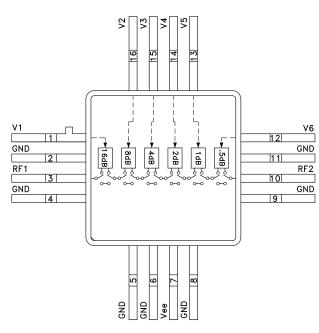


v04.0709


# 0.5dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 3 GHz

# Typical Applications

The HMC424G16 is ideal for:

- Telecom Infrastructure
- Military Radios, Radar & ECM
- Space Applications
- Test Instrumentation

### **Functional Diagram**



### **General Description**

0.5 dB LSB Steps to 31.5 dB

±0.5 to ±0.8 dB Typical Bit Error

16 Lead Hermetic SMT Package

Single Control Line Per Bit

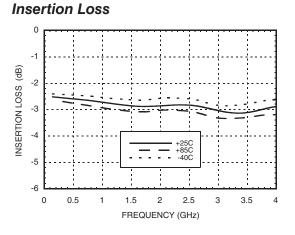
Features

The HMC424G16 is a broadband 6-bit GaAs IC digital attenuator in a 16 lead glass/metal (hermetic) surface mount package. Covering DC to 3 GHz, the insertion loss is less than 3 dB typical. The attenuator bit values are 0.5 (LSB), 1, 2, 4, 8, and 16 dB for a total attenuation of 31.5 dB. Attenuation accuracy is excellent at  $\pm$ 0.5 dB typical step error with an IIP3 of +32 dBm. Six control voltage inputs, toggled between 0 and -5V, are used to select each attenuation state at less than 70  $\mu$ A each. A single Vee bias of -5V allows operation at frequencies down to DC.

### Electrical Specifications, $T_A = +25^{\circ}$ C, With Vee = -5V & VctI = 0/-5V

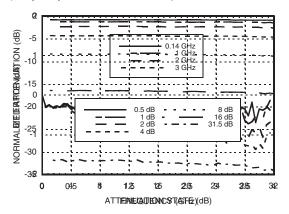
| Parameter                                                                    |                               | Frequency (GHz)               | Min.                                                                 | Тур.     | Max.     | Units      |
|------------------------------------------------------------------------------|-------------------------------|-------------------------------|----------------------------------------------------------------------|----------|----------|------------|
| Insertion Loss                                                               |                               | DC - 3 GHz                    |                                                                      | 3.0      | 3.6      | dB         |
| Attenuation Range                                                            |                               | DC - 3 GHz                    |                                                                      | 31.5     |          | dB         |
| Return Loss (RF1 & RF2, All Atten. States)                                   |                               | DC - 3 GHz                    |                                                                      | 12       |          | dB         |
| Attenuation Accuracy: (Referenced to Insertion Loss)                         | All States<br>All States      | DC - 2.0 GHz<br>2.0 - 3.0 GHz | ± 0.4 + 4% of Atten. Setting Max<br>± 0.5 + 5% of Atten. Setting Max |          | dB<br>dB |            |
| Input Power for 0.1 dB Compression                                           |                               | 1.0 - 3.0 GHz                 |                                                                      | 22       |          | dBm        |
| Input Third Order Intercept Point<br>(Two-Tone Input Power= 0 dBm Each Tone) | REF State<br>All Other States | 1.0 - 3.0 GHz                 |                                                                      | 46<br>32 |          | dBm<br>dBm |
| Switching Characteristics                                                    |                               | DC - 3 GHz                    |                                                                      |          |          |            |
| tRISE, tFALL (10/90% RF)<br>tON/tOFF (50% CTL to 10/90% RF)                  |                               |                               |                                                                      | 30<br>50 |          | ns<br>ns   |

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

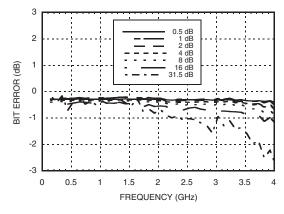

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

Downloaded from Arrow.com.



