feATURES

- Stable in Gain $A_{V} \geq 2\left(A_{V}=-1\right)$
- 200MHz Gain Bandwidth Product
- 30V/us Slew Rate
- Settling Time: 800 ns ($150 \mu \mathrm{~V}$, 10V Step)
- Specified at $\pm 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$ Supplies
- Maximum Input Offset Voltage: $125 \mu \mathrm{~V}$
- Low Distortion: -96.5dB for $100 \mathrm{kHz}, 10 \mathrm{~V}$ p-p
- Maximum Input Offset Voltage Drift: $3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Maximum Inverting Input Bias Current: 10nA
- Minimum DC Gain: $300 \mathrm{~V} / \mathrm{mV}$
- Minimum Output Swing into $2 k: \pm 12.8 \mathrm{~V}$
- Input Noise Voltage: $5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Input Noise Current: $0.6 \mathrm{pA} / \sqrt{\mathrm{Hz}}$
- Total Input Noise Optimized for $1 \mathrm{k} \Omega<\mathrm{R}_{\mathrm{S}}<20 \mathrm{k} \Omega$
- Available in 8 -Lead Plastic SO and

12-Lead ($4 \mathrm{~mm} \times 4 \mathrm{~mm}$) DFN Packages

APPLICATIONS

- Precision Instrumentation
- High Accuracy Data Acquisition Systems
- 16-Bit DAC Current-to-Voltage Converter
- ADC Buffer
- Low Distortion Active Filters
- Photodiode Amplifiers

DESCRIPTIOn

The LT®1469-2 is a dual, precision high speed operational amplifier with 16-bit accuracy, decompensated to be stable in a gain of 2 or greater. The combination of precision and AC performance makes the LT1469-2 the optimum choice for high accuracy applications such as DAC current-to-voltage conversion and ADC buffers. The initial accuracy and drift characteristics of the input offset voltage and inverting input bias current are tailored for inverting applications.
The 200MHz gain bandwidth ensures high open-loop gain at frequency for reducing distortion. In noninverting applications such as an ADC buffer, the low distortion and DC accuracy allow full 16-bit AC and DC performance. The high slew rate of the LT1469-2 improves large-signal performance in applications such as active filters and instrumentation amplifiers compared to other precision op amps.

The LT1469-2 is specified on power supply voltages of $\pm 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$ and from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. It is available in an 8 -lead SOIC package and a space saving $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ leadless package. For a unity-gain stable op amp with same DC performance, see the LT1469 datasheet.
$\boldsymbol{\Sigma}$, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TYPICAL APPLICATION

200ns/DIV

LT 1469-2

ABSOLUTE MAXIMUM RATIOGS (Note 1)

Total Supply Voltage (V^{+}to V^{-})
Input Current (Note 2)
\qquad
\qquad
\qquad36V

Output Short-Circuit Duration (Note 3) Indefinite Operating Temperature Range (Note 4).... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Specified Temperature Range (Note 5) $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Maximum Junction Temperature.......................... $150^{\circ} \mathrm{C}$
Storage Temperature Range................... $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

PIn COnfiguration

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LT1469CS8-2\#PBF	LT1469CS8-2\#TRPBF	14692	8 -Lead Plastic Small Outline	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT1469IS8-2\#PBF	LT1469IS8-2\#TRPBF	14692	8 -Lead Plastic Small Outline	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1469ACDF-2\#PBF	LT1469ACDF-2\#TRPBF	14692	12 -Lead (4mm $\times 4 \mathrm{~mm})$ Plastic DFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT1469AIDF-2\#PBF	LT1469AIDF-2\#TRPBF	14692	12 -Lead (4mm $\times 4 \mathrm{~mm})$ Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1469CDF-2\#PBF	LT1469CDF-2\#TRPBF	14692	$12-$ Lead (4mm $\times 4 \mathrm{~mm})$ Plastic DFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT1469IDF-2\#PBF	LT1469IDF-2\#TRPBF	14692	$12-$ Lead (4mm $\times 4 \mathrm{~mm})$ Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating

 temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{CM}}=\mathrm{OV}$ unless otherwise noted.| SYMBOL | PARAMETER | CONDITIONS | $V_{\text {SUPPLY }}$ | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {OS }}$ | Input Offset Voltage | S8 Package | $\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$ | | $\begin{aligned} & 50 \\ & 50 \end{aligned}$ | $\begin{aligned} & 125 \\ & 200 \end{aligned}$ | $\mu \mathrm{V}$ $\mu \mathrm{V}$ |
| | | LT1469A, DF Package | $\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$ | | $\begin{aligned} & 50 \\ & 50 \end{aligned}$ | $\begin{aligned} & 125 \\ & 200 \end{aligned}$ | ${ }_{\mu \mathrm{V}}^{\mu \mathrm{V}}$ |
| | | LT1469, DF Package | $\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$ | | $\begin{aligned} & 100 \\ & 150 \end{aligned}$ | $\begin{aligned} & 225 \\ & 300 \end{aligned}$ | $\mu \mathrm{V}$ $\mu \mathrm{V}$ |
| Ios | Input Offset Current | | $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ | | 13 | ± 50 | nA |
| | | | | | | | $14692 f$ |

ELECTRICAL CHARACTERISTICS The o denotes the specifications which apply vere the full operating
temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CM}}=\mathrm{OV}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	$V_{\text {SUPPLY }}$	MIN	TYP	MAX	UNITS	
$\mathrm{I}_{\mathrm{B}}{ }^{-}$	Inverting Input Bias Current		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		3	± 10	nA	
$\mathrm{I}_{\mathrm{B}+}$	Noninverting Input Bias Current		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		-10	± 40	nA	
	Input Noise Voltage	0.1 Hz to 10Hz	$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		0.3		$\mu \mathrm{VP-P}$	
e_{n}	Input Noise Voltage Density	$\mathrm{f}=10 \mathrm{kHz}$	$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		5		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$	
in_{n}	Input Noise Current Density	$\mathrm{f}=10 \mathrm{kHz}$	$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		0.6		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$	
$\mathrm{R}_{\text {IN }}$	Input Resistance	Common Mode, $\mathrm{V}_{\mathrm{CM}}= \pm 12.5 \mathrm{~V}$ Differential	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$	$\begin{gathered} 100 \\ 50 \end{gathered}$	$\begin{aligned} & 240 \\ & 150 \end{aligned}$		$\mathrm{M} \Omega$	
$\mathrm{C}_{\text {IN }}$	Input Capacitance		$\pm 15 \mathrm{~V}$		4		pF	
$\mathrm{V}_{\text {CM }}$	Input Voltage Range (Positive)	Guaranteed by CMRR	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 12.5 \\ 2.5 \end{gathered}$	$\begin{gathered} 13.5 \\ 3.6 \end{gathered}$		V	
	Input Voltage Range (Negative)	Guaranteed by CMRR	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{gathered} -14.3 \\ -4.4 \end{gathered}$	$\begin{gathered} -12.5 \\ -2.5 \end{gathered}$	V	
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}= \pm 12.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}= \pm 2.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 96 \\ & 96 \end{aligned}$	$\begin{aligned} & 110 \\ & 112 \end{aligned}$		dB dB	
	Minimum Supply Voltage	Guaranteed by PSRR			± 2.5	± 4.5	V	
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 4.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		100	112		dB	
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{\text {OUT }}= \pm 12.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & V_{\text {OUT }}= \pm 12.5 \mathrm{~V}, R_{\mathrm{L}}=2 \mathrm{k} \\ & V_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & V_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 300 \\ & 300 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2000 \\ & 8000 \\ & 8000 \end{aligned}$		V / mV V / mV V / mV V / mV	
