

The following document contains information on Cypress products. The document has the series name, product name, and ordering part numbering with the prefix "MB". However, Cypress will offer these products to new and existing customers with the series name, product name, and ordering part number with the prefix "CY".

How to Check the Ordering Part Number

- 1. Go to www.cypress.com/pcn.
- 2. Enter the keyword (for example, ordering part number) in the **SEARCH PCNS** field and click **Apply**.
- 3. Click the corresponding title from the search results.
- 4. Download the Affected Parts List file, which has details of all changes

For More Information

Please contact your local sales office for additional information about Cypress products and solutions.

About Cypress

Cypress is the leader in advanced embedded system solutions for the world's most innovative automotive, industrial, smart home appliances, consumer electronics and medical products. Cypress' microcontrollers, analog ICs, wireless and USB-based connectivity solutions and reliable, high-performance memories help engineers design differentiated products and get them to market first. Cypress is committed to providing customers with the best support and development resources on the planet enabling them to disrupt markets by creating new product categories in record time. To learn more, go to www.cypress.com.

2ch Buck DC/DC Converter + 1ch LDO with I2C Interface and SW FET

Description

The MB39C031 contains 2ch buck DC/DC converter and 1ch LDO. It is possible to supply the main power supply line in a system by using only one chip. The current mode system is adopted for the DC/DC converter, and it is possible to use the chip inductor with the high switching frequency operation which contains internal SW FET. The MB39C031 contains the output setting resistor and the phase compensation circuit, and contributes to reduce the number of external components and the mounting area. Also, it contains the CTL input pin which can control the ON/OFF for each CH, the Power Good signal output pin and the I²C communication interface, therefore it is easy to design the power supply sequence.

It is possible to tune in the output voltage exactly using the I²C communication and possible to correspond to the DVS/ASV system.

Features

- Operating input voltage range:2.5 V to 5.5 V (Maximum rating: 7 V)
- Output voltage setting range, Maximum output current: DD1*:1.0 V to 1.3 V (20 mV/step), 1.4 A (DC)

DD2*:1.2 V to 1.95 V (50 mV/step), 0.6 A (DC) LDO:2.8 V/2.85 V/3.0 V/3.3 V, 0.25 A (DC)

Note: Each channel has selective preset voltage (Lineup for a total of 32 kinds) .

- Soft-start time setting range: 0.9 ms to 14.3 ms (approximately 0.9 ms/step)
- Switching frequency for the DC/DC block:3 MHz (fixed)
- Communication interface: I²C (ON/OFF, Output voltage, Soft-start time setting)
- Built-in PFM/PWM auto switching mode
- Built-in function: Output setting resistor, Phase compensation circuit, Discharge resistor, Soft-start
- Each Channel Power Good output function (Open-drain)
- Protection function: Under voltage lockout protection circuit (UVLO), Over current protection circuit (OCP), Thermal shutdown protection circuit (TSD)
- Error signal output pin installed (Open-drain)
- Small package: QFN28 (4 mm × 4 mm × 0.8 mm, 0.4 mm pitch)

*: DD1,DD2: DC/DC converter block 1, 2

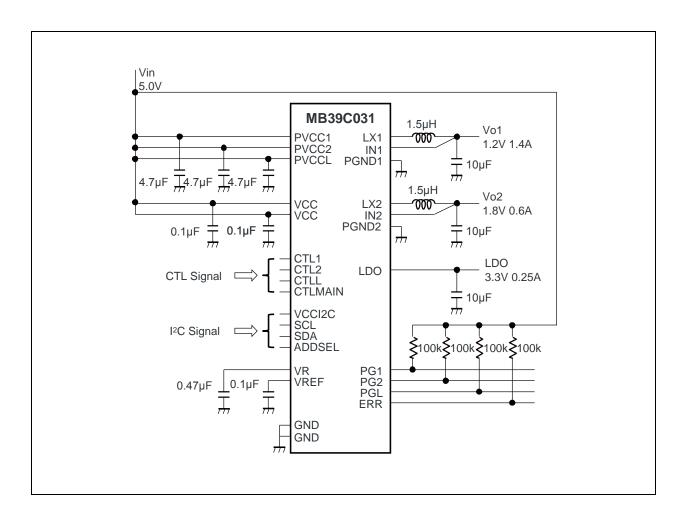
Applications

Network equipment: Wifi-tuner, Surveillance camera

Data-storage device: HDD, SSD, Picture recording equipment

Image and voice output equipment: MFP, Printer, Scanner, Projector, Electrophone, STB

Various terminals: POS, FA, HEMS etc.



Contents

Des	scription	1
Fea	atures	1
App	lications	1
1.	Application Circuit Example	3
2.	Recommended Application Specifications	4
3.	Pin Assignment	6
4.	Pin Descriptions (PKG)	7
5.	Block Diagram	
6.	Absolute Maximum Ratings	10
7.	Recommended Operating Conditions	
8.	Electrical Characteristics	12
9.	Operation Mode List	
10.		18
11.		
	CTL* Turning On and Off Sequence 1 (VCC → CTL*: CTL1, CTL2, CTLMAIN)	
	CTL* Turning On and Off Sequence 2(VCC→CTLMAIN→CTL1→CTL2)	
	CTL* Pin Threshold Voltage	
	Protection Operation Sequence	
	Operation Condition, Stop Circuit and Release Condition for Protection Circuit	
	DD Soft-Start Operation	
	Discharge Operation	
	PG1/PG2/PGL PIN and ERR PIN	
	I ² C Interface	
	Structure of I ² C Interface and Data	
	I/O Pin Equivalent Circuit Diagram	
	I/O Circuit Type	
	Typical Operation Characteristic Measurement Circuit	
	Reference Data	
	Usage Precaution	
	Ordering Information	
	Preset Code (MB39C031)	
	Package Dimensions	
	cument History	
Sale	es. Solutions, and Legal Information	69

1. Application Circuit Example

2. Recommended Application Specifications

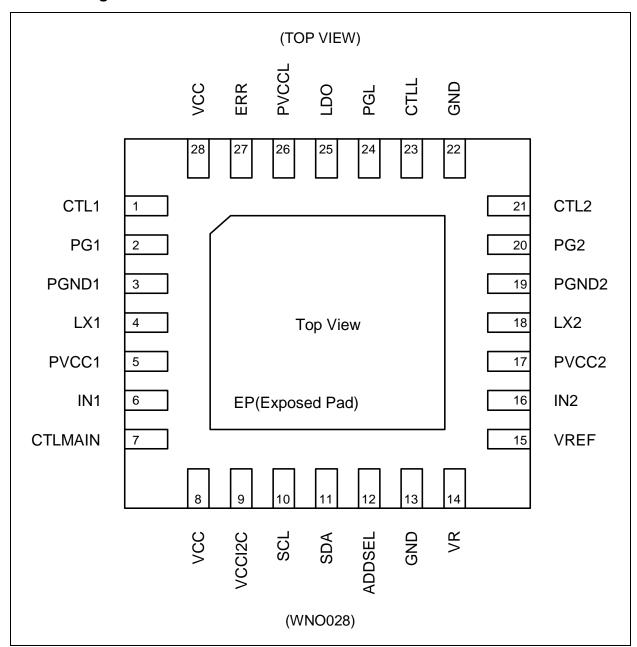
[Input Voltage Range]

Input	voltage VC	CC (V)
Min	Тур	Max
2.5	3.6	5.5

[Output Specification]

(Ta=+25°C)

Channel	Symbol	Accuracy	Outp	ut vo (V)	Itage	Output current (mA)	Limit Current (mA)	Mode	Switching frequency	•••	Output capacitance	time	Discharge resistance	Remarks
ပ်	Sy	Aco	Min	Тур	Max	Max	Min		(MHz)	(µH)	(μF)	(ms)	(kΩ)	
			0.99*	1.00*	1.01*							14.3		
			1.01	1.02	1.03							0.9*		
			1.03	1.04	1.05							1.8		Duilt in CM
				1.06								2.7		
				1.08								3.6		Built-in SW FET
				1.10*								4.5		Built-in output
				1.12				Buck				5.4		setting
DD1	Vo1	±1.2%		1.14		1400	2000	(synchronous	3.0	1.5	10	6.3	5	resistors
				1.16				rectification) C-mode				7.2		Operation mode
				1.18								8.1		switching
			1.19	1.20* 1.22	1.23							9.0		(Fixed PWM, PFM/PWM)
				1.24								10.8		
				1.26								11.6		
				1.28								12.5		
				1.30*								13.4		
			1.19*									14.3		
			1.24	1.25	1.27							0.9*		
			1.28	1.30	1.32							1.8		
			1.33*	1.35*	1.37*							2.7		
			1.38	1.40	1.42							3.6		Built-in SW FET
			1.43	1.45	1.47							4.5		Built-in
			1.48*					Buck				5.4		output setting
DD2	Vo2	±1.2%	_	1.55		600	900	(synchronous	3.0	1.5	10	6.3	5	resistors
		/0	1.58	1.60	1.62			rectification) C-mode	0.0			7.2	Ů	Operation mode
								C-IIIoue				8.1		switching
				1.70	1.72							9.0		(Fixed PWM,
				1.75	1.77							9.9		PFM/PWM)
			1.78*									10.8		
												11.6		
												12.5		
			1.93	1.95	1.97							13.4		


Channel	Symbol	Accuracy	Outp	ut vo (V)		Output current (mA)	Limit Current (mA)	Mode	Switching frequency	Coil (µH)	capacitance	time	Discharge resistance	Remarks
ភ	S	Acc	Min	Тур	Max	Max	Min		(MHz)	(μπ)	(μ F)	(ms)	(kΩ)	
			2.75	2.80	2.85							14.3		
			2.80*	2.85*	2.90*							0.9		
			2.95	3.00	3.05							1.8		
			3.24*	3.30*	3.36*							2.7*		
			-	-	-							3.6		
			-	-	-							4.5		
			-	-	-							5.4		
LDO	I DO	±1.8%	-	-	-	250	300	LDO	_	_	4.7	6.3	5	
	LDO	±1.070	-	-	-	200	300	LDO			4.7	7.2	3	
			-	-	-							8.1		
			-	-	-							9.0		
			-	-	-							9.9		
			-	-	-							10.8		
			-	-	-							11.6		
			-	-	-							12.5		
			-	-	-							13.4		

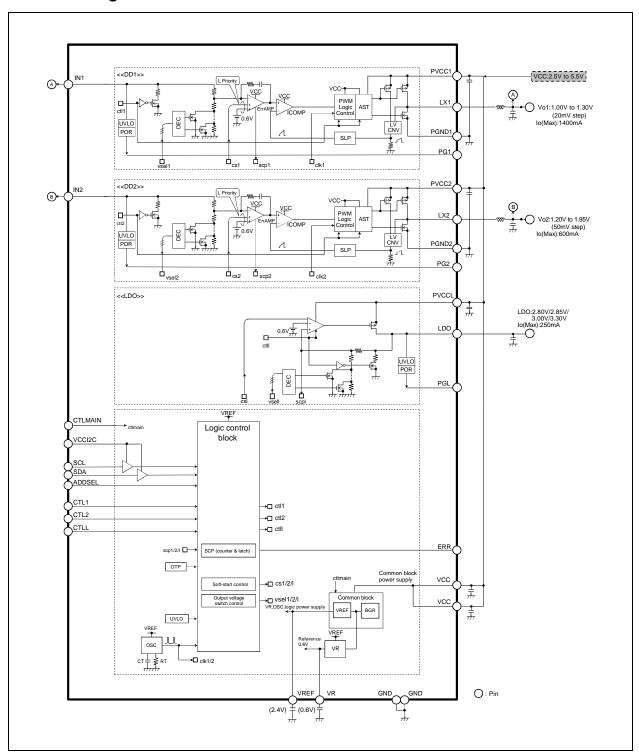
*: Preset value

Note: It is possible to set the output voltage and to change the soft-start time using I^2C .

