feATURES

- Instrumentation Front End with 120dB CMRR
- Precise, Charge-Balanced Switching
- Operates from 3 V to 18 V
- Internal or External Clock
- Operates up to 5 MHz Clock Rate
- Low Power
- Two Independent Sections with One Clock

APPLICATIONS

- Precision Instrumentation Amplifiers
- Ultra Precision Voltage Inverters, Multipliers and Dividers
- V-F and F-V Converters
- Sample-and-Hold
- Switched Capacitor Filters

DESCRIPTIOn

The LTC ${ }^{\circledR} 1043$ is a monolithic, charge-balanced, dual switched capacitor instrumentation building block. A pair of switches alternately connects an external capacitor to an input voltage and then connects the charged capacitor across an output port. The internal switches have a break-before-make action. An internal clock is provided and its frequency can be adjusted with an external capacitor. The LTC1043 can also bedriven with an external CMOS clock.

The LTC1043, when used with low clock frequencies, provides ultra precision DC functions without requiring precise external components. Such functions are differential voltage to single-ended conversion, voltage inversion, voltage multiplication and division by 2, 3, 4,5, etc. The LTC1043 can also be used for precise V-F and F-V circuits without trimming, and it is also a building block for switched capacitor filters, oscillators and modulators.
The LTC1043 is manufactured using Linear Technology's enhanced LTCMOS ${ }^{\text {TT }}$ silicon gate process.
$\overline{\boldsymbol{\beta}}$, LTC and LT are registered trademarks of Linear Technology Corporation. LTCMOS is a trademark of Linear Technology Corporation.

TYPICAL APPLICATION

CMRR vs Frequency

LTC1043• TA02

ABSOLUTE MAXIMUM RATINGS

(Note 1)
Supply Voltage ... 18V
Input Voltage at Any Pin $-0.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}^{+}+0.3 \mathrm{~V}$
Operating Temperature Range
LTC1043C $-40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C}$
LTC1043M (OBSOLETE)............. $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec).................. $300^{\circ} \mathrm{C}$

PACKAGE/ORDER InFORMATION

	ORDER PART NUMBER
$\mathrm{CB}^{+}{ }^{+}$	LTC1043CN
$\mathrm{CB}^{-1} 3$	
$\mathrm{v}^{+} 4{ }^{-15} 54 \mathrm{~B}$	
S2B 5 5 14 S4A	
S1B 6 - 13 S3A	
S1A 7 12 CA^{-}	
S2a 8 - $11 \mathrm{Ca}^{+}$	
nc 9 10 SHA	
$\begin{array}{cc}\text { N PACKAGE } & \text { SW PACKAGE } \\ \text { 18-LEAD PDIP } & \text { 18-LEAD PLASTIC SO }\end{array}$	
$T_{J M A X}=100^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=100^{\circ} \mathrm{C}$ W PACKAGE (N) $\mathrm{T}_{\mathrm{Jmax}}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JJA}}=85^{\circ} \mathrm{C} / \mathrm{W}$ PACKAGE (SW)	
D PACKAGE 18-LEAD SIDE BRAZED (HERMETIC)	LTC1043MD
OBSOLETE PACKAGE Consider the N18 Package as an Alternate Source	Lrous P0001