V $\overline{\text { OUT }}$	Maximum Output Swing	$R_{L}=10 \mathrm{k}, 1 \mathrm{mV}$ Overdrive $R_{L}=2 k, 1 \mathrm{mV}$ Overdrive $R_{L}=10 \mathrm{k}, 1 \mathrm{mV}$ Overdrive $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}, 1 \mathrm{mV}$ Overdrive	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} \pm 13.0 \\ \pm 12.8 \\ \pm 3.0 \\ \pm 2.8 \end{gathered}$	$\begin{gathered} \pm 13.6 \\ \pm 13.5 \\ \pm 3.7 \\ \pm 3.6 \end{gathered}$		V V V V	
IOUT	Maximum Output Current	$\mathrm{V}_{\text {OUT }}= \pm 12.5 \mathrm{~V}, 1 \mathrm{mV}$ Overdrive $V_{\text {OUt }}= \pm 2.5 \mathrm{~V}, 1 \mathrm{mV}$ Overdrive	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \pm 15 \\ & \pm 15 \end{aligned}$	$\begin{aligned} & \pm 22 \\ & \pm 22 \end{aligned}$		mA mA	
$\mathrm{I}_{\text {SC }}$	Output Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, 0.2 \mathrm{~V}$ Overdrive (Note 3)	$\pm 15 \mathrm{~V}$	± 25	± 40		mA	
SR	Slew Rate	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$ (Note 6)	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & 30 \\ & 22 \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$	
FPBW	Full-Power Bandwidth	10V Peak, (Note 7) 3V Peak, (Note 7)	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{gathered} \hline 475 \\ 1160 \end{gathered}$		$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$	
GBW	Gain Bandwidth Product	$f=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 140 \\ & 130 \end{aligned}$	$\begin{aligned} & 200 \\ & 190 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$	
t_{S}	Settling Time	$\begin{aligned} & 10 \mathrm{~V} \text { Step, } 0.01 \%, A_{V}=-1 \\ & 10 \mathrm{~V} \text { Step, } 150 \mu \mathrm{~V}, A_{V}=-1 \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 650 \\ & 800 \end{aligned}$		ns	
R ${ }_{\text {OUT }}$	Output Resistance	$\mathrm{A}_{V}=-1, \mathrm{f}=100 \mathrm{kHz}$	$\pm 15 \mathrm{~V}$		0.02		Ω	
	Channel Separation	$\begin{aligned} & V_{\text {OUT }}= \pm 12.5 \mathrm{~V}, R_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, R_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 130 \\ & 130 \end{aligned}$		dB dB	
I_{S}	Supply Current	Per Amplifier	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 4.1 \\ & 3.8 \end{aligned}$	$\begin{gathered} 5.2 \\ 5 \end{gathered}$	mA	
$\overline{\Delta V_{0 S}}$	Input Offset Voltage Match		$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 30 \\ & 50 \end{aligned}$	$\begin{aligned} & 225 \\ & 350 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$	
$\left.\Delta\right\|_{B^{-}}$	Inverting Input Bias Current Match		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		2	18	nA	
$\Delta \\|_{B^{+}}$	Noninverting Input Bias Current Match		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		5	78	nA	
\triangle CMRR	Common Mode Rejection Match	$\begin{aligned} & V_{C M}= \pm 12.5 \mathrm{~V} \text { (Note 9) } \\ & \left.\mathrm{V}_{\mathrm{CM}}= \pm 2.5 \mathrm{~V} \text { (Note } 9\right) \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \hline 93 \\ & 93 \end{aligned}$	$\begin{aligned} & 113 \\ & 115 \end{aligned}$		dB dB	
\triangle PSRR	Power Supply Rejection Match	$\mathrm{V}_{S}= \pm 4.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ (Note 9)		97	115		dB	