3. Pin Assignment

4. Pin Descriptions (PKG)

Circuit block	Pin name	Numb er of pin for PKG	Pin No	I/O	Description (PKG)	Pull- down resist ance	PAD treatment when not using DD1	PAD treatment when not using DD2	PAD treatment when not using LDO	PAD treatment when not using I ² C communi cation
	IN1	1	6	I	DD1-Output voltage feedback pin.	-	GND connection	-	-	-
	PVCC1	1	5	-	DD1-Output block power supply pin	-	VCC connection	-	-	-
DD1	LX1	1	4	0	DD1-Pin for inductance connection.	-	Open	-	-	-
	PG1	1	2	0	DD1-POWERGOO D output pin	-	Open	-	-	-
	PGND1	1	3	-	DD1-Output block ground pin	-	GND connection	-	-	-
	IN2	1	16	I	DD2-Output voltage feedback pin.	-	-	GND connection	-	-
	PVCC2	1	17	-	DD2-Output block power supply pin	-	-	VCC connection	=	-
DD2	LX2	1	18	0	DD2-Pin for inductance connection.	Open		Open	-	-
	PG2	1	20	0	DD2-POWERGOO D output pin	-	-	Open	-	-
	PGND2	1	19	-	DD2-Output block ground pin	-	-	GND connection	-	-
	PVCCL	1	26	-	LDO-Power supply pin	-	-	-	VCC connection	-
LDO	LDO	1	25	0	LDO-Output pin	-	-	-	Open	-
	PGL	1	24	0	LDO-POWERGOO D output pin	-	-	-	Open	-
	CTL1	1	1	I	DD1 Control pin	O	Open	-	-	-
	CTL2	1	21	I	DD2 Control pin	•	-	Open	-	-
CTL	CTLL	1	23	I	LDO Control pin	•	-	-	Open	-
	CTLMAIN	1	7	I	Control pin for common block and digital block *	O	-	-	-	-
ERR	ERR	1	27	0	ERR signal output pin	-	-	-	-	-



Circuit block	Pin name	Numb er of pin for PKG	Pin No	I/O	Description (PKG)	Pull- down resist ance	whon not	PAD treatment when not using DD2	PAD treatment when not using LDO	PAD treatment when not using I ² C communi cation
	VCCI2C	1	9	-	Power supply pin for I ² C.	-	-	-	_	GND connection
I ² C	SCL	1	10	I	I ² C clock pin	×	-	-	-	Open
	SDA	1	11	I/O	I ² C data I/O pin	×	-	-	-	Open
	ADDSEL	1	12	I	Switch pin for slave address	O	-	-	-	Open
	VCC	2	8, 28	-	Control circuit block power supply pin	-	-	-	-	-
Commo	VREF	1	15	0	Reference voltage (2.4V) output pin	-	-	-	=	-
n	VR	1	14	0	Reference voltage (0.6V) output pin	-	-	-	-	-
	GND	2	13, 22	-	Control circuit block ground pin	=	-	-	-	-
-	GND	1	EP	-	Ground pin	-	-	-	-	-

^{*:} When turning on DD1, DD2 and LDO, it is also necessary to set CTLMAIN to "H". See 9. Operation Mode List for the details.

5. Block Diagram

6. Absolute Maximum Ratings

Parameter	Cumbal	Condition	Rat	ting	Unit	
Parameter	Symbol	Condition	Min	Max	Oilit	
Power supply voltage	V _{cc}	VCC, PVCC1, PVCC2, PVCCL, VCCI2C pins	-	7	V	
	V _{CTL}	CTLMAIN, 1, 2, L pins	-	7	V	
Input voltage	V _{OUT}	IN1, IN2 pins	-	7	V	
	Vlogic	SDA, SCL pins	-	7	V	
LX voltage	V _{LX}	LX1, LX2 pins	-0.3	+7	V	
Power dissipation	P _D	Ta ≤ +25°C Thermal resistor value	-	1720	mW	
·		(θj-a):(50°C/W*)				
Maximum junction temperature	T _{jmax}	-	-	+125	°C	
Storage temperature	T _{STG}	-	-55	+125	°C	

^{*:} When mounted on a QFN28 (WNO028) PKG, 4layers 0.8 mm thickness 117 mm × 84 mm

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

7. Recommended Operating Conditions

Do	rameter	Cumbal	Condition		Value		Unit
Pa	rameter	Symbol	Condition	Min	Тур	Max	Unit
	Power supply voltage	V _{CC}	VCC pin	2.5	3.6	5.5	V
General	Reference voltage	I _{REF}	VREF pin	-1	-	0	mA
General	output current	I _R	VR pin	-1	-	0	μΑ
	Operating temperature	Та	-	-30	+25	+85	°C
DC/DC CH	Power supply voltage	V _{CC}	VCC, PVCC1, PVCC2 pins	2.5	3.6	5.5	V
СП	Input voltage	V _{OUT}	IN1, IN2 pins	0	-	VCC	V
LDO CH	Power supply voltage	V _{CC}	VCC, PVCCL pins Output voltage setting: default (3.3V)	3.5	3.6	5.5	V
CTL block	Input voltage	V _{CTL}	CTL* pin	0	-	VCC	V
Digital block	Power supply voltage	V _{CC}	VCCI2C pin	1.76	-	3.37	V
(I ² C)	Logic input voltage	Vlogic	SDA, SCL pin	0	-	VCCI2C	V

^{*:} CTLMAIN, CTL1, CTL2, CTLL

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

8. Electrical Characteristics

Common Block

Danam		Comple ed	Comdition		Value		Unit
Param	ieter	Symbol	Condition	Min	Тур	Max	Unit
		V_R	VR pin =0mA	0.594	0.600	0.606	V
Reference Voltage	Output valtage	V _{REF1}	VREF pin =0mA	2.376	2.400	2.424	V
Block [VR, VREF]	Output voltage	V _{REF2}	VCC pin =2.5V to 5.5V	2.370	2.400	2.430	V
		V _{REF3}	VREF pin =0mA to -1mA	2.370	2.400	2.430	V
Under Voltage Lockout Protection	Threshold voltage	V _{TH}	VCC pin = _	2.156	2.20	2.244	V
Circuit Block [VCC UVLO]	Hysteresis width	V _H	-	-	0.20	-	V
Over Current Protection Circuit Block [OCP]	Timer time	t _{OCP1}	DD1, DD2, LDO Default value	0.5	1	1.5	ms
Thermal shutdown Protection Circuit Block [TSD]	Stop temperature	T _{TSDH}	-	-	150*	-	°C
	Input voltage	V _{IH}	CTL* pin	VCC × 0.7	-	VCC	V
		V _{IL}	CTL* pin	0	-	0.4	V
Control Block (CTL) [CTL]	Input current	I _{CTLH}	CTL* pin =3.6V	2.7	3.6	5.1	μΑ
[0.2]	input current	I _{CTLL}	CTL* pin =0V	-	-	1	μA
	Input pull-down resistor	R _P	CTL* pin	-	1	-	МΩ
		I _{VCCS1}	CTL* pin =0V	-	0	1.0	μA
		I _{VCCS2}	CTLMAIN=3.6V CTL1, CTL2.L pins =0V	-	80	120	μΑ
		I _{vcc}	CTLMAIN, L pins =3.6V Only LDO operation No load	-	200	300	μΑ
General (DC/DC block)	Power supply current	lvcc	CTL* pin = 3.6V all CH No load (DD operation mode: PFM/PWM mode)	-	450	680	μΑ
		Ivec	CTL* pin = 3.6V all CH No load (DD operation mode: Fixed PWM mode)	-	10.8	16.2	mA
		I _{VCCI2C}	CTLMAIN, L pin=3.6V VCCI2C pin = 1.8V	-	7.2	12.0	μА

^{*:} These are not the rated values. Use these values as reference when planning.

DD1, DD2

	Namana 4 a n	Complete	Condition		Value		Unit
<u>'</u>	Parameter	Symbol	Condition	Min	Тур	Max	Unit
	Output voltage	V _{OUT}	Output voltage setting: 1.2V IOUT=-10mA	1.186	1.20	1.214	٧
	Input stability	V _{LINE}	IOUT=-10mA, VCC=2.5V to 5.5V	-5	-	+5	mV
	Load stability	V_{LOAD}	IOUT=-1mA to -1400mA (when in Fixed PWM mode)	-10	-	-	mV
	Load Stability	V LOAD	IOUT=-1mA to -1400mA (when in PFM/PWM mode)	-10	-	+15	mV
			IN1 pin=1.5V				
	IN1 pin input impedance	R _{IN}	output voltage setting: 1.2V	-	400	-	kΩ
DC/DC Converter Block	SW PMOS-Tr ON resistance	R _{PMOS}	LX1 pin=-30mA	-	0.12*	-	Ω
[DD1]	SW NMOS-Tr ON resistance	R _{NMOS}	LX1 pin= 30mA	-	0.09*	-	Ω
	SW PMOS-Tr leak current	I _{LEAK}	LX1 pin=0V	-1	-	-	μА
	SW NMOS-Tr leak current	I _{LEAK}	LX1 pin=3.6V	-	-	1	μА
	Overcurrent protection value	I _{LIMIT}	L=1.5µH	2000	-	-	mA
	PFM/PWM reshuffling electric current	I _{PFM}	L=1.5μH	-	40*	-	mA
	Discharge resistor	R _{DIS}	-	-	5	-	kΩ
	Soft-start time	t _{SS}	Preset value	0.8	0.9	1.0	ms
	Switching frequency	f _{osc}	-	2.7	3.0	3.3	MHz

	Davana atau	Cumala al	Condition		Value		Unit
·	Parameter	Symbol	Condition	Min	Тур	Max	Unit
	Output voltage	V _{OUT}	Output voltage setting: 1.8V IOUT=-10mA	1.778	1.80	1.822	V
	Input stability	V _{LINE}	IOUT=-10mA VCC=2.5V to 5.5V	-5	-	+5	mV
	Load stability	VLOAD	IOUT=-1mA to -600mA (when in Fixed PWM mode)	-10	-	-	mV
	Load Stability	V LOAD	IOUT=-1mA to -600mA (when in PFM/PWM mode)	-10	-	+20	mV
	IN2 pin input impedance	R _{IN}	IN2 pin =2.0V Output voltage setting: 1.8V	1	300	-	kΩ
DC/DC	SW PMOS-Tr ON resistance	R _{PMOS}	LX2 pin =-30mA	-	0.16*	-	Ω
Converter Block [DD2]	SW NMOS-Tr ON resistance	R _{NMOS}	LX2 pin = 30mA	-	0.14*	-	Ω
	SW PMOS-Tr leak current	I _{LEAK}	LX2 pin =0V	-1	-	-	μΑ
	SW NMOS-Tr leak current	I _{LEAK}	LX2 pin =3.6V	-	-	1	μΑ
	Overcurrent protection value	I _{LIMIT}	L=1.5μH	900	-	-	mA
	PFM/PWM reshuffling electric current	I _{PFM}	L=1.5μH	-	70*	-	mA
	Discharge resistor	R _{DIS}	-	-	5	-	kΩ
	Soft-start time	t _{SS}	Preset value	0.8	0.9	1.0	ms
	Switching frequency	fosc	-	2.7	3.0	3.3	MHz

^{*:} These are not the rated values. Use these values as reference when planning.

LDO

	Darameter	Cumbal	Condition		Value		Unit
	Parameter	Symbol	Condition	Min	Тур	Max	Unit
	Output voltage	V _{OUT}	Output voltage setting : 3.3V IOUT=-10mA	3.241	3.300	3.359	V
	I/O voltage difference	V_{DIF}	IOUT=-10mA	-	-	0.20	V
	Input stability	V _{LINE}	IOUT=-10mA, VCC=3.5V to 5.5V	-5	-	+5	mV
	Load stability	V_{LOAD}	IOUT=-1mA to -150mA	-30	-20	-	mV
LDO Block	<u> </u>		PVCCL=0.2Vrms, f=10Hz, IOUT=-150mA	35	75	-	dB
[LDO]	Ripple remove ratio	RR	PVCCL=0.2Vrms, f=10kHz, IOUT=-150mA	15	50	-	dB
	Overcurrent protection value	I _{LIMIT}	Vout×0.9	300	-	-	mA
	Control macro	I _{PVCCLS}	At stand-by	-	0	1	μA
	consumption current	I _{PVCCL}	IOUT=0mA	-	80	105	μA
	Discharge resistor	R _{DIS}	-	-	5	-	kΩ
	Soft-start time	t _{SS}	Preset value	2.4	2.7	3.0	ms

Digital Block

Parameter		Complete	Condition	Value			Unit
		Symbol	Condition	Min	Тур	Max	Unit
	Output voltage	V _{OL}	PG1, PG2, L pins I _{OL} =1mA	-	-	0.4	V
DOWED OOOD	Output current	I _{OL} PG1, PG2, L pins		1	-	=	mA
POWER-GOOD Block [Power Good]	Low-voltage detection	V_{th}	IN1, IN2, LDO pins	-	Vo × 0.75*	-	V
	Power-on detection voltage	V _{th}	IN1, IN2, LDO pins	-	Vo × 0.85*	-	V
Error Block	Output voltage	V _{OL}	V_{OL} ERR pin $I_{OL} = 1$ mA		-	0.4	V
[ERR]	Output current	I _{OL}	ERR pin	1	-	=	mA
	land to the same	V _{IH}	SCL, SDA pins VCCI2C=3.3V	VCCI2C × 0.7	-	VCCI2C	V
	Input voltage	V _{IL}	SCL, SDA pins VCCI2C=3.3V	0	-	VCCI2C × 0.3	V
120 Plants	land somet	I _{IH}	SCL, SDA pins VCCI2C=3.3V	-	-	10	μA
I ² C Block [I ² C]	Input current I _{IL}	I _{IL}	SCL, SDA pins VCCI2C=3.3V	-10	-	-	μA
	Output voltage	V _{OL}	SDA pin I _{OL} =3mA	-	-	0.4	V
	Output current	I _{OL}	SDA pin	3	-	-	mA
	Input pull-down resistor	R _P	ADDSEL pin	-	1	-	МΩ

^{*:} These are not the rated values. Use these values as reference when planning.

