
BOURNS®

- Rugged Epitaxial Planar Construction
- 10 A Continuous Collector Current
- Operating Characteristics Fully Guaranteed at 100°C
- t_{xo} typically 320 ns, I_C = 10 A

This series is obsolete and not recommended for new designs.

Pin 2 is in electrical contact with the mounting base.

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT		
	TIPL790		150	v	
Collector-base voltage ($I_E = 0$)	TIPL790A	Сво	200	v	
Collector emitter voltage $(V_{ij} = 0)$	TIPL790	Y a	150	V	
Collector-emitter voltage (V _{BE} = 0)	TIPL790A	V _{CES}	200		
Collector-emitter voltage $(I_B = 0)$	TIPL790	V	120	V	
	TIPL790A	V _{CEO}	150		
Emitter-base voltage		V _{EBO}	8	V	
Continuous collector current		Ι _C	10	A	
Peak collector current (see Note 1)		I _{CM}	15	Α	
Continuous device dissipation at (or below) 25°C case temperature		P _{tot}	70	W	
Operating junction temperature range		Тj	-65 to +150	°C	
Storage temperature range		T _{stg}	-65 to +150	°C	

NOTE 1: This value applies for $t_p \le 10$ ms, duty cycle $\le 2\%$.

PRODUCT INFORMATION

TIPL790, TIPL790A NPN SILICON POWER DARLINGTONS

BOURNS®

electrical characteristics at 25°C case temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	ТҮР	MAX	UNIT	
V _{CEO(sus)}	Collector-emitter sustaining voltage	l _C = 100 mA	L = 25 mH	(see Note 2)	TIPL790 TIPL790A	120 150			V
V _{CBO}	Collector-base breakdown voltage	l _C = 1 mA		(see Note 3)	TIPL790 TIPL790A	150 200			V
I _{CES}	Collector-emitter cut-off current	$V_{CE} = 150 V$ $V_{CE} = 200 V$ $V_{CE} = 150 V$ $V_{CE} = 200 V$	$V_{BE} = 0$ $V_{BE} = 0$ $V_{BE} = 0$ $V_{BE} = 0$	T _C = 100°C T _C = 100°C	TIPL790 TIPL790A TIPL790 TIPL790A			0.05 0.05 1 1	mA
I _{CEV}	Collector cut-off current	V _{CE} = 150 V V _{CE} = 200 V	1.5 < V _{EB} <8 V		TIPL790 TIPL790A			50 50	μA
I _{CEO}	Collector cut-off current	V _{CE} = 120 V V _{CE} = 150 V	I _B = 0 I _B = 0		TIPL790 TIPL790A			50 50	μA
I _{EBO}	Emitter cut-off current	V _{EB} = 5 V	I _C = 0					4	mA
h _{FE}	Forward current transfer ratio	V _{CE} = 5 V	I _C = 0.5 A	(see Notes 3 ar	nd 4)	60		500	
V _{CE(sat)}	Collector-emitter saturation voltage	$I_{B} = 20 \text{ mA}$ $I_{B} = 30 \text{ mA}$ $I_{B} = 50 \text{ mA}$ $I_{B} = 50 \text{ mA}$	$I_{C} = 4 A$ $I_{C} = 7 A$ $I_{C} = 10 A$ $I_{C} = 10 A$	(see Notes 3 ar T _C = 100°C	nd 4)			1.2 1.5 2.0 2.0	V
V _{BE(sat)}	Base-emitter saturation voltage	$I_{B} = 20 \text{ mA}$ $I_{B} = 30 \text{ mA}$ $I_{B} = 50 \text{ mA}$ $I_{B} = 50 \text{ mA}$	$I_{C} = 4 A$ $I_{C} = 7 A$ $I_{C} = 10 A$ $I_{C} = 10 A$	(see Notes 3 ar T _C = 100°C	nd 4)			1.8 1.9 2.2 2.1	v
V_{EC}	Parallel diode forward voltage	I _E = 10 A	$I_{\rm B} = 0$					3	V
f _t	Current gain bandwidth product	V _{CE} = 10 V	I _C = 0.5 A	f = 1 MHz	(see Note 5)		10		MHz
C _{ob}	Output capacitance	$V_{CB} = 20 V$	$I_E = 0$	f = 0.1 MHz			90		pF

NOTES: 2. Inductive loop switching measurement.

