## Dual, Matched Precision Operational Amplifier

## feATURES

- Guaranteed low offset voltage

$$
\begin{array}{lr}
\text { LT1002A } & 60 \mu \mathrm{~V} \text { max } \\
\text { LT1002 } & 100 \mu \mathrm{~V} \text { max }
\end{array}
$$

- Guaranteed offset voltage match

| LT1002A | $40 \mu \mathrm{~V}$ max |
| :--- | :--- |
| LT1002 | $80 \mu \mathrm{~V}$ max |

- Guaranteed low drift

$$
\begin{array}{ll}
\text { LT1002A } & 0.9 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \max \\
\text { LT1002 } & 1.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \text { max }
\end{array}
$$

- Guaranteed CMRR

| LT1002A | 110 dB min |
| :--- | :--- |
| LT1002 | 110 dB min |

- Guaranteed channel separation

| LT1002A | 132dB min |
| :--- | :--- |
| LT1002 | 130 dB min |

- Guaranteed matching characteristics
- Low noise $0.35 \mu \mathrm{~V}_{\text {P-p }}$


## APPLICATIONS

- Thermocouple Amplifiers
- Strain Gauge Amplifiers
- Low level signal processing
- Medical instrumentation
- Precision dual limit threshold detection
- Instrumentation amplifiers
$\overline{\boldsymbol{\wedge}}$, LTC and LT are registered trademarks of Linear Technology Corporation


## DESCRIPTIOn

The LT ${ }^{\circledR} 1002$ dual, matched precision operational amplifiers combine excellent individual amplifier performance with tight matching and temperature tracking between amplifiers.
In the design, processing, and testing of the device, particular attention has been paid to the optimization of the entire distribution of several key parameters and their matching. Consequently, the specifications of even the low cost commercial grade (LT1002C) have been spectacularly improved compared to presently available devices.

Essentially, the input offset voltage of all units is less than $80 \mu \mathrm{~V}$, and matching between amplifiers is consistently beter than $60 \mu \mathrm{~V}$ (see distribution plot below). Input bias and offset currents, channel separation, common mode and power suply rejections of the LT1002C are all specified at levels which were previsouly attainable only on very expensive, selected grades of other dual devices. Power dissipation is nearly halved compared to the most popular precision duals, without adversely affecting noise or speed performance. A by-product of lower dissipation is decreased warm-up drift. For even better performance in a single precision op amp, refer to the LT1001 data sheet. A bridge signal conditioning application is shown below. This circuit illustrates the requirement for both excellent matching and individual amplifier specifications.

## TYPICAL APPLICATION

## Strain Gauge Signal Conditioner with Bridge Excitation



Distribution of Offset Voltage Match

ABSOLUTE MAXIMUM RATINGS(Note 1)
Supply Voltage (Note 7) ..... $\pm 22 \mathrm{~V}$
Differential Input Voltage ..... $\pm 30 \mathrm{~V}$
Input Voltage Equal to Supply Voltage Output Short Circuit Duration

$\qquad$
Indefinite Operating Temperature Range
LT1002AM/LT1002M (OBSOLETE) .....  -55 ..... 格 LT1002AC/LT1002C

$\qquad$
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

## Storage Temperature Range

All Grades$\qquad$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .)

$\qquad$

PACKAGE/ORDER INFORMATION


Consult LTC Marketing for parts specified with wider operating temperature ranges.

