} \times 2 \mathrm{MHz} \times 3.7 \mathrm{~V}}=0.69 \mathrm{~A}
$$

I/O capacitor selection

- DC/DC's output capacitor's finite equivalent series resistance (ESR) causes ripple voltages on output equal to the amount of current variation multiplied by the ESR value. The output capacitor value also has a significant impact on the operating stability of the device when used as a DC/DC converter. Therefore, Cypress generally recommends $\mathrm{C} 2=4.7 \mu \mathrm{~F}$ as DC/DC output capacitor, or a larger capacitor value can be used if ripple voltages are not suitable.
- For DC/DC, select a low ESR for the VIN1/VIN2 input capacitor to suppress dissipation from ripple currents. In addition, to reduce startup overshoot for DC/DC and LDO, it is recommended that larger ceramic capacitor be used for input capacitors C1 and C4. Recommended values are C1 $=10 \mu \mathrm{~F}, \mathrm{C} 4=4.7 \mu \mathrm{~F}$.
- Types of capacitors

Ceramic capacitors are effective for reducing the ESR and afford smaller DC/DC converter circuit. However, power supply functions as a heat generator, therefore avoid using capacitor with the F-temperature rating (-80% to $+20 \%$). Cypress recommends capacitors with the B-temperature rating ($\pm 10 \%$ to $\pm 20 \%$).
Normal electrolytic capacitors are not recommended due to their high ESR.
Tantalum capacitor will reduce ESR, however, it is dangerous to use because it turns into short mode when damaged. If you insist on using a tantalum capacitor, Cypress recommends the type with an internal fuse.

MB39C022G/J/L/N

10.2 DC/DC Output voltage setting

The output voltage $\mathrm{V}_{\mathrm{O} 1}$ of this IC is defined by the external resistive divider $\mathrm{R} 5 \& R 6$. Note that C 3 is a capacitor used for improving stability. Use a 22 pF cap for C 3 should be suitable in all cases.

$$
V_{\mathrm{O} 1}=V_{\mathrm{ref}} \times \frac{\mathrm{R} 5+\mathrm{R} 6}{\mathrm{R} 6}=0.3 \mathrm{~V} \times \frac{600 \mathrm{k} \Omega+200 \mathrm{k} \Omega}{200 \mathrm{k} \Omega}=1.2 \mathrm{~V}
$$

10.3 Power On Reset (POR)

R3 and R4 are the pull-up resistors for POR (Pin 4). A $1 \mathrm{M} \Omega$ resistor is required to placed at either R3 or R4. When R3 has a $1 \mathrm{M} \Omega$ resistor and R4 is open; the POR will be connected VIN. When R4 has a $1 \mathrm{M} \Omega$ resistor and R3 is open; the POR pin will be connected to VO1.
By default, only $R 3$ require a $1 \mathrm{M} \Omega$ resistor while $R 4$ is open.

10.4 Power dissipation and heat considerations

The DC/DC is so efficient that no consideration is required in most cases. The LDO, on the other hand, would be the dominant heat generator due to its inherent efficiency loss. Thus, if the IC is used at a high power supply voltage, heavy load, and low LDO output voltage, or high temperature, it requires further consideration.

The internal loss (Pc) is roughly obtained from the following formula :

$P_{C 1} \quad:$ DC/DC continuity loss
$P_{C 2} \quad$: LDO continuity loss
RDC : External inductor series resistance (< $100 \mathrm{~m} \Omega$ recommended)
D : Switching ON-duty cycle $\left(=\mathrm{V}_{\mathrm{OUT}} / \mathrm{V}_{\text {IN }}\right)$
$R_{\text {ONP }} \quad$: Internal P-ch SW FET ON resistance
$\mathrm{R}_{\mathrm{ONN}}$: Internal N-ch SW FET ON resistance
lo1 : DC/DC Load current
$\mathrm{I}_{\mathrm{O} 2}$: LDO Load current
$\mathrm{V}_{\text {drop }} \quad$: LDO Dropout voltage

The loss expressed by the above formula is continuity loss. The internal loss includes the switching loss and the control circuit loss as well but they are so small compared to the continuity loss they can be ignored.
For $\mathrm{P}_{\mathrm{C} 1}$, consider the scenario with high temperature and heavy load ($\mathrm{VIN}=3.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{O} 1}=1.2 \mathrm{~V}, \mathrm{I}_{\mathrm{O} 1}=0.6 \mathrm{~A}, \mathrm{Ta}=+70^{\circ} \mathrm{C}$). Here, $\mathrm{R}_{\mathrm{ONP}} \mp 0.4 \Omega$ and $\mathrm{R}_{\mathrm{ONN}} \mp 0.3 \Omega$ according to the graph "MOS FET ON resistance vs. Operating ambient temperature".
$P_{C 1}=156 \mathrm{~mW}$.
For $\mathrm{P}_{\mathrm{C} 2}$, consider the scenario with low output voltage (MB39C022N), high temperature and heavy load (VIN $=3.7 \mathrm{~V}$, $\left.\mathrm{V}_{\mathrm{O} 2}=1.2 \mathrm{~V}, \mathrm{I}_{\mathrm{O} 2}=0.3 \mathrm{~A}, \mathrm{Ta}=+70^{\circ} \mathrm{C}\right)$. Here, $\mathrm{P}_{\mathrm{C} 2}=0.75 \mathrm{~W}$. Note that $\mathrm{P}_{\mathrm{C} 2} \gg \mathrm{P}_{\mathrm{C} 1}$.
According to the graph "Power dissipation vs. Operating ambient temperature", the maximum permissible power dissipation at an operating ambient temperature $\mathrm{Ta}+70^{\circ} \mathrm{C}$ is 1.4 W . The internal loss is lower than the maximum permissible power dissipation.