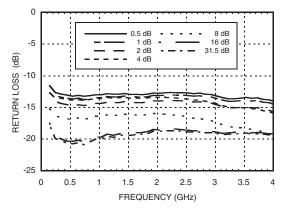

v04.0709

# 0.5dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 3 GHz

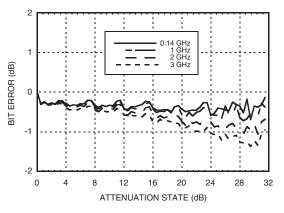



### Normalized Attenuation

(Only Major States are Shown)

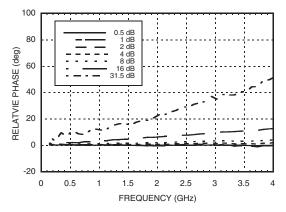





Return Loss RF1, RF2

(Only Major States are Shown)




### Bit Error vs. Attenuation State



### Relative Phase vs. Frequency

(Only Major States are Shown)



Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D



Worst Case Step Error

v04.0709

# 0.5dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 3 GHz

# Between Successive Attenuation States

### Truth Table

| Control Voltage Input                                                                                                |            |            |            |            | Attenuation  |                    |  |
|----------------------------------------------------------------------------------------------------------------------|------------|------------|------------|------------|--------------|--------------------|--|
| V1<br>16 dB                                                                                                          | V2<br>8 dB | V3<br>4 dB | V4<br>2 dB | V5<br>1 dB | V6<br>0.5 dB | State<br>RF1 - RF2 |  |
| Low                                                                                                                  | Low        | Low        | Low        | Low        | Low          | Reference<br>I.L.  |  |
| Low                                                                                                                  | Low        | Low        | Low        | Low        | High         | 0.5 dB             |  |
| Low                                                                                                                  | Low        | Low        | Low        | High       | Low          | 1 dB               |  |
| Low                                                                                                                  | Low        | Low        | High       | Low        | Low          | 2 dB               |  |
| Low                                                                                                                  | Low        | High       | Low        | Low        | Low          | 4 dB               |  |
| Low                                                                                                                  | High       | Low        | Low        | Low        | Low          | 8 dB               |  |
| High                                                                                                                 | Low        | Low        | Low        | Low        | Low          | 16 dB              |  |
| High                                                                                                                 | High       | High       | High       | High       | High         | 31.5 dB            |  |
| Any Combination of the above states will provide an attenuation approximately equal to the sum of the bits selected. |            |            |            |            |              |                    |  |

### **Bias Voltage & Current**

| Vee Range= -5 Vdc ± 10% |                 |   |  |  |
|-------------------------|-----------------|---|--|--|
| Vee (VDC)               | lee (Max.) (mA) |   |  |  |
| -5                      | 2               | 5 |  |  |

### **Control Voltage**

| State | Bias Condition          |  |
|-------|-------------------------|--|
| Low   | 0 to -3V @ 35 µA Typ.   |  |
| High  | -5 to -4.2V @ 5 μΑ Τyp. |  |

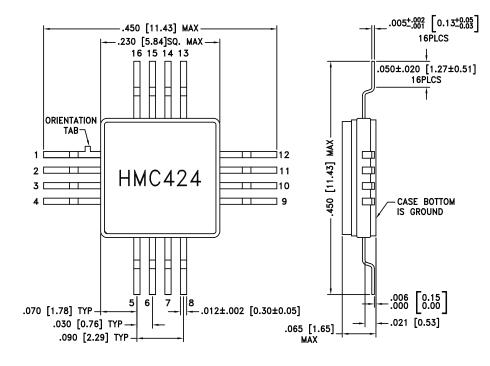
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Downloaded from Arrow.com.



