

FEATURES

Specified from -55°C to 125°C 0.9 µV/°C maximum input offset voltage drift 5 ppm/°C maximum gain drift (G = 1) Low power 2.3 mA maximum supply current Low noise 3.2 nV/√Hz maximum input voltage noise at 1 kHz 200 fA/√Hz current noise at 1 kHz **Excellent ac specifications** 2 MHz bandwidth (G = 100) 0.6 μ s settling time to 0.001% (G = 10) 80 dB minimum CMRR at 20 kHz (G = 1) High precision dc performance 84 dB CMRR minimum (G = 1) 2 nA maximum input bias current Inputs protected to 40 V from opposite supply Gain set with a single resistor (G = 1 to 10,000)

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard) Military temperature range (-55°C to +125°C) Controlled manufacturing baseline One assembly/test site One fabrication site Enhanced product change notification Qualification data available on request

GENERAL DESCRIPTION

The AD8421-EP is a low cost, low power, extremely low noise, ultralow bias current, high speed instrumentation amplifier that is ideally suited for a broad spectrum of signal conditioning and data acquisition applications. This product features extremely high CMRR, allowing it to extract low level signals in the presence of high frequency common-mode noise over a wide temperature range.

The 10 MHz bandwidth, 35 V/ μ s slew rate, and 0.6 μ s settling time to 0.001% (G = 10) allow the AD8421-EP to amplify high speed signals and excel in applications that require high channel count, multiplexed systems. Even at higher gains, the current feedback architecture maintains high performance; for example, at G = 100, the bandwidth is 2 MHz and the settling time is 0.8 μ s. The AD8421-EP has excellent distortion performance, making it suitable for use in demanding applications such as vibration analysis.

Rev. 0

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

$3 \text{ nV}/\sqrt{\text{Hz}}$, Low Power Instrumentation Amplifier

AD8421-EP

PIN CONNECTION DIAGRAM

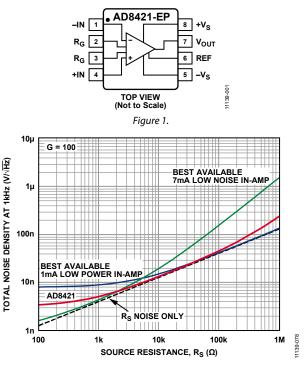


Figure 2. Noise Density vs. Source Resistance

The AD8421-EP delivers 3 nV/ \sqrt{Hz} input voltage noise and 200 fA/ \sqrt{Hz} current noise with only 2 mA quiescent current, making it an ideal choice for measuring low level signals. For applications with high source impedance, the AD8421-EP employs innovative process technology and design techniques to provide noise performance that is limited only by the sensor.

The AD8421-EP uses unique protection methods to ensure robust inputs while still maintaining very low noise. This protection allows input voltages up to 40 V from the opposite supply rail without damage to the part.

A single resistor sets the gain from 1 to 10,000. The reference pin can be used to apply a precise offset to the output voltage.

The AD8421-EP is specified over the military temperature range of -55° C to $+125^{\circ}$ C. It is available in an 8-lead MSOP package.

Additional application and technical information can be found in the AD8421 data sheet.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2013 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

TABLE OF CONTENTS

Features	
General Description	1
Revision History	2
Specifications	3
Absolute Maximum Ratings	6
Thermal Resistance	6

REVISION HISTORY

5/13—Revision 0: Initial Version

ESD Caution	6
Pin Configuration and Function Descriptions	7
Typical Performance Characteristics	8
Outline Dimensions	
Ordering Guide	18

SPECIFICATIONS

 $V_{\text{S}}=\pm 15$ V, V_{REF} = 0 V, T_{A} = 25°C, G = 1, R_{L} = 2 k $\Omega,$ unless otherwise noted.

Table 1.