## ELECTRICAL CHARACTERISTICS, INDIVIDUAL AMPLIFIGRS

$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted

| SYMBOL | PARAMETER | CONDITIONS | LT1002AM/LT1002AC |  |  | LT1002M/LT1002C |  |  | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | TYP | MAX | MIN | TYP | MAX |  |
| $\mathrm{V}_{\text {OS }}$ | Input Offset Voltage | (Note 2) |  | 20 | 60 |  | 25 | 100 | $\mu \mathrm{V}$ |
| $\frac{\Delta \mathrm{V}_{\mathrm{OS}}}{\Delta \mathrm{Time}}$ | Long Term Input Offset Voltage Stability | (Notes 3 and 4) |  | 0.3 | 1.5 |  | 0.4 | 2.0 | $\mu \mathrm{V} /$ month |
| Ios | Input Offset Current |  |  | 0.3 | 2.8 |  | 0.4 | 4.2 | nA |
| $\mathrm{I}_{\mathrm{B}}$ | Input Bias Current |  |  | $\pm 0.6$ | $\pm 3.0$ |  | $\pm 0.7$ | $\pm 4.5$ | nA |
| $\overline{\overline{\mathrm{e}_{n}}}$ | Input Noise Voltage | 0.1 Hz to 10 Hz (Note 3) |  | 0.35 | 0.7 |  | 0.38 | 0.75 | $\mu \mathrm{V}_{\mathrm{p}-\mathrm{p}}$ |
| $\mathrm{e}_{\mathrm{n}}$ | Input Noise Voltage Density | $\begin{aligned} & \mathrm{f}_{0}=10 \mathrm{~Hz}(\text { Note 6) } \\ & \mathrm{f}_{0}=1000 \mathrm{~Hz} \text { (Note 3) } \end{aligned}$ |  | $\begin{aligned} & 10.3 \\ & 9.6 \end{aligned}$ | $\begin{aligned} & 20.0 \\ & 11.5 \end{aligned}$ |  | $\begin{aligned} & 10.5 \\ & 9.8 \end{aligned}$ | $\begin{aligned} & 20.0 \\ & 12.0 \end{aligned}$ | $\mathrm{nV} \sqrt{\mathrm{Hz}}$ |
| AVOL | Large Signal Voltage Gain | $\begin{aligned} & \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{~V}_{0}= \pm 12 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}} \geq 1 \mathrm{k} \Omega, \mathrm{~V}_{0}= \pm 10 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 400 \\ & 250 \end{aligned}$ | $\begin{aligned} & 800 \\ & 500 \end{aligned}$ |  | $\begin{aligned} & 350 \\ & 220 \end{aligned}$ | $\begin{aligned} & 800 \\ & 500 \end{aligned}$ |  | V/mV |
| CMRR | Common Mode Rejection Ratio | $\mathrm{V}_{\text {CM }}= \pm 13 \mathrm{~V}$ | 110 | 126 |  | 110 | 126 |  | dB |
| PSRR | Power Supply Rejection Ratio | $\mathrm{V}_{S}= \pm 3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ | 108 | 123 |  | 105 | 123 |  | dB |
| $\mathrm{R}_{\text {in }}$ | Input Resistance Differential Mode | (Note 5) | 20 | 100 |  | 13 | 80 |  | $\mathrm{M} \Omega$ |
|  | Input Voltage Range |  | $\pm 13$ | $\pm 14$ |  | $\pm 13$ | $\pm 14$ |  | V |
| $\overline{\text { VOUT }}$ | Maximum Output Voltage Swing | $\begin{aligned} & R_{L} \geq 2 k \Omega \\ & R_{L} \geq 1 k \Omega \end{aligned}$ | $\begin{aligned} & \pm 13 \\ & \pm 12 \end{aligned}$ | $\begin{aligned} & \pm 14 \\ & \pm 13.5 \end{aligned}$ |  | $\begin{aligned} & \pm 13 \\ & \pm 12 \end{aligned}$ | $\begin{aligned} & \pm 14 \\ & \pm 13.5 \end{aligned}$ |  | V |
| SR | Slew Rate | $\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$ (Note 5) | 0.1 | 0.25 |  | 0.1 | 0.25 |  | V/ $/ \mathrm{s}$ |
| GBW | Gain Bandwidth Product | (Note 5) | 0.4 | 0.8 |  | 0.4 | 0.8 |  | MHz |
| $\mathrm{P}_{\mathrm{d}}$ | Power Dissipation per amplifier | No load No load, $V_{S}= \pm 3 \mathrm{~V}$ |  | $\begin{aligned} & 46 \\ & 4 \end{aligned}$ | $\begin{aligned} & 75 \\ & 7 \end{aligned}$ |  | $\begin{aligned} & 48 \\ & 4 \end{aligned}$ | $\begin{aligned} & \hline 85 \\ & 8 \end{aligned}$ | mW |

## ELECTRICAL CHARACTERISTICS, INDIVIDUAL AMPLIFIERS

The $\bullet$ denotes the specifications which apply over the temperature range $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.