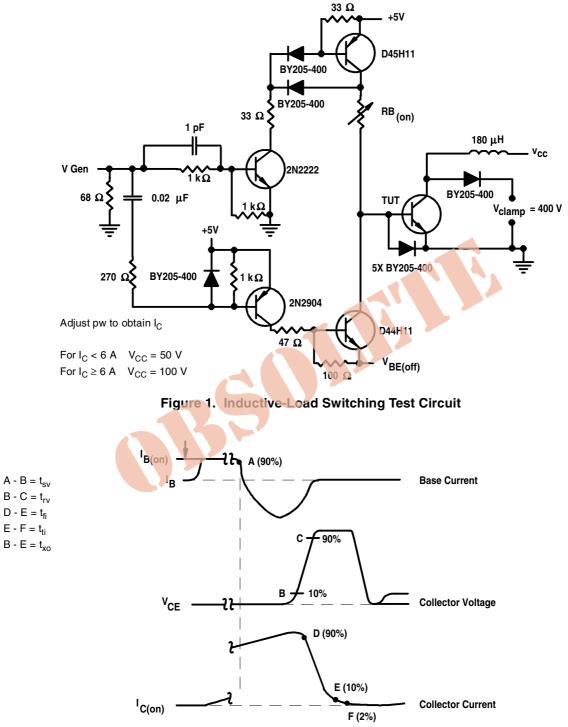
3. These parameters must be measured using pulse techniques, $t_p = 300 \ \mu s$, duty cycle $\leq 2\%$.

4. These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

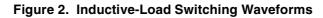
5. To obtain f_t the $[h_{FE}]$ response is extrapolated at the rate of -6 dB per octave from f = 1 MHz to the frequency at which $[h_{E}] = 1$.

thermal characteristics

	PARAMETER		ТҮР	MAX	UNIT
ĺ	R _{0JC} Junction to case thermal resistance			1.79	°C/W


inductive-load-switching characteristics at 25°C case temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS [†]			MIN	ТҮР	MAX	UNIT
t _{si}	Current storage time	$I_{\rm C} = 10 \text{ A}$ $I_{\rm B(off)} = -2.5 \text{ A}$	I _{B(on)} = 50 mA V _{BE(off)} = -5 V	(see Figures 1 and 2)		450	700	ns
t _{rv}	Voltage rise time					160	750	ns
t _{fi}	Current fall time					250	400	ns
t _{ti}	Current tail time					280	450	ns
t _{xo}	Cross over time					320	500	ns