Parameter	Test Conditions/ Comments	Min	Тур	Max	Unit
COMMON-MODE REJECTION RATIO (CMRR)					
CMRR DC to 60 Hz with 1 k Ω Source Imbalance	$V_{CM} = -10 V to + 10 V$				
G = 1		84			dB
G = 10		104			dB
G = 100		124			dB
G = 1000		134			dB
Over Temperature, G = 1	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	80			dB
CMRR at 20 kHz	$V_{CM} = -10 V to + 10 V$				
G = 1		80			dB
G = 10		90			dB
G = 100		100			dB
G = 1000		100			dB
NOISE					
Voltage Noise, 1 kHz ¹	$V_{IN}+$, $V_{IN}-=0$ V				
Input Voltage Noise, eni			3	3.2	nV/√Hz
Output Voltage Noise, eno				60	nV/√Hz
Peak to Peak, RTI	f = 0.1 Hz to 10 Hz				
G = 1			2		μV p-p
G = 10			0.5		μV p-p
G = 100 to 1000			0.07		μV p-p
Current Noise					
Spectral Density	f = 1 kHz		200		fA/√Hz
Peak to Peak, RTI	f = 0.1 Hz to 10 Hz		18		рАр-р
VOLTAGE OFFSET ²					
Input Offset Voltage, Vosi	$V_s = \pm 5 V \text{ to } \pm 15 V$			70	μV
Over Temperature	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$			160	μV
Average TC				0.9	μV/°C
Output Offset Voltage, Voso				600	μV
Over Temperature	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$			1.5	mV
Average TC				9	μV/°C
Offset RTI vs. Supply (PSR)	$V_{s} = \pm 2.5 V \text{ to } \pm 18 V$				
G = 1		90	120		dB
G = 10		110	120		dB
G = 100		124	130		dB
G = 1000		130	140		dB
INPUT CURRENT					
Input Bias Current			1	2	nA
Over Temperature	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$			8	nA
Average TC			50		pA/°C
Input Offset Current			0.5	2	nA
Over Temperature	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$			3	nA
Average TC			1		pA/°C

Parameter	Test Conditions/ Comments	Min	Тур	Мах	Unit
DYNAMIC RESPONSE					
Small Signal Bandwidth	-3 dB				
G = 1			10		MHz
G = 10			10		MHz
G = 100			2		MHz
G = 1000			0.2		MHz
Settling Time 0.01%	10 V step				
G = 1			0.7		μs
G = 10			0.4		μs
G = 100			0.6		μs
G = 1000			5		μs
Settling Time 0.001%	10 V step				
G = 1			1		μs
G = 10			0.6		μs
G = 100			0.8		μs
G = 1000			6		μs
Slew Rate			Ū		μ3
G = 1 to 100			35		V/µs
GAIN ³	$G = 1 + (9.9 \text{ k}\Omega/\text{R}_{G})$		55		ν/μ5
Gain Range	$G = 1 + (9.9 \ M_2/M_3)$	1		10,000	V/V
Gain Error	$V_{OUT} = \pm 10 V$	1		10,000	V/V
G = 1	V001 - ±10 V			0.05	%
G = 1 G = 10 to 1000				0.03	%
	10)/45 + 10)/			0.5	%0
Gain Nonlinearity	$V_{OUT} = -10 V to + 10 V$				
G = 1	$R_{L} \ge 2 k\Omega$		1	1	ppm
C 40. 4000	$R_L = 600 \Omega$		1	3	ppm
G = 10 to 1000	$R_L \ge 600 \Omega$		30	50	ppm
	$V_{OUT} = -5 V \text{ to } +5 V$		5	10	ppm
Gain vs. Temperature ³				_	
G = 1				5	ppm/°C
G > 1				-80	ppm/°C
INPUT					
Input Impedance					
Differential			30 3		GΩ∥pF
Common Mode			30 3		GΩ pF
Input Operating Voltage Range ⁴	$V_{s} = \pm 2.5 V \text{ to } \pm 18 V$	$-V_{s} + 2.3$		$+V_{s} - 1.8$	V
Over Temperature	$T_A = -55^{\circ}C$	$-V_{s} + 2.5$		$+V_{s} - 2.0$	V
	$T_{A} = +125^{\circ}C$	$-V_{s} + 2.1$		$+V_{s} - 1.8$	V
OUTPUT	$R_L = 2 \ k\Omega$				
Output Swing	$V_{s} = \pm 2.5 V \text{ to } \pm 18 V$	$-V_{s} + 1.2$		$+V_{s}-1.7$	V
Over Temperature	$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$	$-V_{s} + 1.4$		+Vs - 1.9	V
Short-Circuit Current			65		mA
REFERENCE INPUT					1
R _{IN}			20		kΩ
lin	$V_{IN}+$, $V_{IN}-=0$ V		20	24	μΑ
Voltage Range		-Vs		+Vs	V
Reference Gain to Output		• 5	1 ±		v/v
			0.0001		.,.