The $\bullet$ denotes the specifications which apply over the temperature range $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.

| SYMBOL | PARAMETER | CONDITIONS |  | LT1002AC |  |  | LT1002C |  |  | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN | TYP | MAX | MIN | TYP | MAX |  |
| $\mathrm{V}_{\text {OS }}$ | Input Offset Voltage | (Note 2) | $\bullet$ |  | 20 | 100 |  | 30 | 160 | $\mu \mathrm{V}$ |
| $\frac{\Delta V_{0 S}}{\Delta \text { Temp }}$ | Average Input Offset Voltage Drift |  | $\bullet$ |  | 0.2 | 0.9 |  | 0.3 | 1.3 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| IOS | Input Offset Current |  | $\bullet$ |  | 0.5 | 4.2 |  | 0.6 | 5.7 | nA |
| IB | Input Bias Current |  | $\bullet$ |  | $\pm 0.7$ | $\pm 4.5$ |  | $\pm 1.0$ | $\pm 6.0$ | nA |
| A ${ }_{\text {VOL }}$ | Large Signal Voltage Gain | $\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{0}= \pm 10 \mathrm{~V}$ | $\bullet$ | 350 | 750 |  | 250 | 750 |  | $\mathrm{V} / \mathrm{mV}$ |
| CMRR | Common Mode Rejection Ratio | $V_{\text {CM }}= \pm 13 \mathrm{~V}$ | $\bullet$ | 108 | 124 |  | 106 | 123 |  | dB |
| PSRR | Power Supply Rejection Ratio | $\mathrm{V}_{\mathrm{S}}= \pm 3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ | $\bullet$ | 105 | 120 |  | 100 | 120 |  | dB |
|  | Input Voltage Range |  | $\bullet$ | $\pm 13$ | $\pm 14$ |  | $\pm 13$ | $\pm 14$ |  | V |
| $\mathrm{V}_{\text {OUT }}$ | Output Voltage Swing | $\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$ | $\bullet$ | $\pm 12.5$ | $\pm 13.8$ |  | $\pm 12.5$ | $\pm 13.8$ |  | V |
| $\mathrm{P}_{\mathrm{d}}$ | Power Dissipation per amplifier | No Load | $\bullet$ |  | 50 | 85 |  | 55 | 90 | mW |

## mATCHING CHARACTERISTICS

$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

| SYMBOL | PARAMETER | CONDITIONS | LT1002AM/AC |  |  | LT1002M/C |  |  | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | TYP | MAX | MIN | TYP | MAX |  |
|  | Input Offset Voltage Match |  | - | 15 | 40 | - | 25 | 80 | $\mu \mathrm{V}$ |
| $\overline{\mathrm{IB}^{+}}$ | Average Non-Inverting Bias Current |  | - | $\pm 0.6$ | $\pm 3.5$ | - | $\pm 0.7$ | $\pm 4.8$ | nA |
| $\mathrm{los}^{+}$ | Non-Inverting Offset Current |  | - | 0.6 | 3.5 | - | 0.7 | 6.0 | nA |
| $\mathrm{IOS}^{-}$ | Inverting Offset Current |  | - | 0.6 | 3.5 | - | 0.7 | 6.0 | nA |
| $\triangle \mathrm{CMRR}$ | Common Mode Rejection Ratio Match | $V_{C M}= \pm 13 \mathrm{~V}$ | 110 | 132 | - | 108 | 132 | - | dB |
| $\overline{\Delta P S R R}$ | Power Supply Rejection Ratio Match | $\mathrm{V}_{S}= \pm 3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ | 108 | 130 | - | 102 | 128 | - | dB |
|  | Channel Seperation | $\mathrm{f} \leq 10 \mathrm{~Hz}$ (Note 5) | 132 | 148 | - | 130 | 146 | - | dB |

## MATCHING CHARACTERISTICS

The $\bullet$ denotes the specifications which apply over the temperature range $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}, \mathrm{V}_{S}= \pm 15 \mathrm{~V}$, unless otherwise noted.