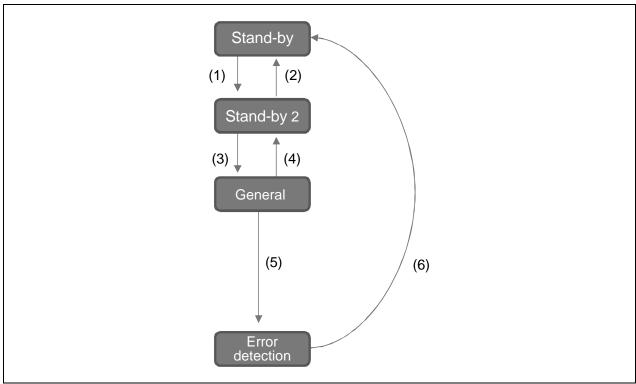
9. Operation Mode List

	Mode	Stand-by	Stand-by 2	General	ERR detection
	CTLMAIN (External)	L	Н	Н	Н
CTI Cianal	CTL1 (External / I ² C)	L	L	H/L	Х
CTL Signal	CTL2 (External / I ² C)	L	L	H/L	Х
	CTLL (External / I ² C)	L	L	H/L	Х
	General	OFF	ON	ON	ON
	Digital Block	OFF	ON	ON	ON
Operation Block	OSC, VR Block	OFF	OFF	ON*2	OFF
	DD1	OFF	OFF	ON/OFF	OFF
	DD2	OFF	OFF	ON/OFF	OFF
	LDO	OFF	OFF	ON/OFF	OFF
I ² C Communication	I ² C communication	Disabled	Enabled	Enabled	Enabled
Protection Operating	Thermal shutdown Protection (TSD)	Not available	Not available	Available	*1
	Over Current Protection (OCP)	Not available	Not available	Available	*1

^{*1:}This is the state after detection of ERR. It is possible to release the ERR detection mode by turning the power supply on again or turning CTLMAIN on again.

■ Priority of the external pin/I²C communication for CTL1. CTL2 and L

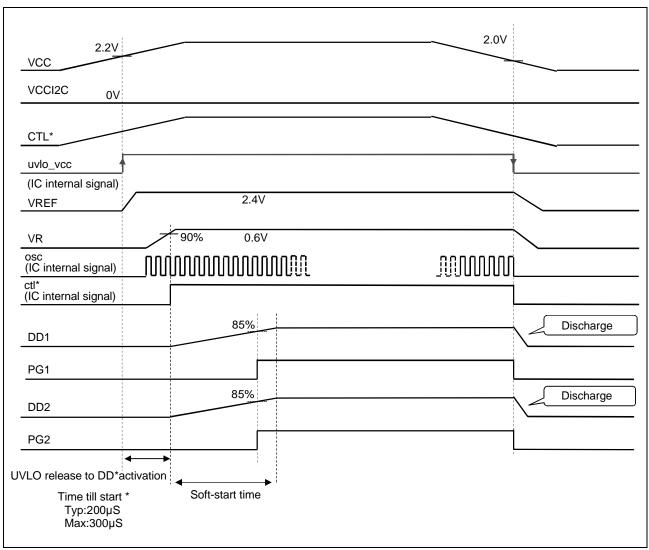
CTLMAIN (External pin)	CTL* (External pin)	CTL* (I ² C communication)	Relevant CH	
Н	Н	Н	Unavailable	
Н	Н	L	ON	
Н	L	Н	ON	
Н	L	L	OFF	
L	Х	Communication disabled	OFF	


- *:The I²C communication is enabled after the common block and digital block activation setting the external CTLMAIN pin to "H".
- When executing the ON/OFF control for DD1, DD2 and LDO using the external pin, don't execute the ON/OFF control using I²C. Aside from the ON/OFF control, it is possible to control everything else using I²C.
- When executing the ON/OFF control for DD1, DD2 and LDO using I²C, input "L" to the CTL* pin (the pin is open or in the GND connection condition).

Document Number: 002-08407 Rev. *B

^{*2:}When only LDO is operating, the OSC block stops (OFF) after LDO activation. Also, the VR block keeps operating (ON) after LDO activation.

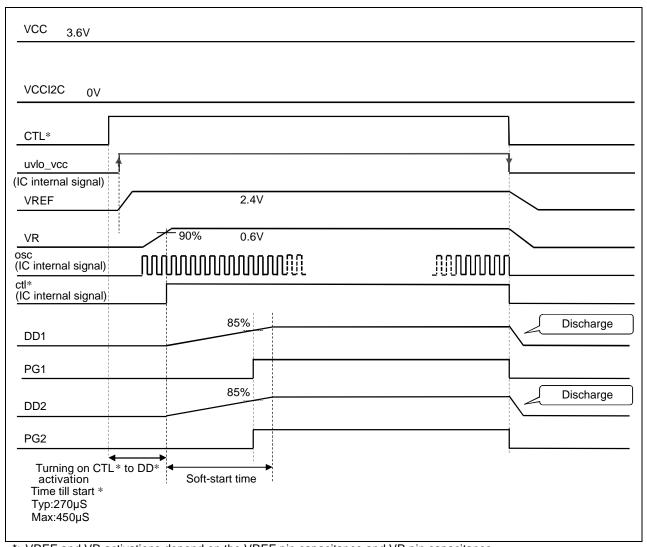
10. State Transition Diagram


- (1)External CTLMAIN pin "H"
- (2)External CTLMAIN pin "L"
- (3)External CTL pin "H" / I²C communication "relevant CH_ON"
- (4)External CTL pin "L" / I2C communication "relevant CH_OFF"
- (5)Error detection (OCP, OCP_1ms continuation)
- (6)Turning on the power supply again (equal to or less than uvlo_vcc reset voltage) or setting CTLMAIN to "L"

Notes:

- When executing the ON/OFF control for DD1, DD2 and LDO using the external pin, don't execute the ON/OFF control using I²C. Aside from the ON/OFF control, it is possible to control everything else using I²C.
- When executing the ON/OFF control for DD1, DD2 and LDO using I²C, input "L" to the CTL* pin (the pin is open or in the GND connection condition).

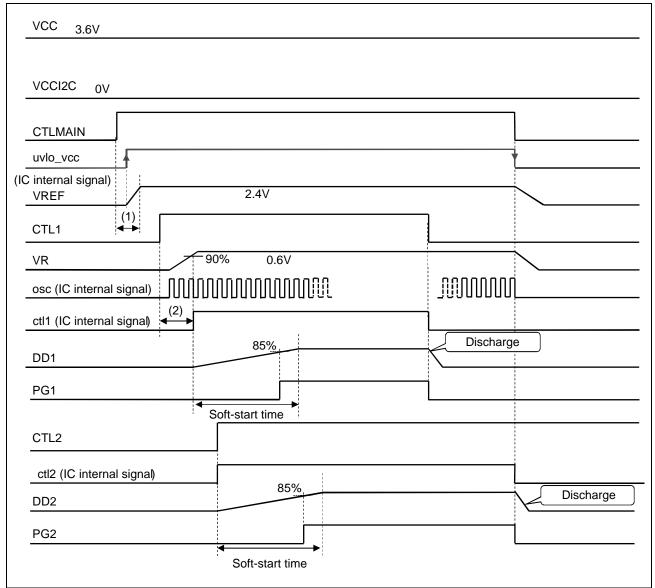
11. Turning On and Off Sequence (Turning On CTL*:CTL1, CTL2, CTLMAIN=VCC Simultaneously)



*: VREF and VR activations depend on the VREF pin capacitance and VR pin capacitance. Time in the sequence figure above is applied for the following condition.

■ VREF pin capacitance: 0.1 µF■ VR pin capacitance: 0.47 µF

12. CTL* Turning On and Off Sequence 1 (VCC → CTL*: CTL1, CTL2, CTLMAIN)



*: VREF and VR activations depend on the VREF pin capacitance and VR pin capacitance. Time in the sequence figure above is applied for the following condition.

■ VREF pin capacitance: 0.1 µF■ VR pin capacitance: 0.47 µF

13. CTL* Turning On and Off Sequence 2(VCC→CTLMAIN→CTL1→CTL2)

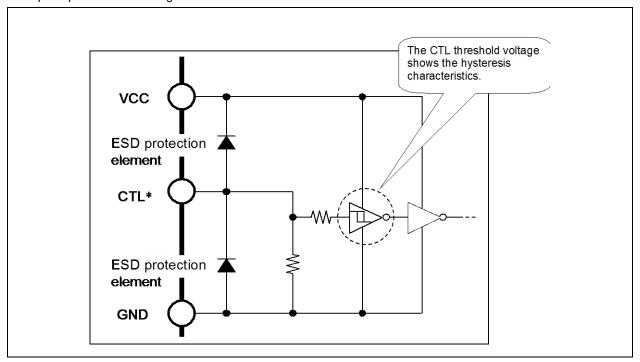
 Time from turning on CTLMAIN to VREF activation completion (=communication enabled)* Typ: 130 μs, Max: 200 μs

(2) Time from turning on CTL1 to ctll (IC internal signal) "H"

Typ: 150 μs, Max: 250 μs

*: VREF and VR activations depend on the VREF pin capacitance and VR pin capacitance. Time in the sequence figure above is applied for the following condition.

■ VREF pin capacitance: 0.1 µF■ VR pin capacitance: 0.47 µF


14. CTL* Pin Threshold Voltage

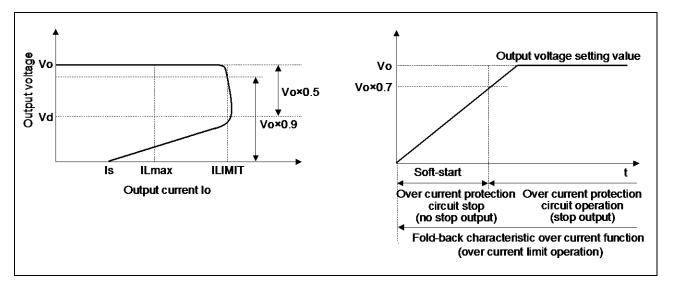
The input circuit structure for the CTL* pin is the schmitt trigger style, and the threshold voltage shows the hysteresis characteristics when CTL* OFF \rightarrow ON and ON \rightarrow OFF. (See "•CTL* pin equivalent circuit diagram" below.)

Also, the threshold voltage level depends on the VCC pin voltage.

Moreover, make sure to input either the "H" level (>"VCCx0.7"V) or "L" level (<0.4 V) to the CTL* pin when in use.

CTL* pin equivalent circuit diagram

15. Protection Operation Sequence

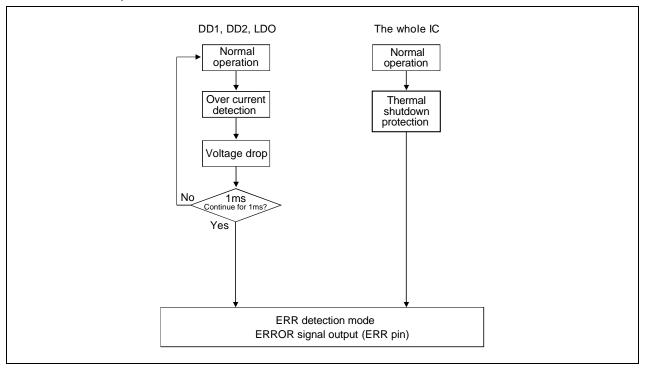

DD channel

The DD channel monitors the FET current peak value at any time during the operation. When the DD output becomes the over current state, the output voltage is decreased. Afterward, the timer operation is performed and the output stops after about 1ms progress.

LDO channel

It contains the fold-back type over current protection circuit in order to prevent destroy because of the over load and the output over current. It limits the output current and the output voltage from the peak around the over current protection value for LDO (ILIMIT) to the over current current (Is).

At this time, if the output voltage Vo gets lower than the detection voltage Vd (Vd: Vo×0.5), the timer operation starts and the output stops after about 1ms progress. Moreover, because the over current protection circuit does not operate at the soft-start (0V to Vo × 0.7), neither the output stops nor the error signal outputs. However, the fold-back type over current protection characteristic functions. The following shows the fold-back type over current protection characteristic.



Thermal shutdown protection

If the temperature at the junction part reaches +150 °C, the thermal shutdown protection circuit turns all channels off.