v04.0709

# 0.5dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 3 GHz


### Absolute Maximum Ratings

| Control Voltage (V1 to V6)      | Vee - 0.5 Vdc   |
|---------------------------------|-----------------|
| Bias Voltage (Vee)              | -7 Vdc          |
| Channel Temperature             | 150 °C          |
| Thermal Resistance              | 330 °C/W        |
| Storage Temperature             | -65 to + 150 °C |
| Operating Temperature           | -55 to +85 °C   |
| RF Input Power (0.5 - 13.0 GHz) | +25 dBm         |



ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

### **Outline Drawing**



NOTES:

1. PACKAGE MATERIAL: ALUMINA LOADED BOROSILICATE GLASS.

2. LEADS, BASE, COVER MATEIRAL: KOVARTM (#7052 CORNING).

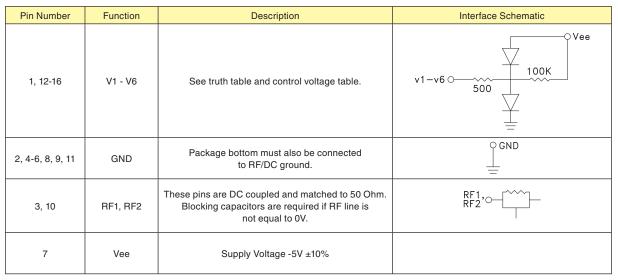
3. PLATING: ELECTROLYTIC GOLD 50 MICROINCHES MIN.,

- OVER ELECTROLYTIC NICKEL 75 MICROINCHES MIN.
- 4. ALL DIMENSIONS ARE IN INCHES [MILLIMETERS].

5. TOLERANCES: 0.005 [.013] UNLESS OTHERWISE SPECIFIED.

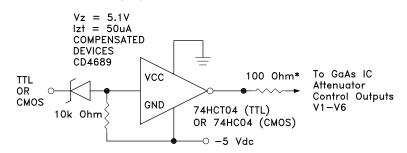
- 6. CHARACTERS TO BE HELVETICA MEDIUM .030 HIGH,
- BLACK INK, LOCATED APPROX. AS SHOWN.
- 7. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D



v04.0709


# 0.5dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 3 GHz

### **Pin Descriptions**



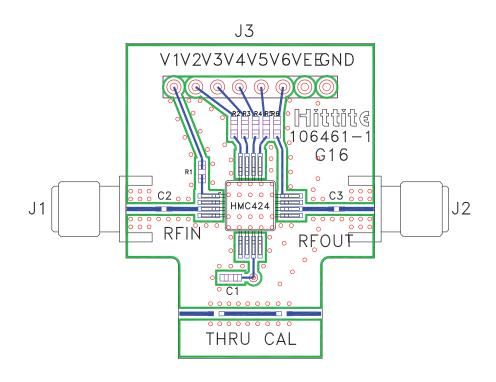
### **Suggested Driver Circuit**

(One Circuit Required Per Bit Control Input)



Simple driver using inexpensive standard logic ICs provides fast switching using minimum DC current. \* Recommended value to suppress unwanted RF signals at V1 - V6 control lines.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


Downloaded from Arrow.com.



v04.0709

# 0.5dB LSB GaAs MMIC 6-BIT DIGITAL ATTENUATOR, DC - 3 GHz

### **Evaluation PCB**



### List of Materials for Evaluation PCB 106566 [1]

| Item    | Description                  |
|---------|------------------------------|
| J1 - J2 | PCB Mount SMA Connector      |
| J3      | 8 Pin DC Connector           |
| C1      | 0.01 μF Capacitor, 0603 Pkg. |
| C2, C3  | 100 pF Capacitor, 0402 Pkg.  |
| R1 - R6 | 100 Ohm Resistor, 0603 Pkg.  |
| U1      | HMC424G16 Digital Attenuator |
| PCB [2] | 106461 Evaluation PCB        |

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and package bottom should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.