| SYMBOL | PARAMETER | CONDITIONS |  | LT1002AM |  |  | LT1002M |  |  | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN | TYP | MAX | MIN | TYP | MAX |  |
|  | Input Offset Voltage Match |  | $\bullet$ | - | 50 | 140 | - | 60 | 230 | $\mu \mathrm{V}$ |
|  | Input Offset Voltage Tracking |  | $\bullet$ | - | 0.3 | 1.0 | - | 0.4 | 1.5 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| $\mathrm{IB}^{+}$ | Average Non-Inverting Bias Current |  | $\bullet$ | - | $\pm 1.5$ | $\pm 6.0$ | - | $\pm 1.8$ | $\pm 10.0$ | nA |
| $\mathrm{IOS}^{+}$ | Non-Inverting Offset Current |  | $\bullet$ | - | 1.5 | 6.5 | - | 1.8 | 12.0 | nA |
| $\mathrm{IOS}^{-}$ | Inverting Offset Current |  | $\bullet$ | - | 1.5 | 6.5 | - | 1.8 | 12.0 | nA |
| $\triangle$ CMRR | Common Mode Rejection Ratio Match | $V_{C M}= \pm 13 \mathrm{~V}$ | $\bullet$ | 106 | 126 |  | 102 | 124 | - | dB |
| $\overline{\triangle P S R R}$ | Power Supply Rejection Ratio Match | $\mathrm{V}_{S}= \pm 3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ | $\bullet$ | 102 | 122 |  | 94 | 120 | - | dB |

The $\bullet$ denotes the specifications which apply over the temperature range $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.

| SYMBOL | PARAMETER | CONDITIONS |  | LT1002AC |  |  | LT1002C |  |  | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MIN | TYP | MAX | MIN | TYP | MAX |  |
|  | Input Offset Voltage Match |  | $\bullet$ | - | 30 | 85 | - | 45 | 150 | $\mu \mathrm{V}$ |
|  | Input Offset Voltage Tracking |  | $\bullet$ | - | 0.3 | 1.0 | - | 0.4 | 1.5 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| $\overline{\mathrm{IB}^{+}}$ | Average Non-Inverting Bias Current |  | $\bullet$ | - | $\pm 1.0$ | $\pm 4.5$ | - | $\pm 1.2$ | $\pm 7.0$ | nA |
| $\mathrm{los}^{+}$ | Non-Inverting Offset Current |  | $\bullet$ | - | 1.0 | 5.0 | - | 1.2 | 8.5 | $n \mathrm{~A}$ |
| $\mathrm{IOS}^{-}$ | Inverting Offset Current |  | $\bullet$ | - | 1.0 | 5.0 | - | 1.2 | 8.5 | nA |
| $\triangle$ CMRR | Common Mode Rejection Ratio Match | $V_{C M}= \pm 13 \mathrm{~V}$ | $\bullet$ | 108 | 130 | - | 105 | 128 | - | dB |
| $\overline{\triangle P S R R}$ | Power Supply Rejection Ratio Match | $\mathrm{V}_{S}= \pm 3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ | $\bullet$ | 105 | 126 | - | 98 | 124 | - | dB |

For MIL-STD components, please refer to LTC 883C data sheet for test listing and parameters.
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: Offset voltage measured with high speed test equipment, approximately 1 second after power is applied.
Note 3: This parameter is tested on a sample basis only.
Note 4: Long Term Input Offset Voltage Stability refers to the averaged trend line of $\mathrm{V}_{0 \text { S }}$ versus Time over extended periods after the first 30 days
of operation. Excluding the initial hour of operation, changes in $\mathrm{V}_{0 S}$ during the first 30 operating days are typically $2.5 \mu \mathrm{~V}$.
Note 5: Parameter is guaranteed by design.
Note 6: 10 Hz noise voltage density is sample tested on every lot. Devices $100 \%$ tested at 10 Hz are available on request.
Note 7: The V + supply terminals are completely independent and may be powered by separate supplies if desired (this approach, however, would sacrifice the advantages of the power supply rejection ratio matching). The V - supply terminals are both connected to the common substrate and must be tied to the same voltage. Both V-pins should be used.

## TYPICAL PGRFORMANCE CHARACTERISTICS



## TYPICAL PERFORmANCE CHARACTERISTICS



## TYPICAL PERFORMANCE CHARACTERISTICS



## TYPICAL PGRFORMANCE CHARACTERISTICS



## APPLICATIONS INFORMATION

The LT1002 dual amplifier may be inserted directly into OP-10, OP207, OP227 sockets with or without removal of external nulling potentiometers.