Error detection sequence

ERR detection mode release

It is necessary to turn the power supply on again, or to turn CTLMAIN on again to release the ERR detection mode.

16. Operation Condition, Stop Circuit and Release Condition for Protection Circuit

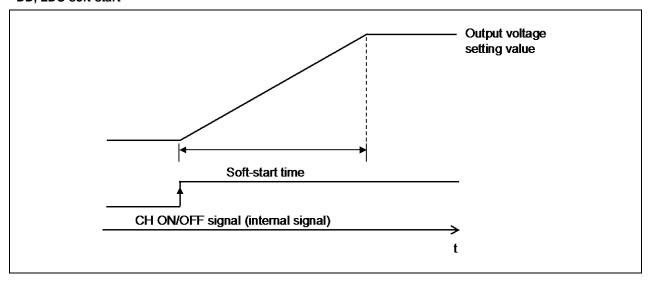
Channel	Operation whilst under protection	Over voltage protection (OCP)	Under voltage lockout protection (UVLO)	Thermal shutdown protection (TSD)	
DD1, DD2	Discharge	Operating condition: After about 1ms progress in the over current condition Process during protection operation: DD1, DD2, LDO stop Recovery condition: (1) Power supply reasserted (2) CTLMAIN reasserted	Operating condition: Input voltage drop Process during protection operation: DD1, DD2, LDO stop	Operating condition: Chip temperature increment Process during protection operation: DD1, DD2, LDO stop Recovery condition: (1) Power supply	
LDO	Discharge	Operating condition: After about 1ms progress in the over current condition Process during protection operation: DD1, DD2, LDO stop Recovery condition: (1) Power supply re-asserted (2) CTLMAIN reasserted	Recovery condition: Input voltage rise UVLO operates only when CTLMAIN is "H" (normal operation).	control of the manner of CTL1, CTL2 or L is in the "H" state and one of CTL1, CTL2 or L is in the "H" state, TSD will operate.	
ERR output (ERRpin)	-	"L" output when detecting OCP at CH of DD1, DD2, or LDO	No change	"L" output when detecting TSD	

Thermal shutdown protection (TSD) operation during over current protection timer operation

When the thermal shutdown protection (TSD) operated during the over current protection (OCP) timer operation, the thermal shutdown protection has priority.

Operation when releasing under voltage lockout protection (UVLO)

DD1, DD2 and LDO: Activation following the condition for CTL* pin



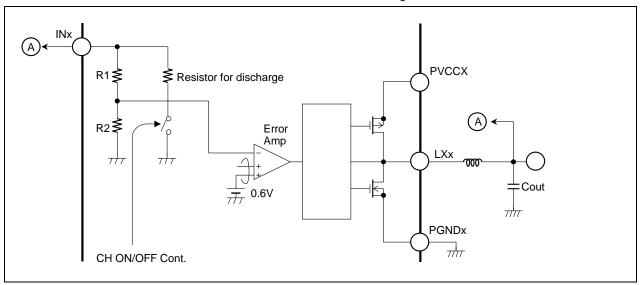
17. DD Soft-Start Operation

The soft-start operation for DD1, DD2 and LDO is enabled in order to prevent the rush current during the DD activation. The soft-start time can be controlled by l^2C .

Soft-start control: enabled to set at DD1, DD2 and LDO

DD, LDO soft-start

18. Discharge Operation


DD channel

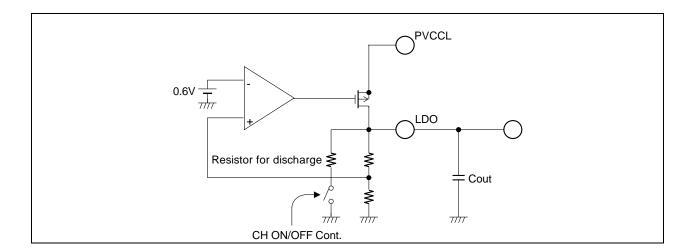
When executing the DD OFF operation at the CH ON/OFF signal, the DC/DC smooth capacitance charged for each output voltage is discharged using resistor for discharge which is set in the IC and the output voltage is decreased gradually. However, the discharge time changes depending on the DC/DC converter load current. The discharge time is calculated by the following equation.

Discharge time (time till the output becomes 10% without load)

 $toff(s) \approx 2.3 \times R_{DIS} \times Cout(F)$

Note: See the table in ELECTRICAL CHARACTERISTICS for the discharge resistor value.

LDO channel


When executing the LD OFF operation at the CH ON/OFF signal, the output capacitance charged for the output voltage is discharged using resistor for discharge which is set in the IC and the output voltage is decreased gradually. However, the discharge time changes depending on the output load current. The discharge time is calculated by the following equation.

Discharge time (time till the output becomes 10 % without load).

 $toff(s) \approx 2.3 \times R_{DIS} \times Cout(F)$

Note: See the table in ELECTRICAL CHARACTERISTICS for the discharge resistor value.

19. PG1/PG2/PGL PIN and ERR PIN

The following pins for each CH POWER GOOD output are prepared.

PG₁

It is the pin for DD1 POWER GOOD output.

When the output voltage exceeds 85 % of the setting value at the DD1 ON mode, "H" is output.

Also, when the output voltage becomes equal to or lower than 75 % of the setting value after the "H" output, "L" is output. "L" is output at the DD1 OFF mode.

PG₂

It is the pin for DD2 POWER GOOD output.

When the output voltage exceeds 85% of the setting value at the DD2 ON mode, "H" is output.

Also, when the output voltage becomes equal to or lower than 75% of the setting value after the "H" output, "L" is output. "L" is output at the DD2 OFF mode.

PGL

It is the pin for LDO POWER GOOD output.

When the output voltage exceeds 85 % of the setting value at the LDO ON mode, "H" is output.

Also, when the output voltage becomes equal to or lower than 75 % of the setting value after the "H" output, "L" is output. "L" is output at the LDO OFF mode.

The following pin for the error state output is prepared.

ERR pin

It is the pin for the error state output. "L" is output during the error detection mode.

The ERR detection mode is released by turning on the power supply or CTLMAIN again.

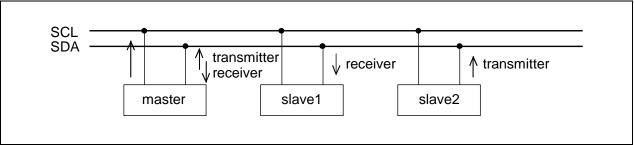
20. I²C Interface

1. Structure of I2C interface

The I²C interface executes the data communication in 1 byte (8-bit) units using two signal lines (bus), a SCL (serial clock line) and a SDA (serial data line).

This bus is connected to multiple devices;

master: device to generate the clock signal and to control the data transfer (CPU and so on)


slave: device that an address is specified by a master.

This IC is set as the slave and has no function to be the master.

Each device is defined due to the communication direction as described below.

transmitter: device to send data to bus receiver: device to receive data from bus

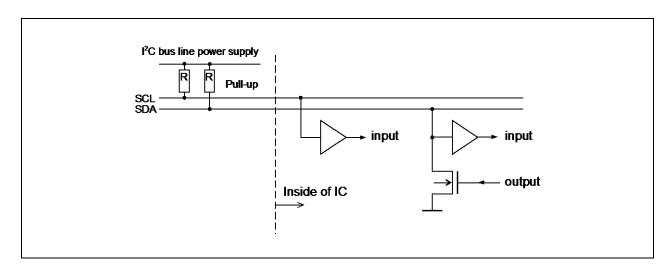
The IC has the function both transmitter and receiver.

The IC defines the followings;

Write: data is transmitted from master and the IC receives data

Read: The IC transmits data and master receives data.

2. Definition of signal lines

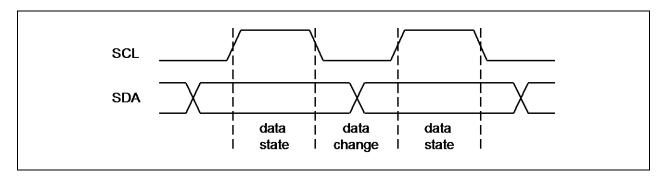

SCL and SDA are connected to the power supply by the pull-up resistor.

The output circuit is the open Drain output.

When a bus is not used (waiting state), the open "H" is set changing the open Drain to the OFF state.

Note: SCL and SDA pins adopt a different ESD protection system from standard I²C specification because of ESD enhancement (see 2.3 I/O CIRCUIT TYPE).

When the power supply is in the bus line, don't shut off the power supply for an IC (VCCI2C).

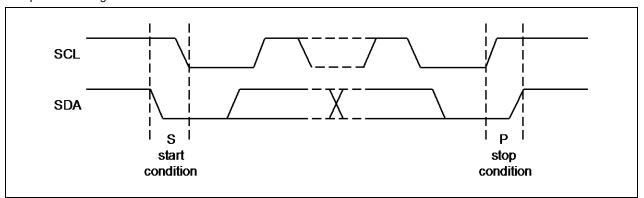


3. Validity of data

Data has the following characteristics;

change when SCL is the "L" level

valid if the state is kept while SCL is the "H" level.


Moreover, the SDA signal change means the start or stop condition when SCL is the "H" level.

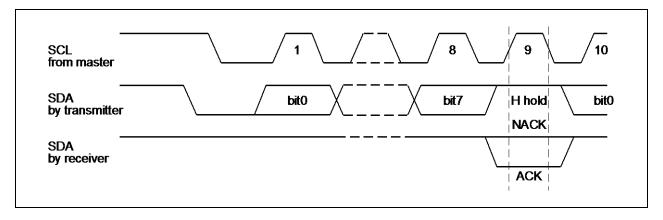
4. Definition of start and stop condition

The start and stop conditions are output from the master and shows start and stop of communications to the slave.

Start : SDA changes from "H" to "L" when SCL is "H".

Stop: SDA changes from "L" to "H" when SCL is "H".

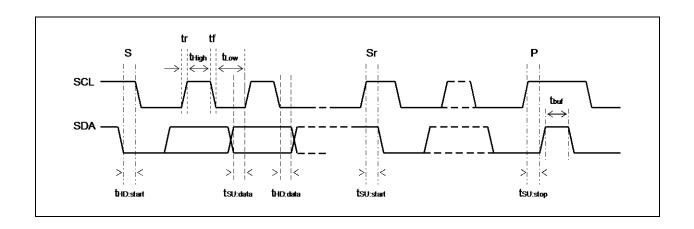
5. ACK signal


This is a signal to confirm the data reception during communication.

The receiver replies the ACK signal to show the data reception to a transmitter every time 1 byte (8-bit) of data is received. The ACK signal is sent in 9clk after sending data 8-bit matching to the SCL signal that the master generates.

- A transmitter keeps SDA output "open H" in SCL9clk.
- A receiver informs the data reception situation to a transmitter outputting the followings in SCL 9 clk; when data was received: SDA output "L" (ACK) when no data was received: SDA output "open H" (NACK)

However, if the master is changed to the receiver, ACK is not replied after the last data reception because the bus keeps open stopping the data transmission to the slave transmitter. In this case, the slave transmitter opens the bus (open H) and is set to the stop condition reception waiting state from the master.



6. I²C Interface Input Timing

(within recommended operating conditions)

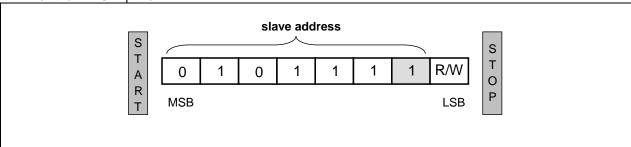
			Value			
Parameter	Symbol	SCL=100kHz		SCL=400kHz		Unit
		Min	Max	Min	Max	1
SCL clock frequency	fSCL	-	100	-	400	kHz
Start condition hold time	t _{HD:start}	4.0	-	0.6	-	μs
Restart condition setup time	t _{SU:start}	4.7	-	0.6	-	μs
Stop condition setup time	t _{SU:stop}	4.0	-	0.6	-	μs
Stop to Start bus open time	t _{buf}	4.7	-	1.3	-	μs
SCL "L" time	t _{Low}	4.7	-	1.3	-	μs
SCL "H" time	t _{High}	4.0	-	0.6	-	μs
SCL/SDA rising time	t _r	-	1.0	-	0.3	μs
SCL/SDA falling time	t _f	-	0.3	-	0.3	μs
Data hold time	t _{HD:data}	0.0	-	0.0	-	μs
Data setup time	t _{SU: data}	0.25	-	0.10	-	μs
SCL/SDA capacitor load	Сь	-	400	-	400	pF

- VIH/VIL level reference
- Conform to I²C bus specifications

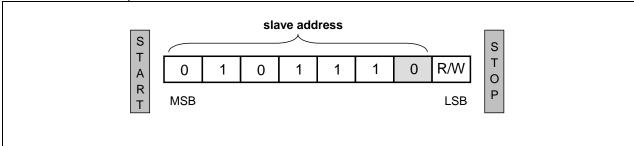
7. Slave Address

This is a slave address when communicating with the I²C interface.