Parameter	Test Conditions/ Comments	Min	Тур	Max	Unit
POWER SUPPLY					
Operating Range	Dual supply	±2.5		±18	V
	Single supply	5		36	V
Quiescent Current			2	2.3	mA
Over Temperature	$T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$			2.8	mA
TEMPERATURE RANGE					
For Specified Performance		-55		+125	°C

¹ Total voltage noise = $\sqrt{(e_{n1}^2 + (e_{n0}/G)^2 + e_{RG}^2)}$. See the AD8421 data sheet for more information. ² Total RTI V_{OS} = (V_{OS}) + (V_{OSO}/G). ³ These specifications do not include the tolerance of the external gain setting resistor, R_G. For G > 1, add R_G errors to the specifications given in this table. ⁴ Input voltage range of the AD8421-EP input stage only. The input range can depend on the common-mode voltage, differential voltage, gain, and reference voltage. See the Typical Performance Characteristics section for more information.

ABSOLUTE MAXIMUM RATINGS

Table 2.

14010 2.	
Parameter	Rating
Supply Voltage	±18V
Output Short-Circuit Current Duration	Indefinite
Maximum Voltage at –IN or +IN ¹	$-V_{s} + 40 V$
Minimum Voltage at –IN or +IN	$+V_{s}-40 V$
Maximum Voltage at REF ²	+Vs + 0.3 V
Minimum Voltage at REF	$-V_{s} - 0.3 V$
Storage Temperature Range	-65°C to +150°C
Operating Temperature Range	-55°C to +125°C
Maximum Junction Temperature	150°C
ESD	
Human Body Model	2 kV
Charged Device Model	1.25 kV
Machine Model	0.2 kV

¹ For voltages beyond these limits, use input protection resistors. See the AD8421 data sheet for more information.

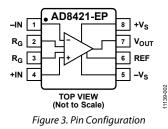
² There are ESD protection diodes from the reference input to each supply, so REF cannot be driven beyond the supplies in the same way that +IN and -IN can. See the AD8421 data sheet for more information.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for a device in free air using a 4-layer JEDEC printed circuit board (PCB).

Table 3.


Package	θ」Α	Unit
8-Lead MSOP	138.6	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

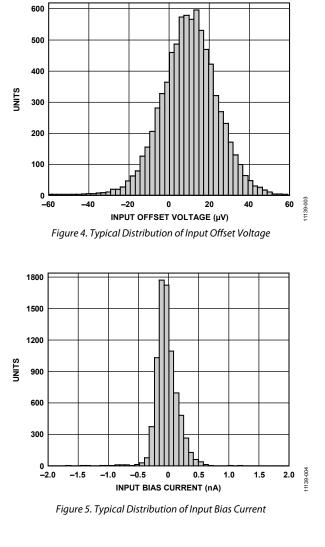


Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	-IN	Negative Input Terminal.
2, 3	R _G	Gain Setting Terminals. Place resistor across the R _G pins to set the gain. G = 1 + (9.9 k Ω/R_G).
4	+IN	Positive Input Terminal.
5	-Vs	Negative Power Supply Terminal.
6	REF	Reference Voltage Terminal. Drive this terminal with a low impedance voltage source to level shift the output.
7	Vout	Output Terminal.
8	+Vs	Positive Power Supply Terminal.

TYPICAL PERFORMANCE CHARACTERISTICS

 $T_{\rm A}$ = 25°C, $V_{\rm S}$ = ±15 V, $V_{\rm REF}$ = 0 V, $R_{\rm L}$ = 2 k $\Omega,$ unless otherwise noted.