Offset Voltage Adjustment The input offset voltage of the LT1002, and its drift with temperature, are permanently trimmed at wafer testing to a low level. However, if further adjustment of $\mathrm{V}_{0 \text { S }}$ is necessary, nulling with a 10 k or 20 k potentiometer will not degrade drift with temperature. Trimming to a value other than zero creates a drift of ( $\mathrm{V}_{\mathrm{OS}} /$ 300) $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$, e.g. if $\mathrm{V}_{0 \text { S }}$ is adjusted to $300 \mu \mathrm{~V}$, the change in drift will be $1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. The adjustment range with a 10 k or 20 k pot is approximately $\pm 2.5 \mathrm{mV}$. If less adjustment range is needed, the sensitivity and resolution of the nulling can be improved by using a smaller pot in conjunction with fixed resistors. The example has an approximate null range of $\pm 100 \mu \mathrm{~V}$.

In matching applications, both amplifiers can be trimmed to zero, or the offset of one amplifier can be trimmed to match the offset of the other. Offset adjustment, however, slightly degrades the gain, common-mode and powersupply rejection match between the two op amps. Fortu-
nately, the guaranteed offset voltage match of the LT1002 is very low, in most applications offset adjustment will be unnecessary.

## Standard Adjustment



Improved Sensitivity Adjustment

# APPLICATIONS INFORMATION 

Test Circuit for Offset Voltage and its Drift with Temperature


### 0.1 Hz to 10 Hz Noise Test Circuit



This circuit is also used as burn-in configuration for the LT1002, with supply voltages increased to $\pm 20 \mathrm{~V}$.

Unless proper care is exercised, thermocouple effects, caused by temperature gradients across dissimilar metals at the contacts to the input terminals, can exceed the inherent drift of the amplifier. Air currents should be minimized, package leads should be short, the two input leads should be as close together as possible and maintained at the same temperature.

## Channel Separation

This parameter is defined as the ratio of the change in input offset voltage of one amplifier to the change in output voltage of the other amplifier causing the offset change.

At low frequencies the LT1002's channel separation is an almost unmeasurable 148dB. As frequency increases, pin to pin capacitance of the package, between the output of one amplifier and the inputs of the other, becomes dominant. Since these pins are non-adjacent, the capacitance is only 0.02 pF . To maintain the LT1002's excellent channel separation at higher frequencies, the socket and PC board capacitances should be minimized.

The device under test should be warmed up for three minutes and shielded from air currents. Turn the device $180^{\circ}$ to measure the noise of side B.

## Power supplies

The LT1002 is specified over a wide range of power supply voltages from $\pm 3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$. Operation with lower supplies is possible, down to $\pm 1.2 \mathrm{~V}$ (two Ni-Cad batteries). However, with $\pm 1.2 \mathrm{~V}$ supplies, the device is stable only in closed loop gains of +2 or higher (or inverting gain of one or higher).

The $V$ + supply terminals are completely independent and may be powered by separate supplies if desired (this approach, however, would sacrifice the advantages of the power supply rejection ratio matching). The V-supply terminals are both connected to the common substrate and must be tied to the same voltage. Both V - pins should be used.

## APPLICATIONS INFORMATION

Advantages of Matched Dual Op Amps In many applications the performance of a system depends on the matching between two operational amplifiers rather than the individual characteristics of the two op amps. Two or three op amp instrumentation amplifiers, tracking voltage references and low drift active filters are some of the circuits requiring matching between two op amps.

The well-known triple op amp configuration illustrates these concepts. Output offset is a function of the difference between the offsets of the two halves of the LT1002. This error cancellation principle holds for a considerable number of input referred parameters in addition to offset voltage and its drift with temperature. Input bias current will be the average of the two non-inverting input currents $\left(I_{B}{ }^{+}\right)$. The difference between these two currents $\left(I_{O S}{ }^{+}\right)$is the offset current of the instrumentation amplifier. The difference between the inverting input currents $\left(\mathrm{I}_{\mathrm{OS}}{ }^{-}\right)$will cause errors flowing through R1, R2, and R3. Commonmode and power supply rejections will be dependent only on the match between the two amplifiers (assuming perfect resistor matching).