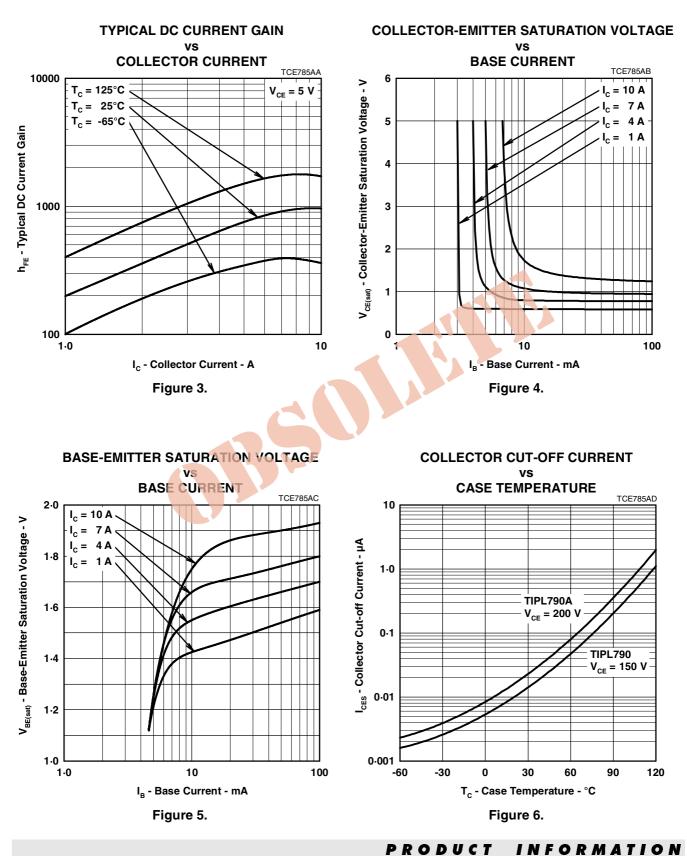

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

PRODUCT INFORMATION

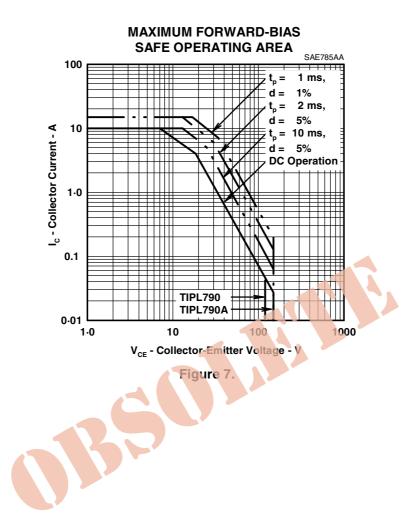
PARAMETER MEASUREMENT INFORMATION

NOTES: A. Waveforms are monitored on an oscilloscope with the following characteristics: $t_r < 15$ ns, $R_{in} > 10 \Omega$, $C_{in} < 11.5$ pF. B. Resistors must be noninductive types.

PRODUCT INFORMATION


AUGUST 1978 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

BOURNS®


TIPL790, TIPL790A NPN SILICON POWER DARLINGTONS

BOURNS®

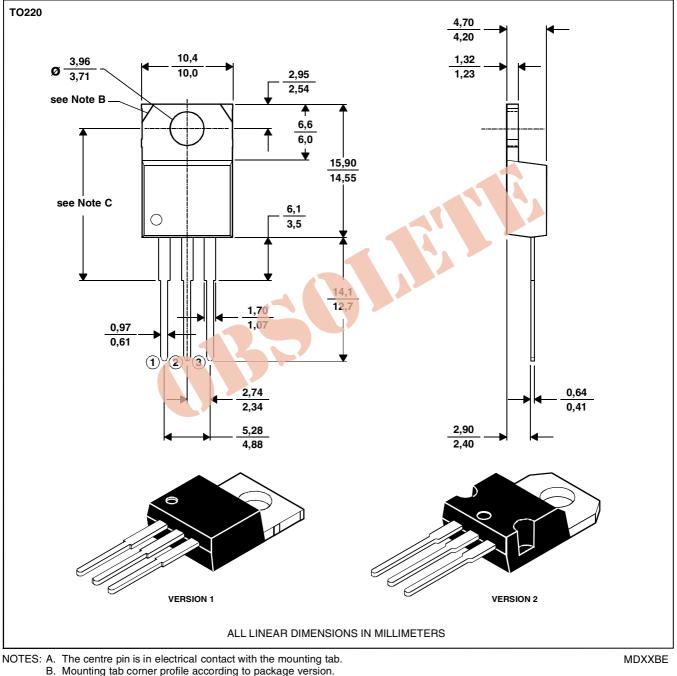
TYPICAL CHARACTERISTICS

MAXIMUM SAFE OPERATING REGIONS

PRODUCT INFORMATION

AUGUST 1978 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

BOURNS®



MECHANICAL DATA

TO-220

3-pin plastic flange-mount package

This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

C. Typical fixing hole centre stand off height according to package version. Version 1, 18.0 mm. Version 2, 17.6 mm.

PRODUCT INFORMATION