MB39C022G/J/L/N

10.5 Board layout, design example

Some basic design guidelines should be used when physically placing the MB39C022 on a Printed Circuit Board (PCB).

- Regarding to GND pattern of PCB layout of MB39C022, It needs to separate like AGND (analog ground) and PGND (power ground). By separating grounds, it is possible to minimize the switching frequency noise on the LDO output.
- Arrange the input capacitor C1 and C4 as close as possible between VIN1 \& PGND pins and VIN2 \& AGND pins. Make a through hole near the pins of this capacitor if the board has planes for power and GND.
- Large AC currents flow between this IC and the input capacitor (C1), output capacitor (C2), and external inductor (L1). Group these components as close as possible to this IC to reduce the overall loop area occupied by this group. Also try to mount these components on the same surface and arrange wiring without through hole wiring. Use thick, short, and straight routes to wire the net (The layout by planes is recommended.).
- The C1 and C2 capacitor returns are connected closely together at the PGND plane.
- The LDO input capacitor (C4) and LDO output capacitor (C5) are returned to the AGND plane.
- The analog ground plane and power ground plane are connected at one point.
- All other signals (EN1, EN2, FB) should be referenced to AGND and have the AGND plane underneath them.
- The feedback wiring to the $\mathrm{V}_{\mathrm{O} 1}$ and the $\mathrm{V}_{\mathrm{O} 1}$ pin should be wired closest to the output capacitor (C 2). The resistive divider and FB pin is extremely sensitive and should thus be kept wired away from the LX pin of this IC as far as possible.
- Try to make a GND plane on the surface to which this IC will be mounted. For efficient heat dissipation when using the SON-10 package, Cypress recommends providing a thermal via in the footprint of the thermal pad.

Layout Example of IC components

MB39C022G/J/L/N

11. Example Of Standard Operation Characteristics

(Shown below is an example of characteristics for connection according to " Test Circuit For Measuring Typical Operating Characteristics".)

11.1 DC/DC Conversion Efficiency

```
CH 1 Test Condition:
EN1 = VIN; EN2 \(=0 \mathrm{~V}\)
\(\mathrm{VO} 1=1.2 \mathrm{~V} ; \mathrm{C} 1=10 \mu \mathrm{~F} ; \mathrm{C} 2=4.7 \mu \mathrm{~F}\)
```


11.2 DC/DC Load Regulation

CH1 Test Condition :
EN1 = VIN; EN2 $=0 \mathrm{~V}$
$\mathrm{VO1}=1.2 \mathrm{~V} ; \mathrm{C} 1=10 \mu \mathrm{~F} ; \mathrm{C} 2=4.7 \mu \mathrm{~F}$

11.3 DC/DC Line Regulation

CH 1 Test Condition :
EN1 = VIN; EN2 = 0 V

$$
\mathrm{VO} 1=1.2 \mathrm{~V} ; \mathrm{C} 1=10 \mu \mathrm{~F} ; \mathrm{C} 2=4.7 \mu \mathrm{~F}
$$

11.4 DC/DC Switching Waveform

```
CH1 Test Condition :
\(\mathrm{EN} 1=\mathrm{EN} 2=\mathrm{VIN}=3.7 \mathrm{~V}\);
\(\mathrm{VO} 1=1.8 \mathrm{~V} ; \mathrm{IO} 1=250 \mathrm{~mA} ; \mathrm{C} 1=10 \mu \mathrm{~F} ; \mathrm{C} 2=4.7 \mu \mathrm{~F}\)
\(\mathrm{VO} 2=3.3 \mathrm{~V} ; \mathrm{IO} 2=150 \mathrm{~mA} ; \mathrm{C} 4=\mathrm{C} 5=4.7 \mu \mathrm{~F}\)
```


MB39C022G/J/L/N
11.5 LDO Load Regulation

11.6 LDO Line Regulation

11.7 LDO Power Supply Rejection Ratio

$$
\begin{aligned}
& \text { MB39C022G CH2 Test Condition : } \\
& \text { EN2 }=\mathrm{VIN}=3.7 \mathrm{~V} ; \mathrm{EN} 1=0 \mathrm{~V} \\
& \text { VO2 }=3.3 \mathrm{~V} ; \mathrm{IO} 2=100 \mathrm{~mA} ; \mathrm{C} 1=\mathrm{C} 4=0 \mu \mathrm{~F}
\end{aligned}
$$