The concepts of common mode and power supply rejection ratio match ( $\Delta \mathrm{CMRR}$ and $\triangle \mathrm{PSRR}$ ) are best demonstrated with a numerical example:

Assume $\mathrm{CMRR}_{\mathrm{A}}=+1.0 \mu \mathrm{~V} / \mathrm{V}$ or 120 dB , and $\mathrm{CMRR}_{\mathrm{B}}=+0.75 \mu \mathrm{~V} / \mathrm{V}$ or 122.5 dB , then $\Delta$ CMRR $=0.25 \mu \mathrm{~V} / \mathrm{V}$ or 132 dB ; if $\mathrm{CMRR}_{\mathrm{B}}=-0.75 \mu \mathrm{~V} / \mathrm{V}$ which is still 122.5 dB , then $\Delta C M R R=1.75 \mu \mathrm{~V} / \mathrm{V}$ or 115 dB .

Clearly, the LT1002, by specifying and guaranteeing all of these matching parameters, can significantly improve the performance of matching dependent circuits.

## Three Op Amp Instrumentation Amplifier



Trim R8 for gain
Trim R9 for DC common mode rejection
Trim R10 for AC common mode rejection

Typical performance of the instrumentation amplifier:
Input offset voltage $=25 \mu \mathrm{~V}$
Input bias current $=0.7 \mathrm{nA}$
Input resistance $=200 \mathrm{G} \Omega$
Input offset current $=0.6 \mathrm{nA}$
Input noise $=0.5 \mu \mathrm{~V}$ p-p
Power bandwidth $\left(\mathrm{V}_{0}= \pm 10 \mathrm{~V}\right)=80 \mathrm{kHz}$

## APPLICATIONS INFORMATION

## Precision $\pm 10 \mathrm{~V}$ Reference



The LT1002 contributes less than $5 \%$ of the total drift with temperature, noise and long term drift of the reference.

The accuracy of the -10 V output is limited by the matching of the two 10k resistors.

Dual Limit Microvolt Comparator


When the upper or lower limit is exceeded the LED lights up. Positive feedback to one of the nulling terminals creates 5 to $20 \mu \mathrm{~V}$ of hysteresis on both amplifiers. This
feedback changes the offset voltage of the LT1002 by less than $5 \mu \mathrm{~V}$. Therefore, the basic accuracy of the comparator is limited only by the low offset voltage of the LT1002.

## APPLICATIONS INFORMATION

Two Op Amp Instrumentation Amplifier


* TRIM FOR COMMON-MODE REJECTION
$\dagger$ TRIM FOR GAIN
GAIN $=\frac{\mathrm{R} 4}{\mathrm{R} 3}\left[1+\frac{1}{2}\left(\frac{\mathrm{R} 2}{\mathrm{R} 1}+\frac{\mathrm{R} 3}{\mathrm{R} 4}\right)+\frac{\mathrm{R} 2+\mathrm{R} 3}{\mathrm{R} 5}\right] \approx 100$

Precision Amplifier Drives $500 \Omega$ Load to $\pm 10 \mathrm{~V}$


This application utilizes the guaranteed 10 mA load driving capability of the LT1002. The offset voltage of amplifier A is the offset of the configuration. Amplifier B provides the additional 10 mA load current. When load resistor $R_{L}$ is
removed, amplifier A sinks this current without affecting accuracy. In the gain of 1000 configuration shown, approximately $0.3 \%$ gain accuracy can be realized.

## APPLICATIONS INFORMATION

Dead Zone Generator


Precision Absolute Value Circuit


## APPLICATIONS INFORMATION



SCHEMATIC DIAGRAM


PACKAGE DESCRIPTION

J Package
14-Lead CERDIP (Narrow . 300 Inch, Hermetic)
(Reference LTC DWG \# 05-08-1110)


## OBSOLETE PACKAGE

## N Package

14-Lead PDIP (Narrow . 300 Inch)
(Reference LTC DWG \# 05-08-1510)


## RELATGD PARTS

| PART NUMBER | DESCRIPTION | COMMENTS |
| :--- | :--- | :--- |
| LT1001 | Single LT1002 | $60 \mu \mathrm{~V} \mathrm{~V}_{\text {OS, }, 1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \text { Precision Op Amp }}$ |
| LT1884/LT1885 | Dual/Quad Precision Op Amp with Rail-to-Rail Output | $50 \mu \mathrm{~V}$ Max $\mathrm{V}_{0 S}, 400 \mathrm{pA}$ Max $\mathrm{I}_{\mathrm{B}}$ |