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS
The • denotes specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}^{+}=10 \mathrm{~V}, \mathrm{~V}^{-}=\mathrm{OV}$, LTC1043M operates from $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$; LTC1043C operates from $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		LTC1043M			LTC1043C			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
I_{5}	Power Supply Current	Pin 16 Connected High or Low	\bullet		0.25	$\begin{aligned} & 0.4 \\ & 0.7 \end{aligned}$		0.25	$\begin{aligned} & \hline 0.4 \\ & 0.7 \end{aligned}$	mA mA
		Cosc (Pin 16 to V^{-}) $=100 \mathrm{pF}$	\bullet		0.4	$\begin{gathered} 0.65 \\ 1 \end{gathered}$		0.4	$\begin{gathered} 0.65 \\ 1 \end{gathered}$	mA mA
1	OFF Leakage Current	Any Switch, Test Circuit 1 (Note 2)	\bullet		$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 100 \\ & 500 \end{aligned}$		6	100	pA nA
Ron	ON Resistance	$\begin{aligned} & \text { Test Circuit } 2, V_{I N}=7 \mathrm{~V}, 1= \pm 0.5 \mathrm{~mA} \\ & \mathrm{~V}^{+}=10 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V} \end{aligned}$	\bullet		240	$\begin{aligned} & 400 \\ & 700 \end{aligned}$		240	$\begin{aligned} & 400 \\ & 700 \end{aligned}$	Ω
Ron	ON Resistance	$\begin{aligned} & \text { Test Circuit } 2, \mathrm{~V}_{\text {IN }}=3.1 \mathrm{~V}, 1= \pm 0.5 \mathrm{~mA} \\ & \mathrm{~V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V} \end{aligned}$	\bullet		400	$\begin{gathered} 700 \\ 1 \end{gathered}$		400	$\begin{gathered} 700 \\ 1 \end{gathered}$	Ω $\mathrm{k} \Omega$
$\mathrm{f}_{\text {OSC }}$	Internal Oscillator Frequency	$\begin{aligned} & \text { Cosc }\left(\text { Pin } 16 \text { to } \mathrm{V}^{-}\right)=0 \mathrm{pF} \\ & \text { Coss }\left(\text { Pin } 16 \text { to } \mathrm{V}^{-}\right)=100 \mathrm{pF} \\ & \text { Test Circuit } 3 \end{aligned}$	\bullet	$\begin{aligned} & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 185 \\ & 34 \end{aligned}$	$\begin{aligned} & 50 \\ & 75 \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \end{aligned}$	185 34	$\begin{aligned} & 50 \\ & 75 \end{aligned}$	kHz kHz kHz
Iosc	Pin Source or Sink Current	Pin 16 at V^{+}or V^{-}	\bullet			$\begin{aligned} & \hline 70 \\ & 100 \end{aligned}$		40	$\begin{gathered} \hline 70 \\ 100 \end{gathered}$	μA μA
	Break-Before-Make Time				25			25		ns
	Clock to Switching Delay	Cosc Pin Externally Driven			75			75		ns
f_{M}	Max External CLK Frequency	Cosc Pin Externally Driven with CMOS Levels			5			5		MHz
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & \mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=-5 \mathrm{~V},-5 \mathrm{~V}<\mathrm{V}_{\mathrm{CM}}<5 \mathrm{~V} \\ & \mathrm{DC} \text { to } 400 \mathrm{~Hz} \end{aligned}$			120			120		dB

Note 1: Absolute Maximum Ratings are those values beyond which the life
Note 2: OFF leakage current is guaranteed but not tested at $25^{\circ} \mathrm{C}$. of a device may be impaired.

TYPICAL PERFORMARCE CHARACTERISTICS
 (Test Circuits 2 through 4)

TYPICAL PERFORMARCE CHARACTERISTICS (Test Circuils 2 through 4)

Oscillator Frequency, fosc vs Ambient Temperature, T_{A}

Cosc Pin $I_{\text {SINK, }}$, Isource
vs Supply Voltage

LTC1043• TPC11

Break-Before-Make Time, $\mathrm{t}_{\mathrm{NOV}}$, vs Supply Voltage

BLOCK DIAGRAM

THE CHARGE BALANCING CIRCUITRY SAMPLES THE VOLTAGE AT S3 WITH RESPECT TO S4 (PIN 16 HIGH) AND INJECTS A SMALL CHARGE AT THE C ${ }^{+}$PIN (PIN 16 LOW).
THIS BOOSTS THE CMRR WHEN THE LTC1043 IS USED AS AN INSTRUMENTATION AMPLIFIER FRONT END. FOR MINIMUM CHARGE INJECTION IN OTHER TYPES OF APPLICATIONS, S3A AND S3B SHOULD BE GROUNDED