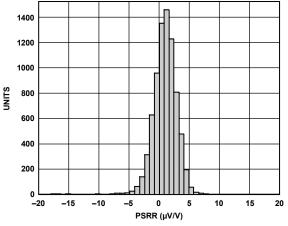
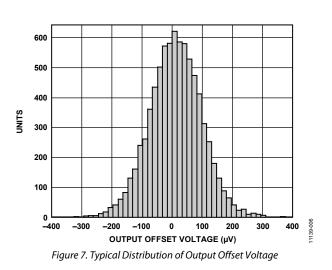
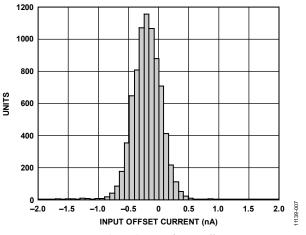
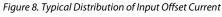





Figure 6. Typical Distribution of PSRR (G = 1)

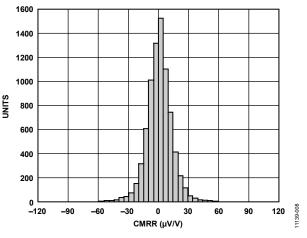
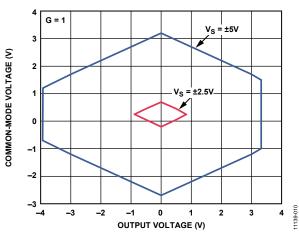
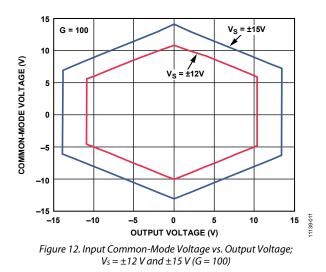
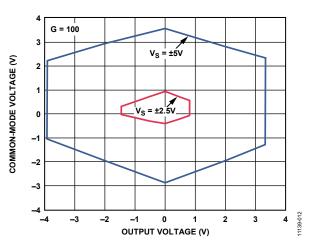


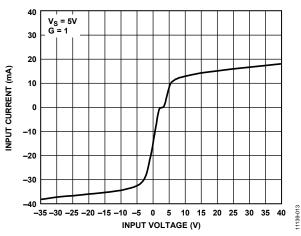
Figure 9. Typical Distribution of CMRR (G = 1)

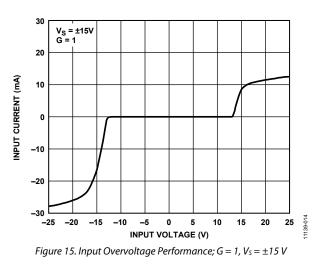
39-005

15 G = 1 $V_{S} = \pm 15V$ 10 COMMON-MODE VOLTAGE (V) $V_{S} = \frac{4}{2}12V$ 5 0 -5 -10 -15 11139-009 -15 -10 -5 0 5 10 15 OUTPUT VOLTAGE (V)

Figure 10. Input Common-Mode Voltage vs. Output Voltage; $V_S = \pm 12$ V and ± 15 V (G = 1)

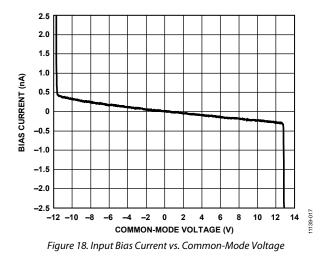





Figure 11. Input Common-Mode Voltage vs. Output Voltage; $V_{S} = \pm 2.5 V$ and $\pm 5 V (G = 1)$



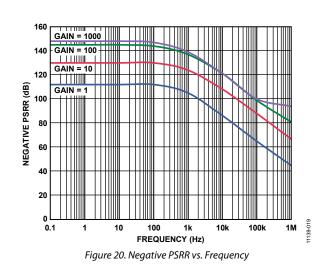
AD8421-EP

Figure 13. Input Common-Mode Voltage vs. Output Voltage; $V_S = \pm 2.5 V and \pm 5 V (G = 100)$



40 V_S = 5V G = 100 30 20 INPUT CURRENT (mA) 10 0 -10 -20 -30 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 39-015 INPUT VOLTAGE (V) Figure 16. Input Overvoltage Performance; $+V_{s} = 5 V$, $-V_{s} = 0 V$, G = 100

30 V_S = ±15V G = 100 20 INPUT CURRENT (mA) 10 0 -10 -20 -30 11139-016 -25 -20 -15 -10 -5 0 5 10 15 20 25 INPUT VOLTAGE (V)


Figure 17. Input Overvoltage Performance; $V_S = \pm 15 V$, G = 100



160 GAIN = 1000 140 GAIN = 100 111110 120 GAIN = 10 POSITIVE PSRR (dB) 100 GAIN = 1 80 60 40 20 0 0.1 10 100 100k 1M 11139-01 1 1k 10k FREQUENCY (Hz)