11.8 DC/DC Load Transient Waveforms

Test Condition:
$\mathrm{VIN}=\mathrm{EN} 1=\mathrm{EN} 2=3.7 \mathrm{~V} ; \mathrm{VO} 1=1.2 \mathrm{~V} ; \mathrm{C} 1=10 \mu \mathrm{~F} ; \mathrm{C} 2=4.7 \mu \mathrm{~F} ; \mathrm{VO} 2=3.3 \mathrm{~V} ; \mathrm{C} 4=\mathrm{C} 5=4.7 \mu \mathrm{~F}$

$100 \mu \mathrm{~s} / \mathrm{div}$
CH1 Load Transient Waveforms

11.9 DC/DC Power MOS FET ON Resistance

12. Application Circuits Examples

Example 1 (VIN1 = VIN2)

VIN1 and VIN2 are connected together and POR is pulled up to VIN

Example 2 (VIN2 = VO1)

- VIN2 is connected to VO1 and POR is pulled up to VIN
- It is possible to maximize LDO efficiency by connecting DC/DC Output to LDO supply.
- Maximum DC/DC output current (= IO1) is limited by VIN2 input current ($=1 \mathrm{O} 2$)

Example 3 (POR and RC delay channel control)

- EN1 is controlled by RC delay and EN2 is controlled by POR output.
- It is possible to control each channel without signal from MCU

Timing chart

Start up control
$\mathrm{t}_{\mathrm{a}}: \mathrm{RC}$ delay time (28 ms at $\left.\mathrm{VIN}=3.7 \mathrm{~V}, \mathrm{R}=100 \mathrm{k} \Omega, \mathrm{C}=1 \mu \mathrm{~F}\right)$
t_{b} : POR hold time (66 ms fixed)

Power down control

t_{c}, t_{d} : depend on internal discharge path and output loading

MB39C022G/J/L/N

13. Usage Precautions

1. Never use setting exceeding maximum rated conditions.

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
2. Use the devices within recommended conditions

It is recommended that devices be operated within recommended conditions.
Exceeding the recommended operating condition may adversely affect devices reliability.
Nominal electrical characteristics are warranted within the range of recommended operating conditions otherwise specified on each parameter in the section of electrical characteristics.
3. Design the ground line on printed circuit boards with consideration of common impedance.
4. Take appropriate measures against static electricity.

The LX pin has less built-in ESD protection than other pins.
LX pin: $150 \mathrm{~V}(\mathrm{MM}), 1500 \mathrm{~V}$ (HBM), Other pins : $200 \mathrm{~V}(\mathrm{MM}), 2000 \mathrm{~V}$ (HBM)
Containers for semiconductor materials should have anti-static protection or be made of conductive material.
After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.
Work platforms, tools, and instruments should be properly grounded.
Working personnel should be grounded with resistance of $250 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ between body and ground.
5. Do not apply negative voltages

The use of negative voltages below -0.3 V may activate parasitic transistors on the device, which can cause abnormal operation.

MB39C022G/J/L/N

14. Ordering Information

Part number	Package	Remarks
MB39C022GPN		
MB39C022JPN	10-pin plastic SON	
MB39C022LPN	(LCC-10P-M04)	

15. RoHS Compliance Information Of Lead(Pb) Free Version

The LSI products of Cypress with "E1" are compliant with RoHS Directive, and has observed the standard of lead, cadmium, mercury, chromium, polybrominated biphenyls (PBB), and polybrominated diphenylethers (PBDE).
A product whose part number has trailing characters "E1" is RoHS compliant.
16. Package Dimension

Document History Page

Document Title: MB39C022G/J/L/N Buck DC/DC Converter + Low Noise LDO Document Number: 002-08460					
Revision	ECN	Orig. of Change	Submission Date	Description of Change	
${ }^{* *}$	-	TAOA	$04 / 13 / 2009$	Initial release	
${ }^{*}$ A	5150068	TAOA	$02 / 24 / 2016$	Migrated Spansion Datasheet from DS04-27271-2E to Cypress format	

MB39C022G/J/L/N

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM ${ }^{\circledR}$ Cortex ${ }^{\circledR}$ Microcontrollers
Automotive
Clocks \& Buffers
Interface
Lighting \& Power Control
Memory
PSoC
Touch Sensing
USB Controllers
Wireless/RF
cypress.com/arm cypress.com/automotive cypress.com/clocks
cypress.com/interface
cypress.com/powerpsoc
cypress.com/memory
cypress.com/psoc
cypress.com/touch
cypress.com/usb
cypress.com/wireless

PSoC ${ }^{\circledR}$ Solutions

cypress.com/psoc
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP
Cypress Developer Community
Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/support

[^0]
[^0]: © Cypress Semiconductor Corporation 2009-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries
 intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either
 to sublicense) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely to the minimum
 is prohibited.
 WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without further notice. Cypress does no
 programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application
 weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole

 products.
 Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