The slave address of this IC is set by the first seven bits as shown below.

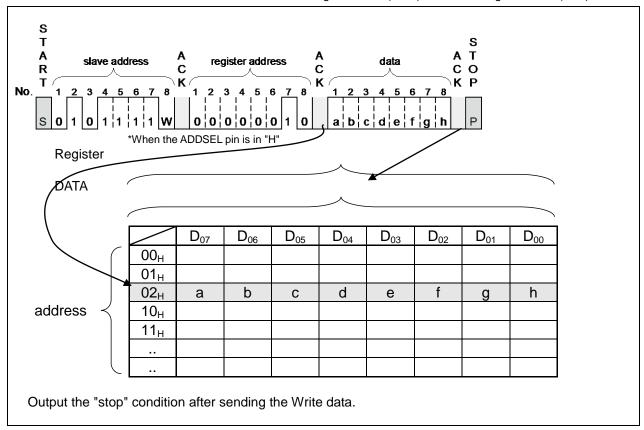

The seventh bit follows the ADDSEL pin and "0"/"1" are variable.

The eighth bit is called the least significant bit (LSB) and determines the message direction. The bit "0" shows that information will be written from the master to the slave.


The bit "1" shows that the master reads information from the slave.

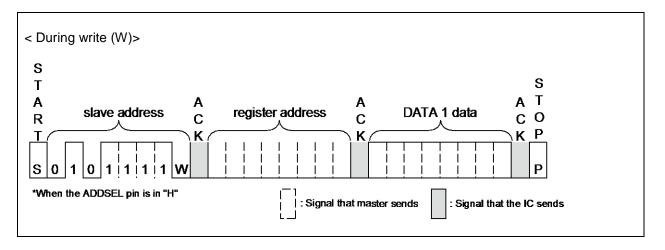
This does not support the general call address.

■ When the ADDSEL pin is in "H"

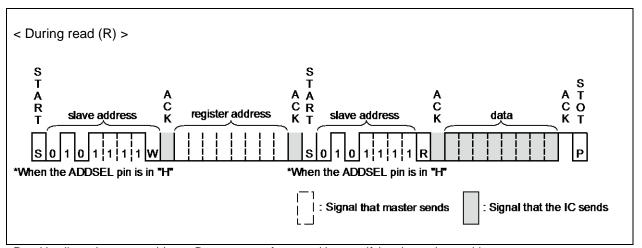


8. Bit structure of data on I2C interface

(1) Writing data to register and reading data


The data line is sent/received in the order from the most significant bit (MSB) to the least significant bit (LSB).

(2) I²C Interface Data Format


I²C communication

- 1. When a different slave address comes, non-matching ID is informed by not replying ACK after receiving the slave address.
- 2. All registers write to internal registers in the ACK signal after receiving the 8-bit data of each setting.
- 3. If a non-existing register address is specified, data is not written to a register.
- 4. Output the "stop" condition after sending the write data.

Write is allowed per one address. (sequential writing is not allowed.) Send register address and data as one unit.

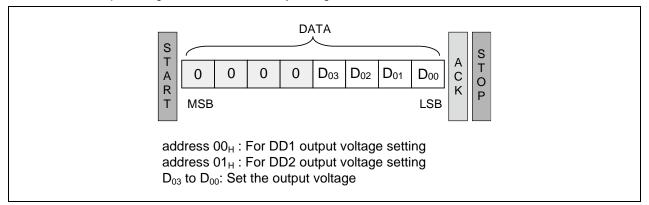
Read is allowed per one address. Be sure to perform read by specifying the register addresses. (sequential reading is not allowed.)

21. Structure of I²C Interface and Data

Register map

	address		DATA							Writing	Remarks	
	auuress	d07	d06	d05	d04	d03	d02	d01	d00	Default	timing	Remarks
										00 _H *		
	00н	X	X	X	X	D03	D02	D01	D00	05 _H *	ACK	DD1 output voltage setting
	ООН	^	^	^	^	D03	D02	DOT	Doo	0A _H *	AOR	DD1 output voitage setting
Outroot										0F _H *		
Output voltage										00 _H *		
Ü	01н	Х	X	Х	Х	D03	D02	D01	D00	03 _H *	ACK	DD2 output voltage setting
	0.11	,,		^						06 _H *	7.01	222 carpar remage coming
										0C _H *		
	02 _H	Х	Х	Х	Х	Х	Х	D01	D00	03 _H	ACK	LDO output voltage setting
	10 _H	Х	Х	Х	Χ	D03	D02	D01	D00	01н	ACK	DD1 soft-start time setting
Soft start	11 _H	Х	Х	Х	Х	D03	D02	D01	D00	01 _H */ 03 _H *	ACK	DD2 soft-start time setting
	12 _H	Χ	Х	Χ	Χ	D03	D02	D01	D00	03 _H	ACK	LDO soft-start time setting
DD operation mode	20 _H	Х	Х	Х	Х	Х	X	D01	D00	00н	ACK	DD1, DD2 operation mode setting "0": Fixed PWM mode,
mode												"1": PFM/PWM mode
ON/OFF	30н	X	X	X	X	Х	D02	D01	D00	00н	ACK	DD1, DD2, LDO output ON/OFF setting "0":Output OFF/ "1":Output ON
For test	FX _H	-	-	-	1	-	-	-	-	-	-	Disabled

^{*:} The value depends on the preset value.


[■] Because the "X" block in the register map has no register, "0" is returned when in reading.

[■] The address FX_H is used for tests. It is normally disabled. Don't read/write to the FX_H address.

(1) DD1 and DD2 output voltage control

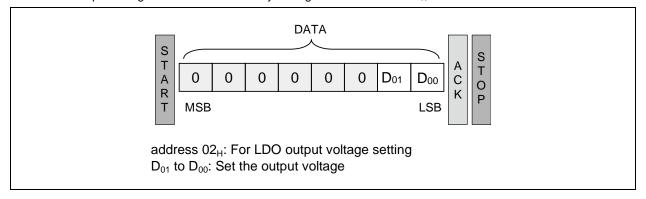
- 1. Addresses 00_H , 01_H are allocated as registers for the DC/DC output voltage control. 2. The DC/DC output voltage control is controlled by writing data to addresses 00_H , 01_H .

DD1 output voltage setting table

DATA	Output voltage
00 _H	1.00*
01 _H	1.02
02 _H	1.04
03 _H	1.06
04 _H	1.08
05н	1.10*
06 _H	1.12
07 _H	1.14
08 _H	1.16
09 _H	1.18
0A _H *	1.20*
0B _H	1.22
0Сн	1.24
0D _H	1.26
0Ен	1.28
0F _H	1.30*

DD2 output voltage setting table

DATA	Output voltage	
00 _H	1.20*	
01 _H	1.25	
02н	1.30	
03 _H	1.35*	
04 _H	1.40	
05н	1.45	
06 _H	1.50*	
07 _H	1.55	
08н	1.60	
09н	1.65	
ОАн	1.70	
0B _H	1.75	
0C _H *	1.80*	
0D _H	1.85	
0E _H	1.90	
0F _H	1.95	[V]

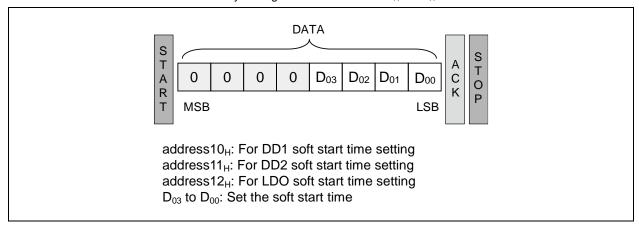

^{*:} The selectable output voltage setting as preset value.

[V]

(2) LDO output voltage control

- 1. Address $02_{\rm H}$ is allocated as a register for the LDO output voltage control. 2. The LDO output voltage control is controlled by writing data to addresse $02_{\rm H}$.

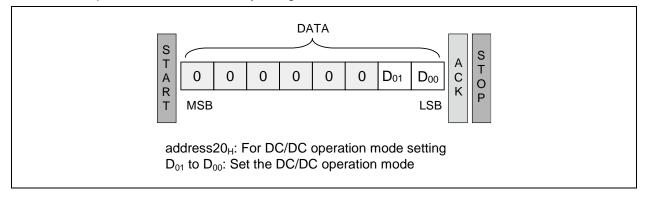
LDO output voltage setting table


DATA	Output voltage	
00 _H	2.80	
01 _H	2.85*	
02 _H	3.00	
03 _H *	3.30*	[V]

^{*:} The selectable output voltage using the preset value changing products

(3) Soft start time

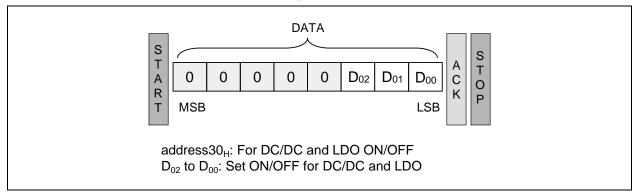
- 1. Address 10_H to 12_H are allocated as registers for the soft start time control. 2. The soft start time control is controlled by writing data to addresses 10_H to 12_H .


Soft start time setting table

DATA1	Soft start time	Default setting
00 _H	14.3ms	
01н	0.9ms	DD1, DD2
02 _H	1.8ms	
03 _H	2.7ms	LDO
04 _H	3.6ms	
05 _H	4.5ms	
06 _H	5.4ms	
07 _H	6.3ms	
08н	7.2ms	
09 _H	8.1ms	
ОАн	9.0ms	
0B _H	9.9ms	
0Сн	10.8ms	
0D _H	11.6ms	
0E _H	12.5ms	
0F _H	13.4ms	

(4) DC/DC operation mode

- 1. Address 20_H is allocated as a register for the DC/DC operation mode control.
- 2. The DC/DC operation mode is controlled by writing data to address 20_H.

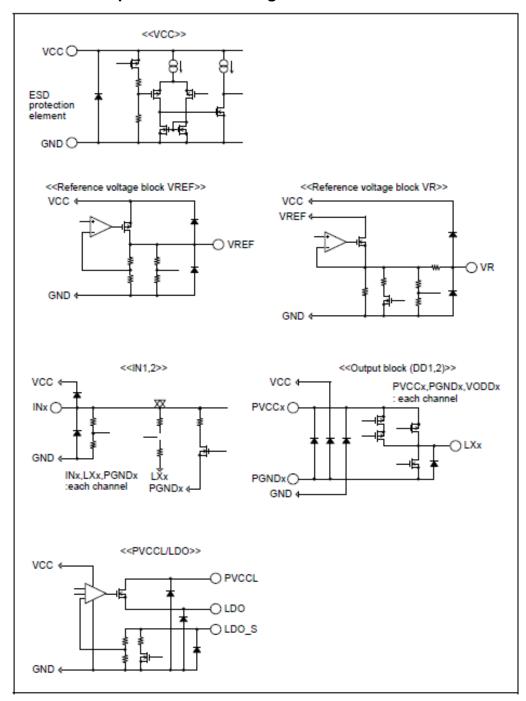


address	Bit	Value	Description	Value	Description
20 _H	D00	0*	DD1 Fixed PWM*	1	DD1 PFM/PWM
20 _H	D01	0*	DD2 Fixed PWM*	1	DD2 PFM/PWM

^{*:} It is a preset value.

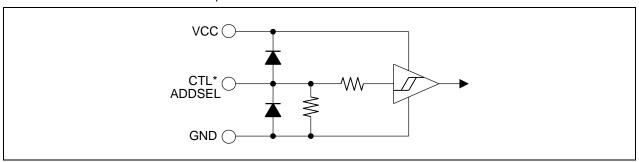
(5) ON/OFF for DC/DC and LDO

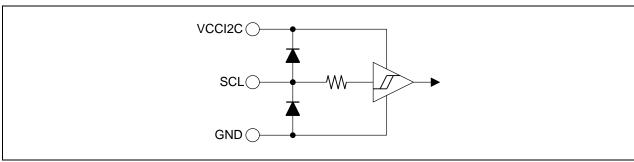
- 1. Address 30_H is allocated as a register for the DC/DC and LDO ON/OFF.
- 2. The DC/DC and LDO ON/OFF is controlled by writing data to address 30_H.