Enhanced Product

Figure 19. Positive PSRR vs. Frequency

Rev. 0 | Page 10 of 20

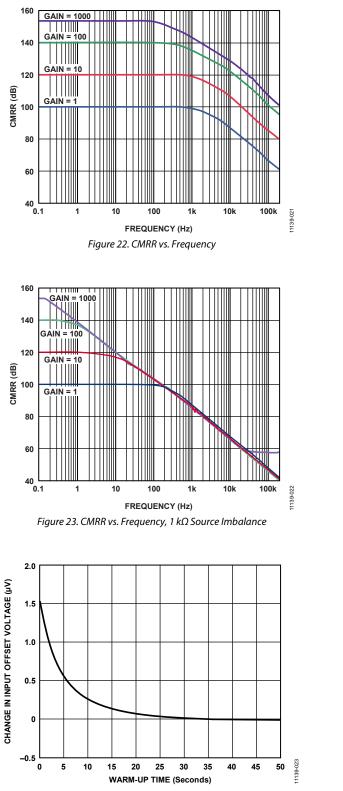
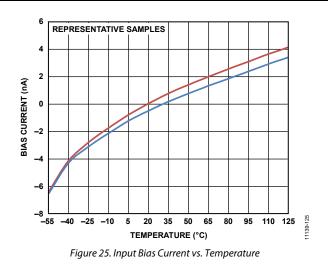
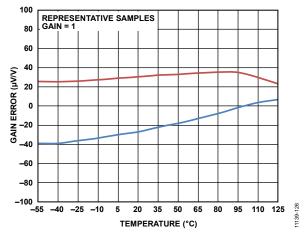
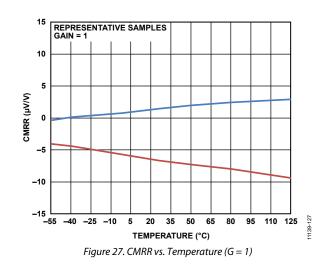
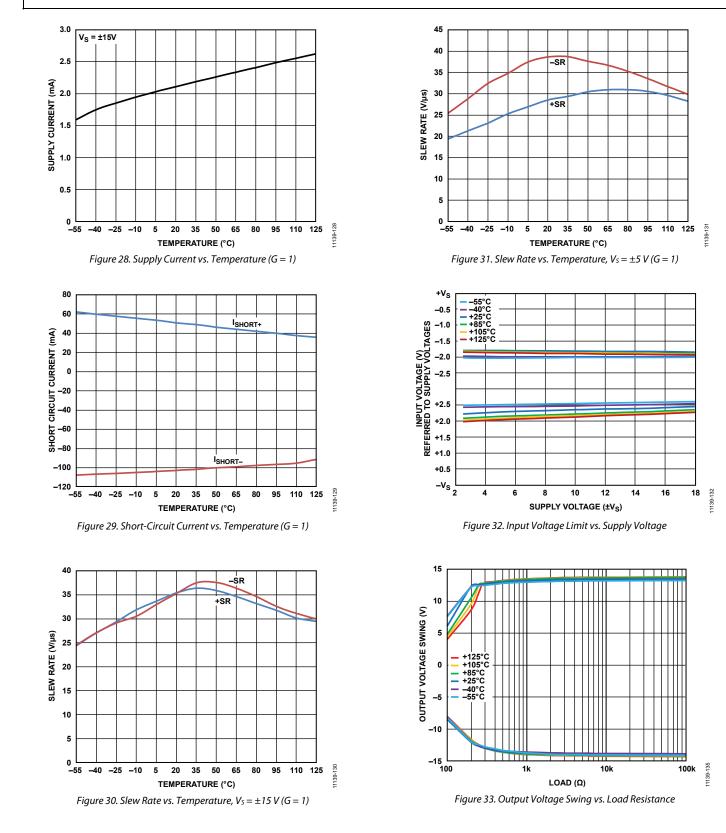
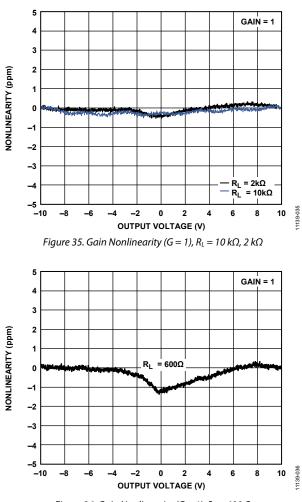
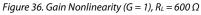