TEST CIRCUITS

Test Circuit 1. Leakage Current Test

Test Circuit 3. Oscillator Frequency, fosc

Test Circuit 2. RoN Test

Test Circuit 4. CMRR Test

APPLICATIONS INFORMATION

Common Mode Rejection Ratio (CMRR)

The LTC1043, when used as a differential to single-ended converter rejects common mode signals and preserves differential voltages (Figure 1). Unlike other techniques, the LTC1043's CMRR does not degrade with increasing common mode voltage frequency. During the sampling mode, the impedance of Pins 2,3 (and 11, 12) should be reasonably balanced, otherwise, common mode signals will appear differentially. The value of the CMRR depends on the value of the sampling and holding capacitors $\left(C_{S}, C_{H}\right)$ and on the sampling frequency. Since the common mode voltages are not sampled, the common mode signal frequency can well exceed the sampling frequency without experiencing aliasing phenomena. The CMRR of Figure 1 is measured by

$\mathrm{C}_{\mathrm{S}}, \mathrm{C}_{\mathrm{H}}$ ARE MYLAR OR POLYSTRENE

LTC1043•A101

Figure 1. Differential to Single-Ended Converter

APPLICATIONS INFORMATION

shorting Pins 7 and 13 and by observing, with a precision DVM, the change of the voltage across C_{H} with respect to an input CM voltage variation. During the sampling and holding mode, charges are being transferred and minute voltage transients will appear across the holding capacitor. Although the R_{ON} on the switches is low enough to allow fast settling, as the sampling frequency increases, the rate of charge transfer increases and the average voltage measured with a DVM across it will increase proportionally; this causes the CMRR of the sampled data system, as seen by a "continuous" instrument (DVM), to decrease (Figure 2).

Switch Charge Injection

Figure 3 shows one out of the eight switches of the LTC1043, configured as a basic sample-and-hold circuit. When the switch opens, a "hold step" is observed and its magnitude depends on the value of the input voltage. Figure 4 shows charge injected into the hold capacitor. For instance, a 2pCb of charge injected into a $0.01 \mu \mathrm{~F}$ capacitor causes a $200 \mu \mathrm{~V}$ hold step. As shown in Figure 4, there is a predictable and repeatable charge injection cancellation when the input voltage is close to half the supply voltage of the LTC1043. This is a unique feature of this product, containing charge-balanced switches fabricated with a self-aligning gate CMOS process. Any switch of the LTC1043, when powered with symmetrical dual supplies, will sample-and-hold small signals around ground without any significant error.

Shielding the Sampling Capacitor for Very High CMRR

Internal or external parasitic capacitors from the C^{+}pin(s) to ground affect the CMRR of the LTC1043 (Figure 1). The common mode error due to the internal junction capacitances of the ${ }^{+} \operatorname{Pin}(\mathrm{s}) 2$ and 11 is cancelled through internal circuitry. The ${ }^{+}$pin, therefore, should be used as the top plate of the sampling capacitor. The interpin capacitance between pin 2 and dummy Pin 1 (11 and 10) appears in parallel with the sampling capacitor so it does not degrade the CMRR. A shield placed underneath the sampling capacitor and connected to either Pin 1 or 3 helps to boost the CMRR in excess of 120dB (Figure 5).

Excessive external parasitic capacitance between the C^{-} pins and ground indirectly degrades CMRR; this becomes visible especially when the LTC1043 is used with clock frequencies above 2 kHz . Because of this, if a shield is used, the parasitic capacitance between the shield and circuit ground should be minimized.
It is recommended that the outer plate of the sampling capacitor be connected to the C^{-}pin(s).

Input Pins, SCR Sensitivity

An internal 60Ω resistor is connected in series with the input of the switches (Pins $5,6,7,8,13,14,15,18$) and it is included in the $\mathrm{R}_{0 \mathrm{~N}}$ specification. When the input voltage exceeds the power supply by a diode drop, current will flow into the input pin(s). The LTC1043 will not latch until the input current reaches $2 \mathrm{~mA}-3 \mathrm{~mA}$. The device will

LTC1043 - A102
Figure 2. CMRR vs Sampling Frequency

Figure 3

APPLICATIONS InFORMATION

recover from the latch mode when the input drops 3 V to 4 V below the voltage value which caused the latch. For instance, if an external resistor of 200Ω is connected in series with an input pin, the input can be taken 1.3 V above the supply without latching the IC. The same applies for the C^{+}and C^{-}pins.