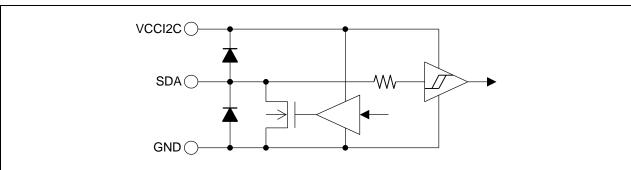
address	Bit	Value	Description	Value	Description
30 _H	D00	0*	DD1 output OFF*	1	DD1 output ON
30 _H	D01	0*	DD2 output OFF*	1	DD2 output ON
30 _H	D02	0*	LDO output OFF*	1	LDO output ON

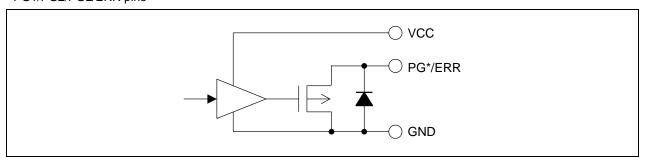
^{*:} It is a preset value.


22. I/O Pin Equivalent Circuit Diagram

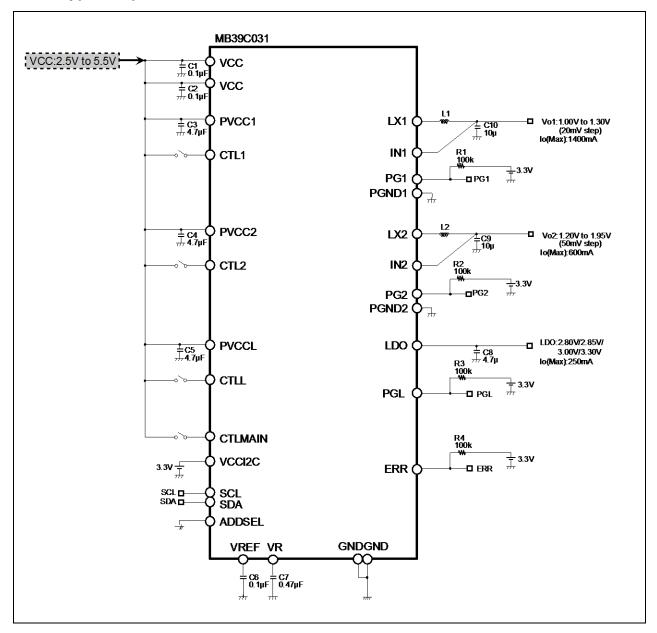


23. I/O Circuit Type


CTLMAIN/CTL1/CTL2/CTLL/ADDSEL pins


SCL pin

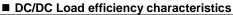
SDA pin

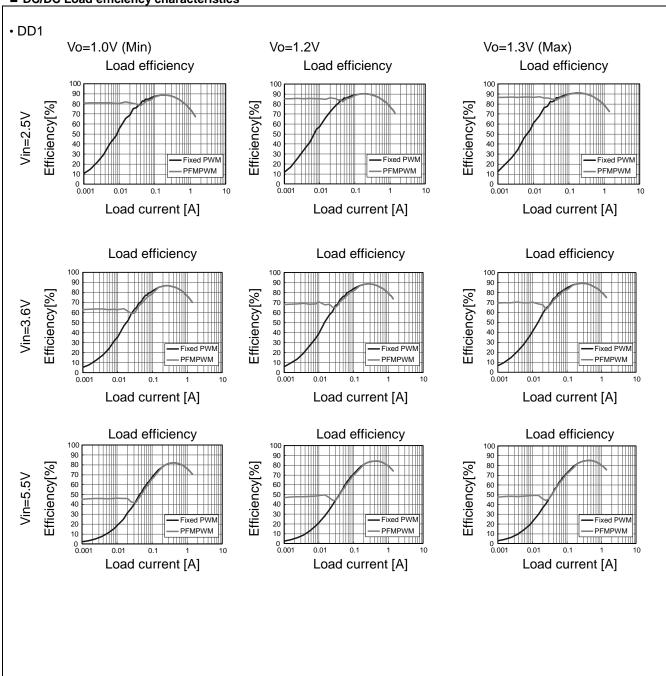


PG1/PG2/PGL/ERR pins

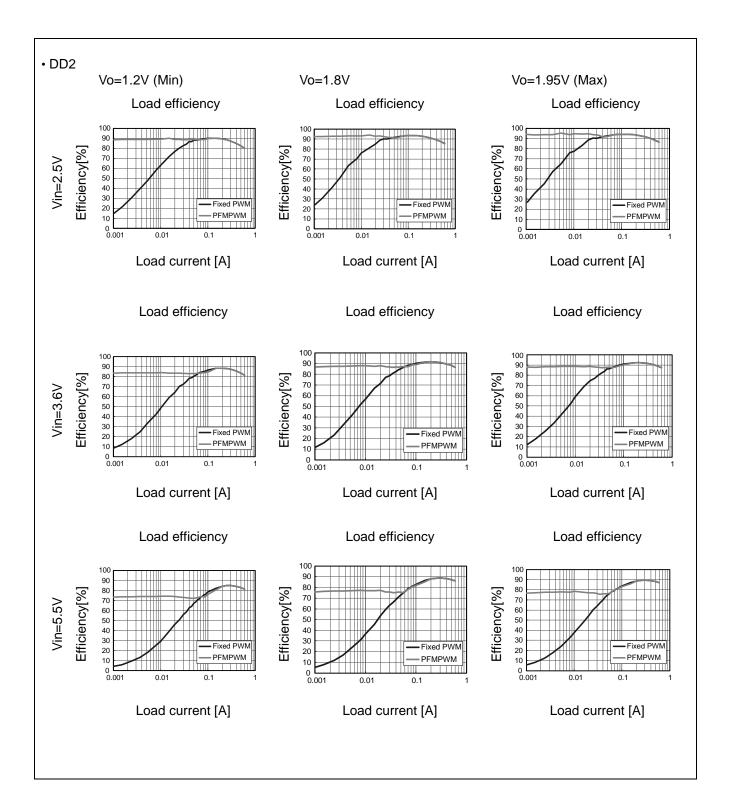
24. Typical Operation Characteristic Measurement Circuit

Part list

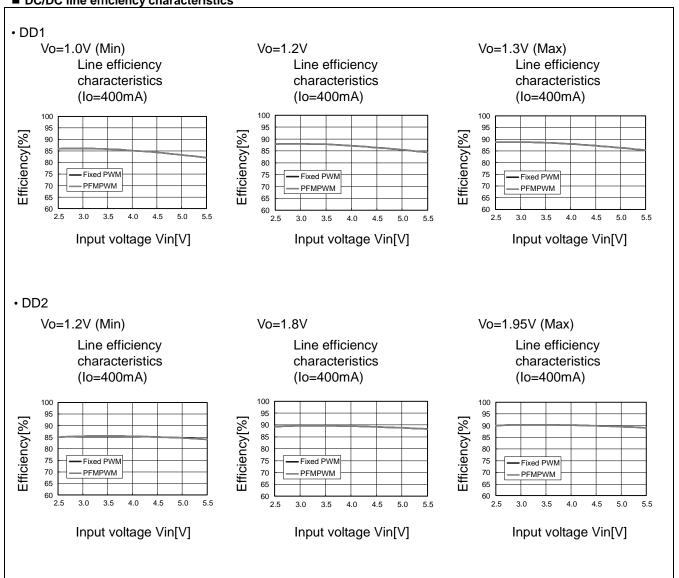

Symbol (Circuit diagram notation)	Parts	Part number	Specifications	Vendor
L1	Metal alloy inductor	1299AS-H-1R5N	1.5µH	токо
L2	Metal alloy inductor	1299AS-H-1R5N	1.5µH	токо
C1	Ceramic Capacitor	C1608X5R1H104K	0.1µF	TDK
C2	Ceramic Capacitor	C1608X5R1H104K	0.1µF	TDK
C3	Ceramic Capacitor	C1608X5R1V475K	4.7µF	TDK
C4	Ceramic Capacitor	C1608X5R1V475K	4.7µF	TDK
C5	Ceramic Capacitor	C1608X5R1V475K	4.7µF	TDK
C6	Ceramic Capacitor	C1608X5R1H104K	0.1µF	TDK
C7	Ceramic Capacitor	C1608X5R1H474K	0.47µF	TDK
C8	Ceramic Capacitor	C1608X5R1V475K	4.7µF	TDK
C9	Ceramic Capacitor	C1608X5R1A106K	10μF	TDK
C10	Ceramic Capacitor	C1608X5R1A106K	10μF	TDK
R1	Resistor	RR0816P-104-D	100kΩ	SSM
R2	Resistor	RR0816P-104-D	100kΩ	SSM
R3	Resistor	RR0816P-104-D	100kΩ	SSM
R4	Resistor	RR0816P-104-D	100kΩ	SSM

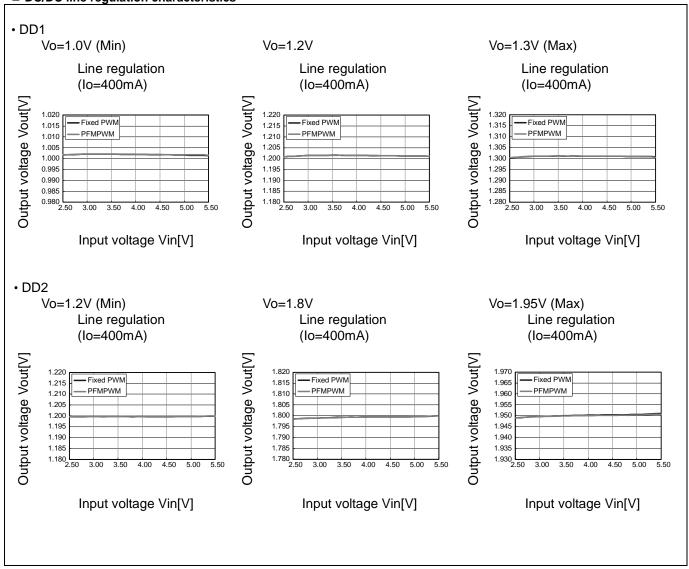

TOKO: TOKO, INC.
TDK: TDK Corporation
SSM: SUSUMU CO., LTD.

Note: The list above is recommended parts.