Figure 24. Change in Input Offset Voltage (Vosi) vs. Warm-Up Time






Enhanced Product

+Vs -2 OUTPUT VOLTAGE SWING (V) REFERRED TO SUPPLY VOLTAGES +105°C +125°C -4 -6 +6 +4 +2 -v_s 0.01 0.02 0.03 0.04 0.05 0.06 0.07 11139-136 0 0.08 0.09 0.10 **OUTPUT CURRENT (A)**

Figure 34. Output Voltage Swing vs. Output Current

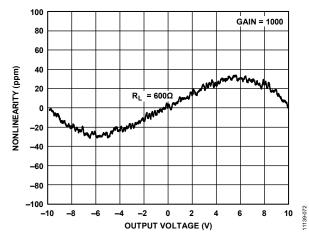
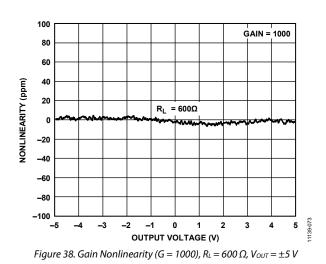



Figure 37. Gain Nonlinearity (G = 1000), $R_L = 600 \Omega$, $V_{OUT} = \pm 10 V$

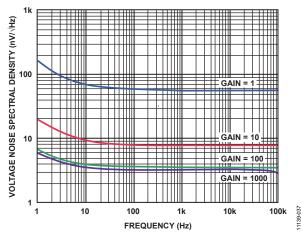


Figure 39. RTI Voltage Noise Spectral Density vs. Frequency

Enhanced Product

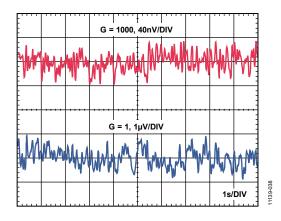


Figure 40. 0.1 Hz to 10 Hz RTI Voltage Noise (G = 1, G = 1000)

Figure 41. Current Noise Spectral Density vs. Frequency

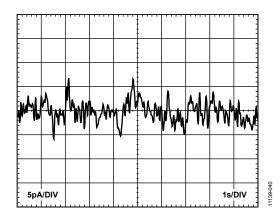
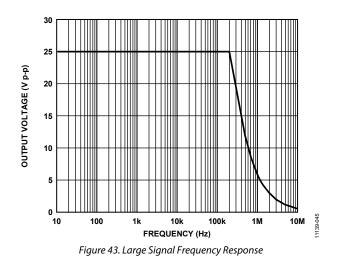



Figure 42. 0.1 Hz to 10 Hz Current Noise

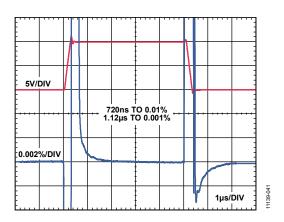


Figure 44. Large Signal Pulse Response and Settling Time (G = 1), 10 V Step, $V_S = \pm 15$ V, $R_L = 2$ k Ω , $C_L = 100$ pF

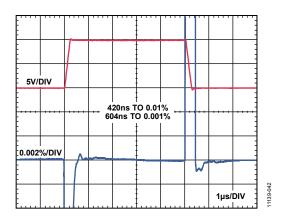


Figure 45. Large Signal Pulse Response and Settling Time (G = 10), 10 V Step, $V_S = \pm 15$ V, $R_L = 2$ k Ω , $C_L = 100$ pF

AD8421-EP

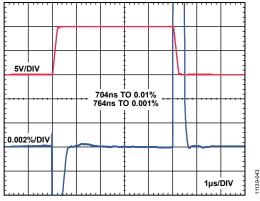


Figure 46. Large Signal Pulse Response and Settling Time (G = 100), 10 V Step, $V_S = \pm 15$ V, $R_L = 2$ k Ω , $C_L = 100$ pF

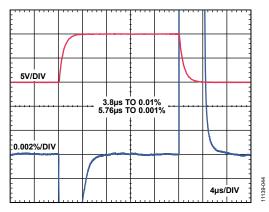


Figure 47. Large Signal Pulse Response and Settling Time (G = 1000), 10 V Step, V_S = \pm 15 V, R_L = 2 k Ω , C_L = 100 pF