$\mathrm{C}_{\text {osc }}$ Pin (16), Figure 6

The Cosc pin can be used with an external capacitor, Cosc, connected from Pin 16 to Pin 17, to modify the internal oscillator frequency. If Pin 16 is floating, the internal 24 pF capacitor, plus any external interpin capacitance, set the oscillator frequency around 190 kHz with $\pm 5 \mathrm{~V}$ supply. The typical performance characteristics curves provide the necessary information to set the oscillator frequency for various power supply ranges. Pin 16 can also be driven
with an external clock to override the internal oscillator. Although standard 7400 series CMOS gates do not guarantee CMOS levels with the current source and sink requirements of Pin 16, they will in reality drive the Cosc pin. CMOS gates conforming to standard B series output drive have the appropriate voltage levels and more than enough output current to simultaneously drive several LTC1043 Cosc pins. The typical trip levels of the Schmitt trigger (Figure 6) are given below.

SUPPLY	TRIP LEVELS
$\mathrm{V}^{+}=5 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{H}}=3.4 \mathrm{~V} \mathrm{~V}_{\mathrm{L}}=1.35 \mathrm{~V}$
$\mathrm{~V}^{+}=10 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{H}}=6.5 \mathrm{~V} \mathrm{~V}_{\mathrm{L}}=2.8 \mathrm{~V}$
$\mathrm{~V}^{+}=15 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{H}}=9.5 \mathrm{VV}_{\mathrm{L}}=4.1 \mathrm{~V}$

Figure 4. Individual Switch Charge Injection vs Input Voltage

Figure 5. Printed Circuit Board Layout Showing Shielding the Sampling Capacitor

Figure 6. Internal Oscillator

TYPICAL APPLICATIONS

Divide by 2
 $0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}^{+}$ $3 \leq \mathrm{V}+\leq 18 \mathrm{~V}$

Multiply by 2

$\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {IN }} \pm 5 \mathrm{ppm}$
$0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}^{+} / 2$
$3 \leq V^{+} \leq 18 \mathrm{~V}$

Precision Multiply by 4

Ultra Precision Voltage Inverter

Divide by 3

TYPICAL APPLICATIONS

Divide by 4

$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {IN }} / 4 \pm 5 \mathrm{ppm}$
TTC1043•A07
0.005% V/F Converter

0.01\% Analog Multiplier

LTC1043

TYPICAL APPLICATIONS

Single 5V Supply, Ultra Precision Instrumentation Amplifier

Voltage Controlled Current Source with Ground Referred Input and Output

Precision Instrumentation Amplifier

TYPICAL APPLICATIONS

Lock-In Amplifier (= Extremely Narrow-Band Amplifier)

50MHz Termal RMS/DC Converter

LTC1043

TYPICAL APPLICATIONS

Quad Single 5V Supply, Low Hold Step, Sample-and-Hold

Single Supply Precision Linearized Platinum RTD Signal Conditioner

TYPICAL APPLICATIONS

0.005\% F/N Converter

High Frequency Clock Tunable Bandpass Filter

LTC 1043

TYPICAL APPLICATIONS

Frequency-Controlled Gain Amplifier

Relative Humidity Sensor Signal Conditioner

TYPICAL APPLICATIONS

Linear Variable Differential Transformer (LVDT), Signal Conditioner

Precision Current Sensing in Supply Rails

PACKAGE DESCRIPTION

N Package

18-Lead PDIP (Narrow . 300 Inch)
(Reference LTC DWG \# 05-08-1510)

1. DIMENSIONS ARE $\frac{\text { INCHES }}{\text { MILIMETERS }}$

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED . 010 INCH (0.254 mm)

SW Package

18-Lead Plastic Small Outline (Wide . 300 Inch)
(Reference LTC DWG \# 05-08-1620)