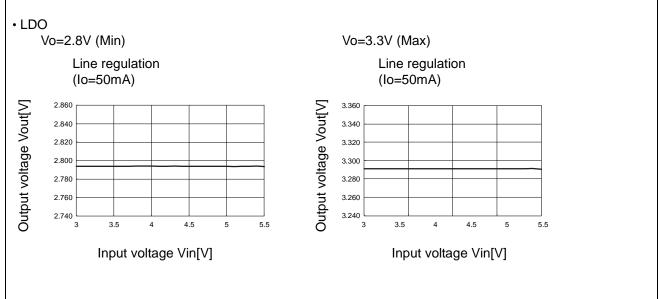


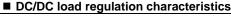
25. Reference Data

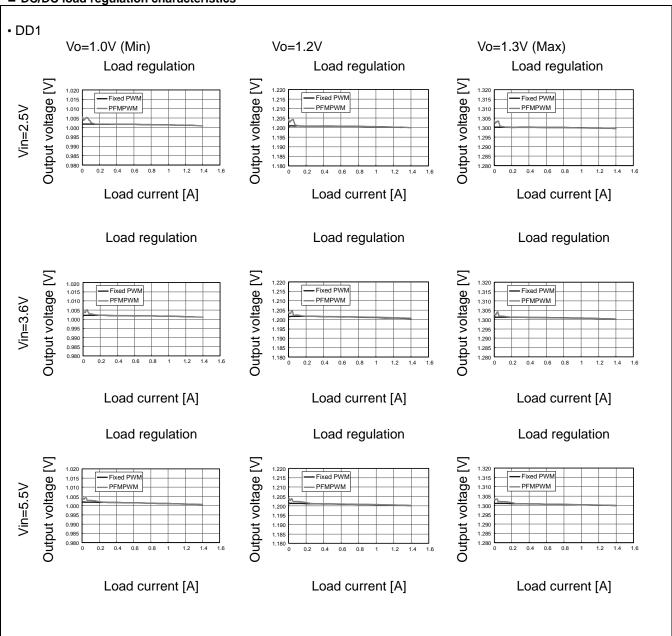


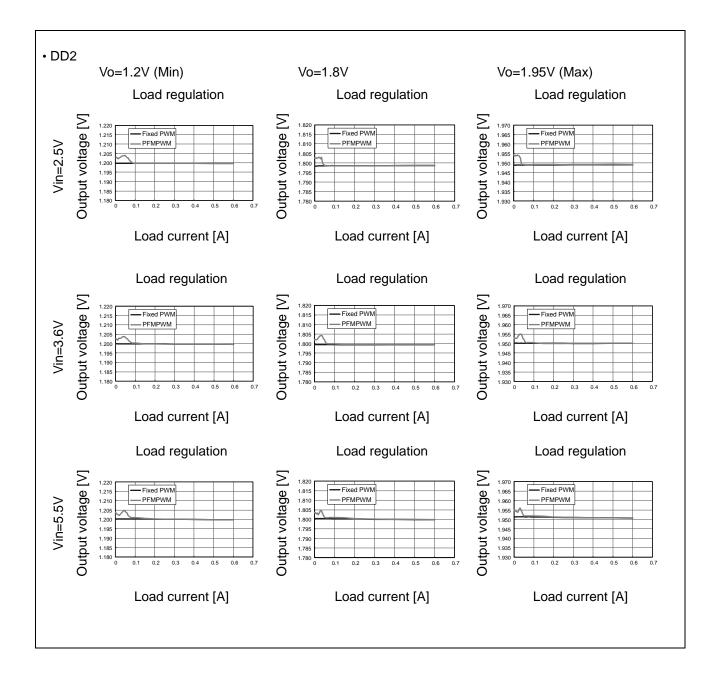


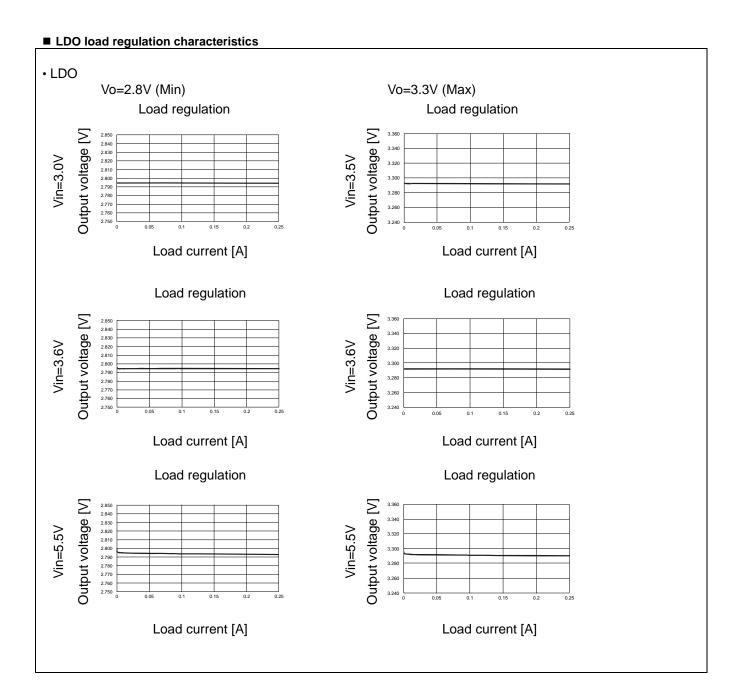
■ DC/DC line efficiency characteristics

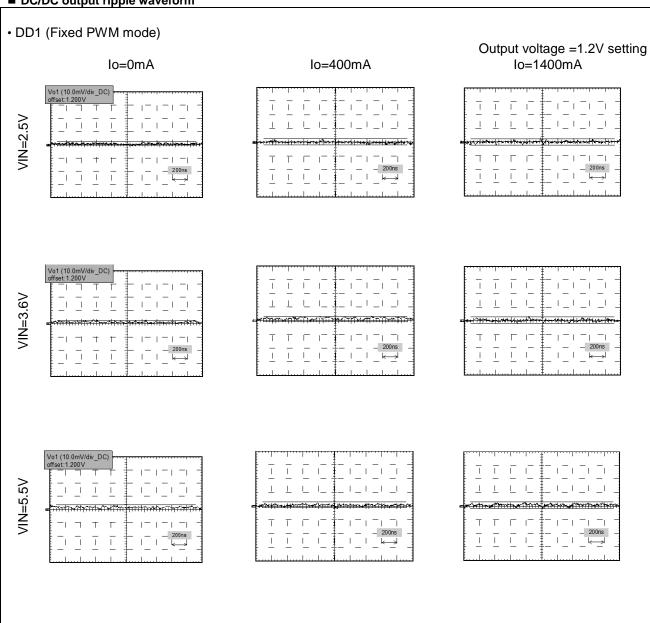


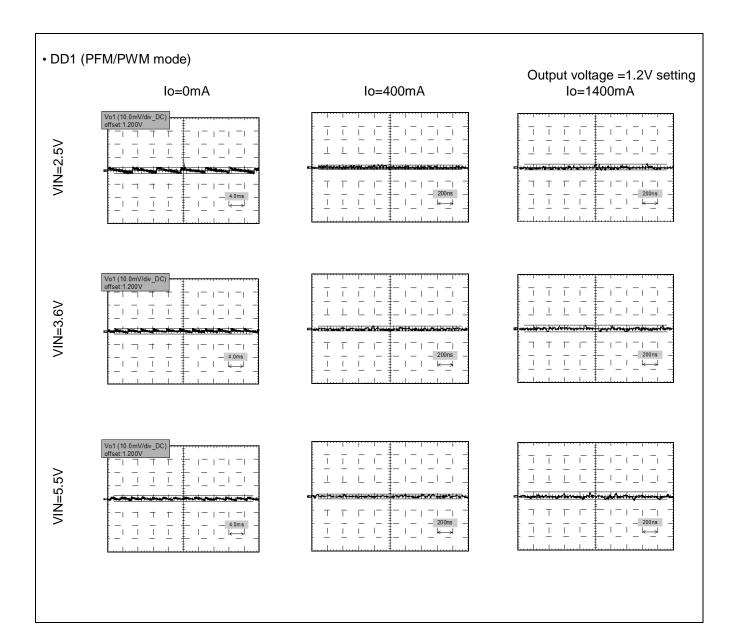


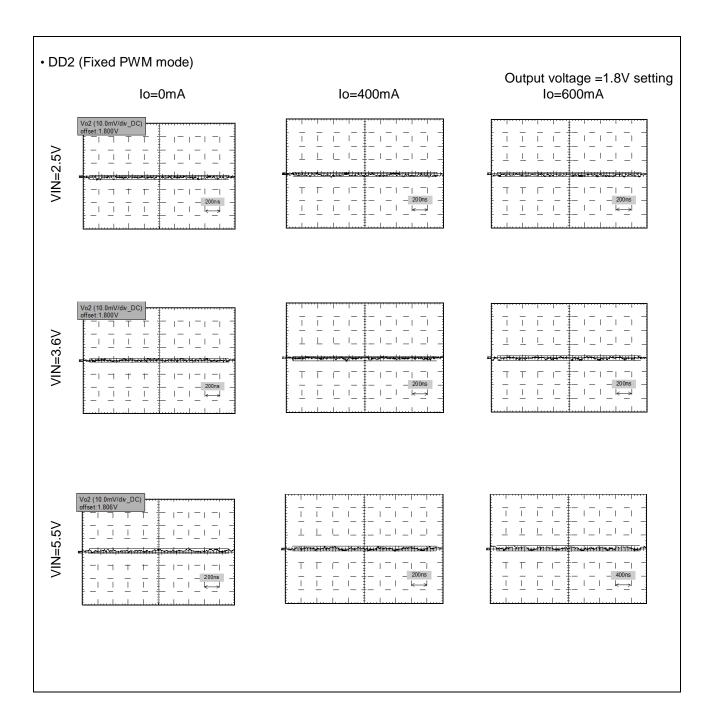


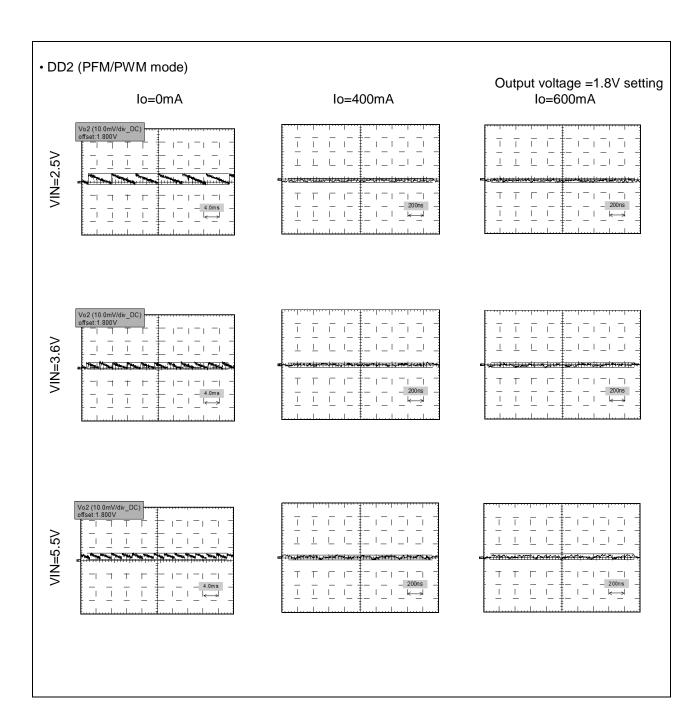


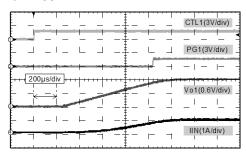


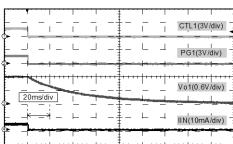





■ DC/DC output ripple waveform

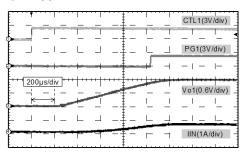


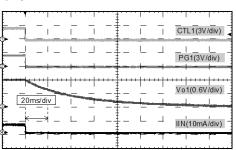



Output voltage =1.2V setting Soft-start setting=0.9ms Fixed PWM mode Control using the external pin (CTL1)

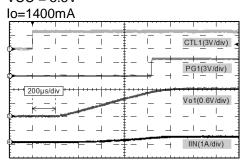
VCC = 2.5V

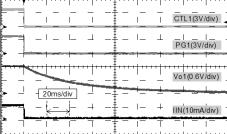
Io=1400mA



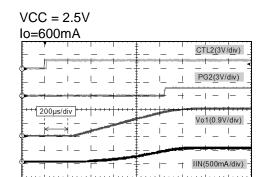


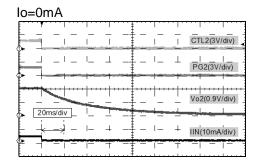
VCC = 3.6V

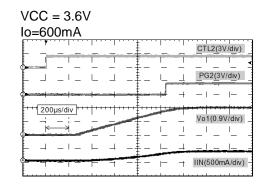

Io=1400mA

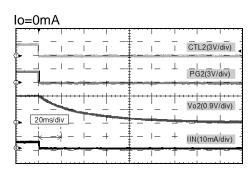

Io=0mA

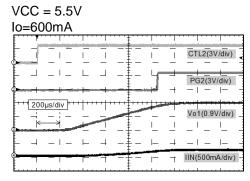
VCC = 5.5V

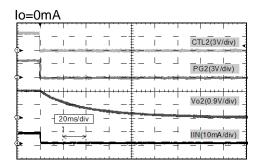

lo=0mA

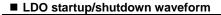


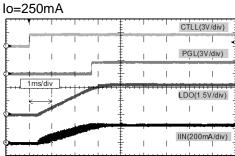


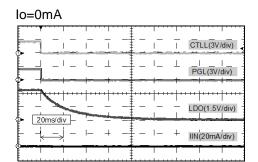


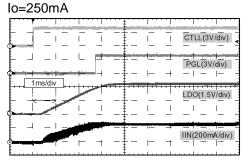

Output voltage =1.8V setting
Soft-start setting=0.9ms
Fixed PWM mode
Control using the external pin (CTL2)