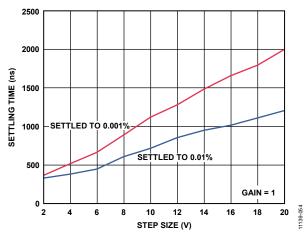


Figure 48. Settling Time vs. Step Size (G = 1), $R_L = 2 k\Omega$, $C_L = 100 pF$

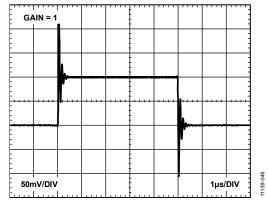


Figure 49. Small Signal Pulse Response (G = 1), $R_L = 600 \Omega$, $C_L = 100 pF$

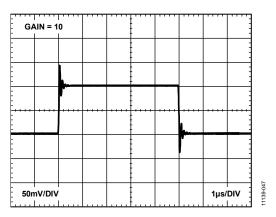


Figure 50. Small Signal Pulse Response (G = 10), $R_L = 600 \Omega$, $C_L = 100 pF$

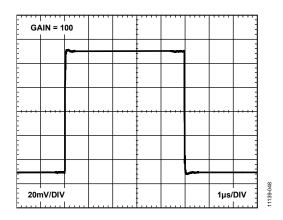


Figure 51. Small Signal Pulse Response (G = 100), $RL = 600 \Omega$, CL = 100 pF

Enhanced Product

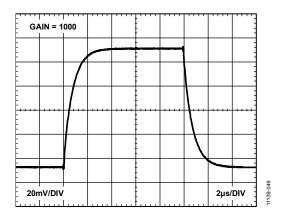


Figure 52. Small Signal Pulse Response (G = 1000), $R_L = 600 \Omega$, $C_L = 100 pF$

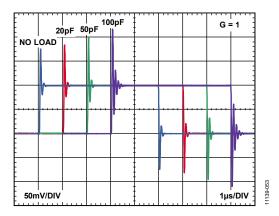


Figure 53. Small Signal Response with Various Capacitive Loads (G = 1), $R_L = Infinity$

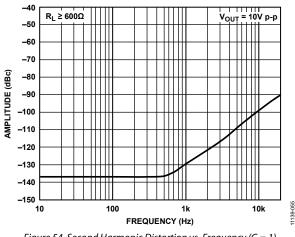


Figure 54. Second Harmonic Distortion vs. Frequency (G = 1)

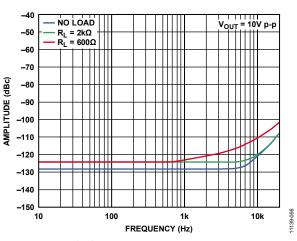
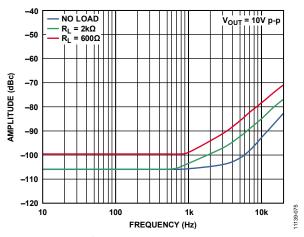
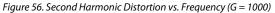




Figure 55. Third Harmonic Distortion vs. Frequency (G = 1)

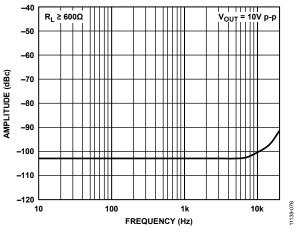
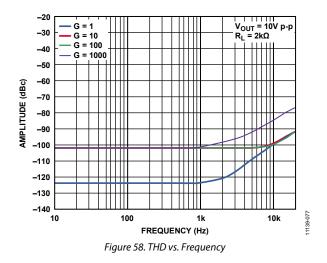



Figure 57. Third Harmonic Distortion vs. Frequency (G = 1000)

AD8421-EP

OUTLINE DIMENSIONS

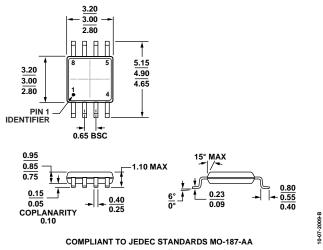


Figure 59. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding
AD8421TRMZ-EP	-55°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	Y4T
AD8421TRMZ-EP-R7	-55°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	Y4T

 1 Z = RoHS Compliant Part.

NOTES

NOTES

©2013 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D11139-0-5/12(0)

www.analog.com