
TIP140, TIP141, TIP142 NPN SILICON POWER DARLINGTONS

BOURNS®

- Designed for Complementary Use with TIP145, TIP146 and TIP147
- 125 W at 25°C Case Temperature
- 10 A Continuous Collector Current
- Minimum h_{FE} of 1000 at 4 V, 5 A

Pin 2 is in electrical contact with the mounting base.

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING			VALUE	UNIT	
	TIP140		60		
Collector-base voltage ($I_E = 0$)	TIP141	Усво	80	V	
	TIP142		100		
	TIP140		60		
Collector-emitter voltage ($I_B = 0$)	TIP141	VCEO	80	V	
	TIP142		100		
Emitter-base voltage		V _{EBO}	5	V	
Continuous collector current		Ι _C	10	A	
Peak collector current (see Note 1)		I _{CM}	15	A	
Continuous base current			0.5	A	
Continuous device dissipation at (or below) 25°C case temperature (see Note 2)			125	W	
Continuous device dissipation at (or below) 25°C free air temperature (see Note 3)			3.5	W	
Unclamped inductive load energy (see Note 4)		½LI _C ²	100	mJ	
Operating junction temperature range			-65 to +150	°C	
Storage temperature range		T _{stg}	-65 to +150	°C	
Lead temperature 3.2 mm from case for 10 seconds			260	°C	

NOTES: 1. This value applies for $t_p \leq 0.3$ ms, duty cycle $\leq 10\%.$

2. Derate linearly to 150°C case temperature at the rate of 1 W/°C.

3. Derate linearly to 150°C free air temperature at the rate of 28 mW/°C.

4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, $I_{B(on)}$ = 5 mA, R_{BE} = 100 Ω , $V_{BE(off)}$ = 0, R_S = 0.1 Ω , V_{CC} = 20 V.

PRODUCT INFORMATION

DECEMBER 1971 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

TIP140, TIP141, TIP142 NPN SILICON POWER DARLINGTONS

BOURNS®

	PARAMETER		TEST CONDIT	TIONS	MIN	ТҮР	MAX	UNIT
V _{(BR)CEO}	Collector-emitter breakdown voltage	I _C = 30 mA (see Note 5)	I _B = 0	TIP140 TIP141 TIP142	60 80 100			V
I _{CEO}	Collector-emitter cut-off current	$V_{CE} = 30 V$ $V_{CE} = 40 V$ $V_{CE} = 50 V$	$I_{B} = 0$ $I_{B} = 0$ $I_{B} = 0$	TIP140 TIP141 TIP142			2 2 2	mA
I _{CBO}	Collector cut-off current	$V_{CB} = 60 V$ $V_{CB} = 80 V$ $V_{CB} = 100 V$	I _E = 0 I _E = 0 I _E = 0	TIP140 TIP141 TIP142			1 1 1	mA
I _{EBO}	Emitter cut-off current	V _{EB} = 5 V	I _C = 0				2	mA
h _{FE}	Forward current transfer ratio	$V_{CE} = 4 V$ $V_{CE} = 4 V$	I _C = 5A I _C = 10 A	(see Notes 5 and 6)	1000 500			
V _{CE(sat)}	Collector-emitter saturation voltage	$I_B = 10 \text{ mA}$ $I_B = 40 \text{ mA}$	I _C = 5 A I _C = 10 A	(see Notes 5 and 6)			2 3	V
V_{BE}	Base-emitter voltage	V _{CE} = 4 V	I _C = 10 A	(see Notes 5 and 6)			3	V
V_{EC}	Parallel diode forward voltage	I _E = 10 A	I _B = 0	(see Notes 5 and 6)			3.5	V

electrical characteristics at 25°C case temperature

NOTES: 5. These parameters must be measured using pulse techniques, $t_p = 300 \ \mu s$, duty cycle $\leq 2\%$.

6. These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

resistive-load-switching characteristics at 25°C case temperature

PARAMETER	TEST CONDITIONS [†]			MIN	ТҮР	MAX	UNIT
t _{on} Turn-on time	I _C = 10 A	l _{B(on)} = 40 mA	$I_{B(off)} = -40 \text{ mA}$		0.9		μs
t _{off} Turn-off time	$V_{BE(off)} = -4.2 V$	$R_L = 3 \Omega$	t_p = 20 µs, dc \leq 2%		11		μs

⁺ Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

DECEMBER 1971 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

TYPICAL CHARACTERISTICS

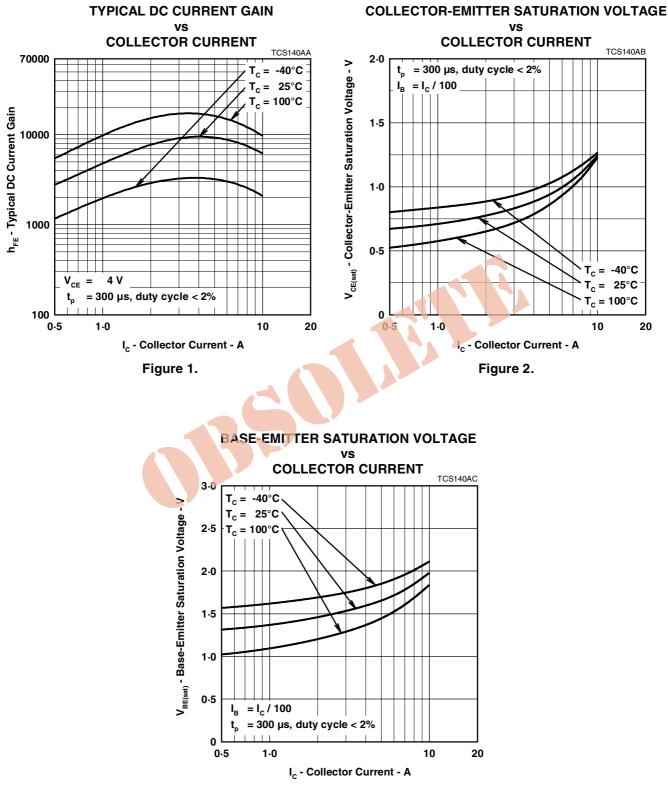
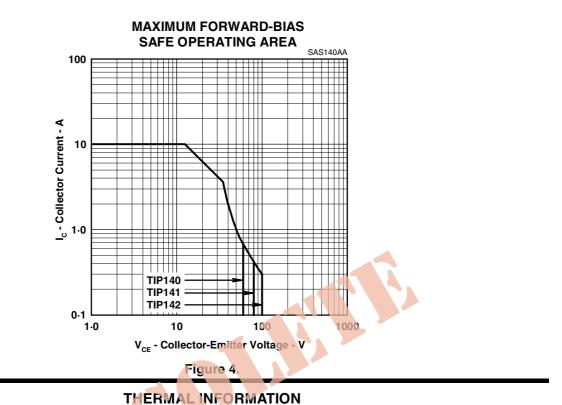


Figure 3.

PRODUCT INFORMATION


DECEMBER 1971 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

BOURNS®

TIP140, TIP141, TIP142 NPN SILICON POWER DARLINGTONS

BOURNS®

MAXIMUM SAFE OPERATING REGIONS

MAXIMUM POWER DISSIPATION vs **CASE TEMPERATURE** TIS140AA 140 P_{tot} - Maximum Power Dissipation - W 120 100 80 60 40 20 0 25 0 50 75 100 125 150 T_c - Case Temperature - °C

PRODUCT INFORMATION

DECEMBER 1971 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.