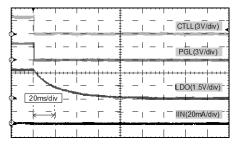


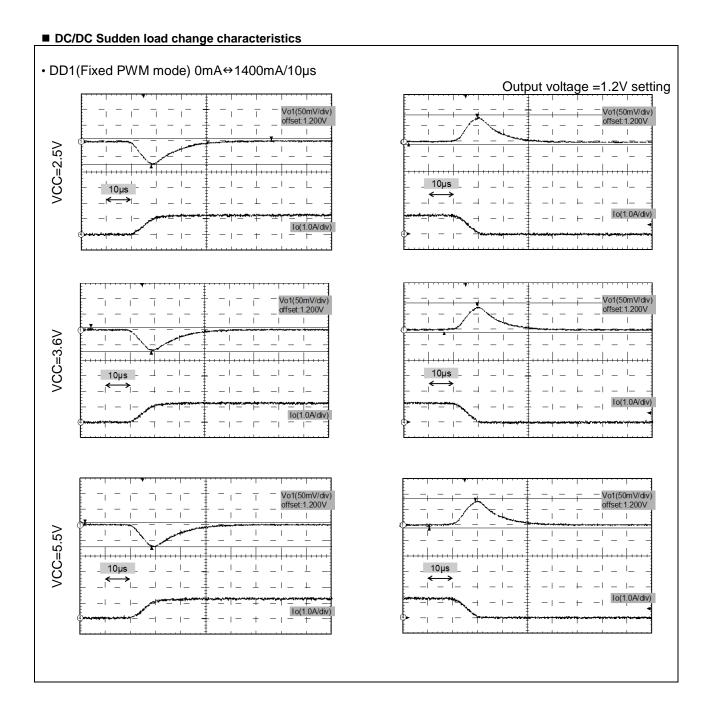


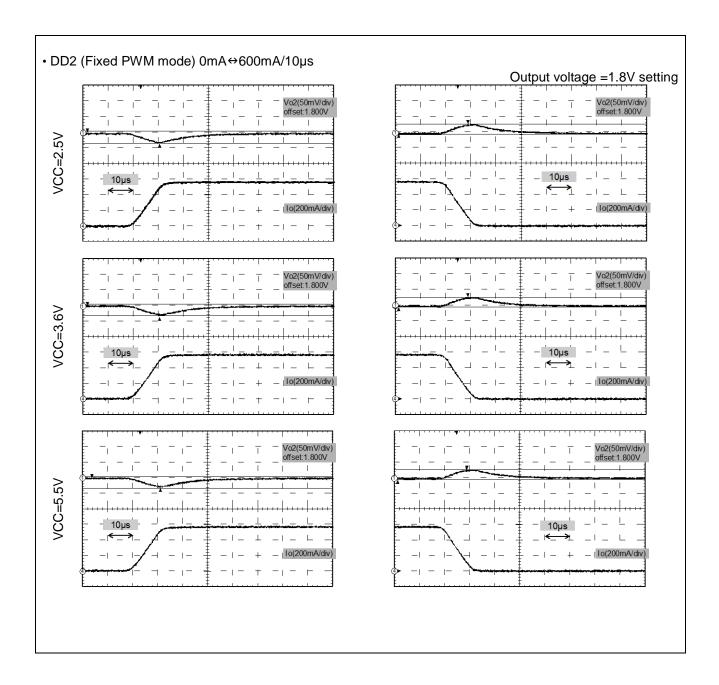


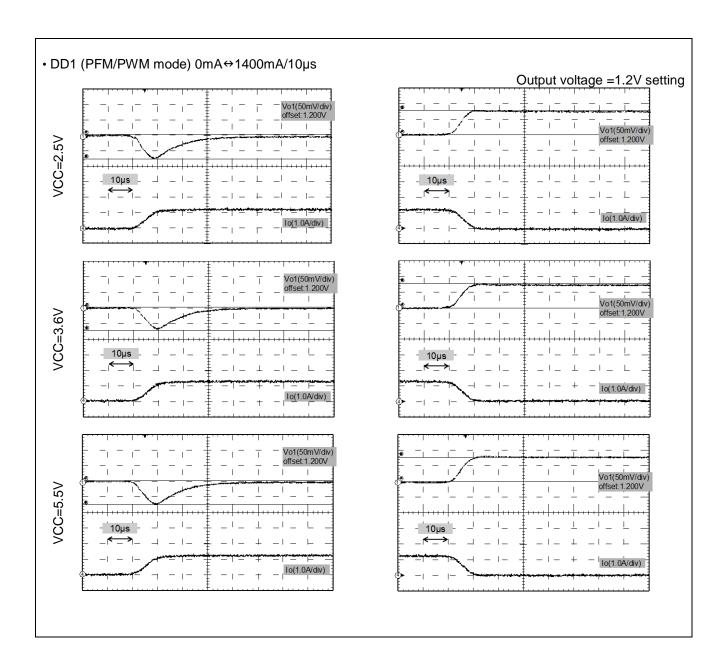


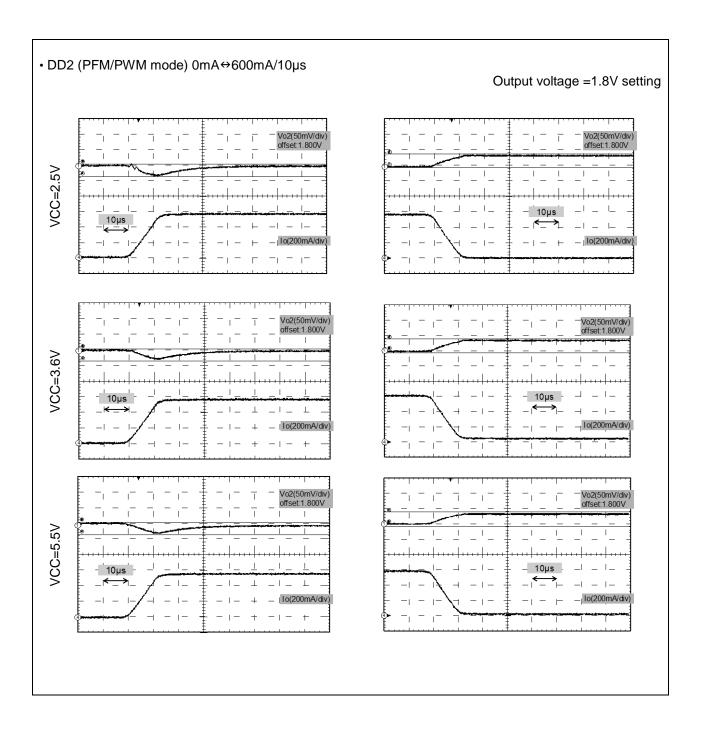

Output voltage =3.3V setting Soft-start setting=2.7ms Control using the external pin (CTLL)

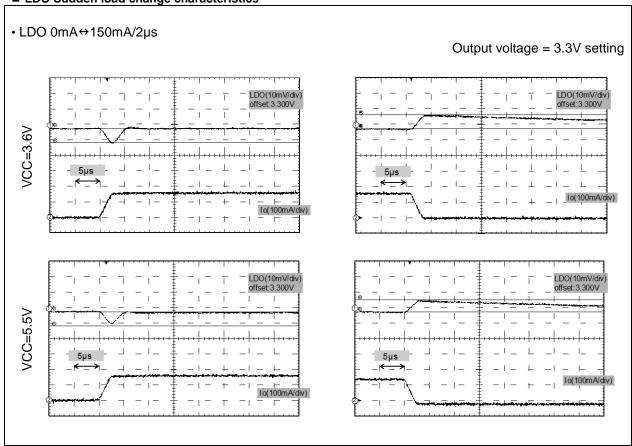


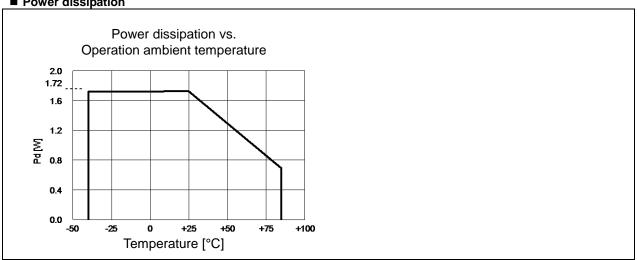

VCC = 5.5V


lo=0mA







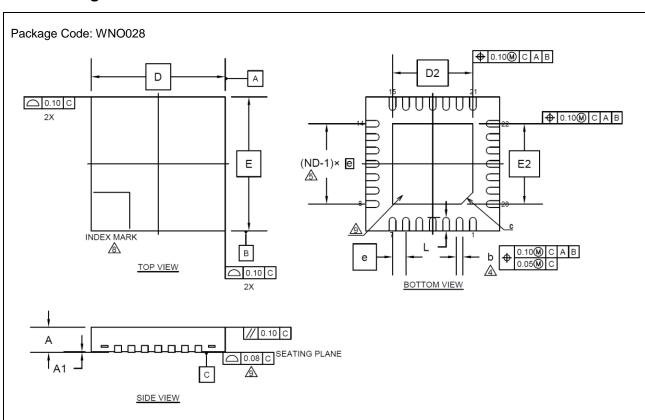


26. Usage Precaution

- 1. Do not configure the IC over the maximum ratings.
 - If the IC is used over the maximum ratings, the LSI may be permanently damaged.
 - It is preferable for the device to be normally operated within the recommended usage conditions. Usage outside of these conditions can have a bad effect on the reliability of the LSI.
- 2. Use the devices within recommended operating conditions.
 - The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device.
 - All of the device's electrical characteristics are warranted when the device is operated within these ranges.
 - Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
 - No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.
- 3. Printed circuit board ground lines should be set up with consideration for common impedance.
- 4. Take appropriate measures against static electricity.
- Containers for semiconductor materials should have anti-static protection or be made of conductive material.
- After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.
- Work platforms, tools, and instruments should be properly grounded.
- Working personnel should be grounded with resistance of 250 k Ω to 1 M Ω in series between body and ground.
- 5. Do not apply negative voltages.
 - The use of negative voltages below -0.3 V may cause the parasitic transistor to be activated on LSI lines, which can cause malfunctions.
- 6. When all channels are operating, the reliability level is designed under the condition that the average ambient temperature Ta=+60°C, the typical input voltage, the typical output voltage and the typical output current condition are used.

Document Number: 002-08407 Rev. *B

27. Ordering Information


Part number	Package	Remarks
MB39C31WQN	28-pin plastic QFN (WNO028)	-

28. Preset Code (MB39C031)

Preset code	DD1 output voltage preset code value	DD2 output voltage preset code value	LDO output voltage preset code value
111	1.00V	1.20V	2.85V
112	1.00V	1.20V	3.30V
121	1.00V	1.35V	2.85V
122	1.00V	1.35V	3.30V
131	1.00V	1.50V	2.85V
132	1.00V	1.50V	3.30V
141	1.00V	1.80V	2.85V
142	1.00V	1.80V	3.30V
211	1.10V	1.20V	2.85V
212	1.10V	1.20V	3.30V
221	1.10V	1.35V	2.85V
222	1.10V	1.35V	3.30V
231	1.10V	1.50V	2.85V
232	1.10V	1.50V	3.30V
241	1.10V	1.80V	2.85V
242	1.10V	1.80V	3.30V
311	1.20V	1.20V	2.85V
312	1.20V	1.20V	3.30V
321	1.20V	1.35V	2.85V
322	1.20V	1.35V	3.30V
331	1.20V	1.50V	2.85V
332	1.20V	1.50V	3.30V
341	1.20V	1.80V	2.85V
342	1.20V	1.80V	3.30V
411	1.30V	1.20V	2.85V
412	1.30V	1.20V	3.30V
421	1.30V	1.35V	2.85V
422	1.30V	1.35V	3.30V
431	1.30V	1.50V	2.85V
432	1.30V	1.50V	3.30V
441	1.30V	1.80V	2.85V
442	1.30V	1.80V	3.30V

29. Package Dimensions

SYMBOL	DIMENSIONS				
STIVIBOL	MIN.	NOM.	MAX.		
Α	_	_	0.80		
A1	0.00		0.05		
D	4.00 BSC				
E	4.00 BSC				
b	0.15	0.20	0.25		
D ₂	2.40 BSC				
E ₂	2.40 BSC				
е	0.40 BSC				
С	0.35 REF				
L	0.35	0.40	0.45		

NOTE

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCINC CONFORMS TO ASME Y14.5-1994.
- 3. N IS THE TOTAL NUMBER OF TERMINALS.
- ⚠ DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP.IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL. THE DIMENSION "b"SHOULD NOT BE MEASURED IN THAT RADIUS AREA.
- AND REFER TO THE NUMBER OF TERMINALS ON D OR E SIDE.
- 6. MAX. PACKAGE WARPAGE IS 0.05mm.
- 7. MAXIMUM ALLOWABLE BURRS IS 0.076mm IN ALL DIRECTIONS.
- A PIN #1 ID ON TOP WILL BE LOCATED WITHIN INDICATED ZONE.
- ⚠ BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
- 10. JEDEC SPECIFICATION NO. REF: N/A

002-15159 Rev. **

Document History

Document Title: MB39C031 2ch Buck DC/DC Converter + 1ch LDO with $\rm I^2C$ Interface and SW FET

Document Number: 002-08407

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	1	TAOA	11/20/2013	Migrated to Cypress and assigned document number 002-08407. No change to document contents or format.
*A	5132453	TAOA	03/08/2016	Updated to Cypress template
*B	5734750	НІХТ	05/18/2017	Updated Pin Assignment: Change the package name from LCC-28P-M70 to WNO028 Updated Ordering Information: Change the package name from LCC-28P-M70 to WNO028 Deleted "EV Board Ordering Information" Deleted "Marking Format (Lead Free Version)" Deleted "Labeling Sample (Lead Free Version)" Deleted "MB39C031 Recommended Conditions Of Moisture Sensitivity Level" Updated Package Dimensions: Updated to Cypress format

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

cypress.com/pmic

Products

Power Management ICs

ARM® Cortex® Microcontrollers cypress.com/arm
Automotive cypress.com/automotive
Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb

Wireless/RF cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries

© Cypress Semiconductor Corporation, 2013-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended of for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems of the redical devices or systems, including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other use where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.