LT 1469-2

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating
 temperature range, $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$. $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	$V_{\text {SUPPLY }}$		MIN	TYP MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	S8 Package	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 350 \\ & 350 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
		LT1469A, DF Package	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet		$\begin{aligned} & 225 \\ & 275 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
		LT1469, DF Package	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet		$\begin{aligned} & 450 \\ & 450 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Input Offset Voltage Drift	(Note 8)	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet		$\begin{array}{ll} \hline 1 & 5 \\ 1 & 3 \end{array}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ios	Input Offset Current		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet		± 80	nA
$\Delta \mathrm{l}_{0 S} / \Delta \mathrm{T}$	Input Offset Current Drift	(Note 8)	$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet		60	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{B}}-$	Inverting Input Bias Current		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet		± 20	nA
$\Delta \mathrm{I}_{\mathrm{B}}-/ \Delta \mathrm{T}$	Inverting Input Bias Current Drift	(Note 8)	$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet		40	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{B}+}$	Noninverting Input Bias Current		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet		± 60	nA
$\mathrm{V}_{\text {CM }}$	Input Voltage Range (Positive)	Guaranteed by CMRR	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet	$\begin{gathered} \hline 12.5 \\ 2.5 \end{gathered}$		V
	Input Voltage Range (Negative)	Guaranteed by CMRR	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet		$\begin{gathered} \hline-12.5 \\ -2.5 \end{gathered}$	V
CMRR	Common Mode Rejection Ratio	$V_{\text {CM }}= \pm 12.5 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	\bullet	94		dB
		$\mathrm{V}_{\text {CM }}= \pm 2.5 \mathrm{~V}$	$\pm 5 \mathrm{~V}$	\bullet	94		dB
	Minimum Supply Voltage	Guaranteed by PSRR		\bullet		± 4.5	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 4.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		\bullet	95		dB
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{\text {OUT }}= \pm 12.5 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 12.5 \mathrm{~V}, R_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$		V / mV V / mV V / mV V / mV
$V_{\text {OUT }}$	Maximum Output Swing	$R_{L}=10 \mathrm{k}, 1 \mathrm{mV}$ Overdrive $R_{L}=2 k, 1 \mathrm{mV}$ Overdrive $R_{L}=10 \mathrm{k}, 1 \mathrm{mV}$ Overdrive $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}, 1 \mathrm{mV}$ Overdrive	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\stackrel{\bullet}{\bullet} \stackrel{-}{\bullet}$	$\begin{gathered} \pm 12.9 \\ \pm 12.7 \\ \pm 2.9 \\ \pm 2.7 \\ \hline \end{gathered}$		V V V V
IOUT	Maximum Output Current	$\mathrm{V}_{\text {OUT }}= \pm 12.5 \mathrm{~V}, 1 \mathrm{mV}$ Overdrive $V_{\text {OUt }}= \pm 2.5 \mathrm{~V}, 1 \mathrm{mV}$ Overdrive	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet	$\begin{aligned} & \pm 12.5 \\ & \pm 12.5 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
ISC	Output Short-Circuit Current	$\mathrm{V}_{\text {Out }}=0 \mathrm{~V}, 0.2 \mathrm{~V}$ Overdrive (Note 3)	$\pm 15 \mathrm{~V}$	\bullet	± 17		mA
SR	Slew Rate	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$ (Note 6)	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet	$\begin{aligned} & \hline 18 \\ & 13 \end{aligned}$		V/ $/$ s V/ $\mu \mathrm{s}$
GBW	Gain Bandwidth Product	$\mathrm{f}=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet	$\begin{aligned} & 130 \\ & 120 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 190 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
	Channel Separation	$\begin{aligned} & V_{\text {OUT }}= \pm 12.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \hline \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet	$\begin{aligned} & 98 \\ & 98 \end{aligned}$		dB dB
Is	Supply Current	Per Amplifier	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet		$\begin{aligned} & 6.5 \\ & 6.3 \end{aligned}$	$\overline{\mathrm{mA}}$
$\overline{\Delta V_{0 S}}$	Input Offset Voltage Match		$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet		$\begin{aligned} & 600 \\ & 600 \\ & \hline \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
$\Delta \mathrm{I}_{\mathrm{B}^{-}}$	Inverting Input Bias Current Match		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet		38	nA
$\Delta \mathrm{l}_{\mathrm{B}^{+}}$	Noninverting Input Bias Current Match		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet		118	nA
$\triangle \mathrm{CMRR}$	Common Mode Rejection Match	$\begin{aligned} & V_{\mathrm{CM}}= \pm 12.5 \mathrm{~V} \text { (Note 9) } \\ & \mathrm{V}_{\mathrm{CM}}= \pm 2.5 \mathrm{~V} \text { (Note 9) } \\ & \hline \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet	$\begin{aligned} & 91 \\ & 91 \\ & \hline \end{aligned}$		dB dB
\triangle PSRR	Power Supply Rejection Match	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ (Note 9)		\bullet	92		dB
							$14692 ¢$

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating
temperature range, $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS	$V_{\text {SUPPLY }}$		MIN	TYP MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	S8 Package	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet		$\begin{aligned} & 500 \\ & 500 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
		LT1469A, DF Package	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet		$\begin{aligned} & 300 \\ & 350 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
		LT1469, DF Package	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	0		$\begin{aligned} & 600 \\ & 600 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
$\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}$	Input Offset Voltage Drift	(Note 8)	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet		$\begin{array}{ll} \hline 1 & 6 \\ 1 & 5 \end{array}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ios	Input Offset Current		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet		± 120	nA
$\Delta \mathrm{l}_{\text {OS }} / \Delta \mathrm{T}$	Input Offset Current Drift	(Note 8)	$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet		120	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{B}}-$	Inverting Input Bias Current		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet		± 40	nA
$\Delta \mathrm{I}_{\mathrm{B}}-/ \Delta \mathrm{T}$	Inverting Input Bias Current Drift	(Note 8)	$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet		80	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\mathrm{B}}+$	Noninverting Input Bias Current		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet		± 80	nA
$\mathrm{V}_{\text {CM }}$	Input Voltage Range (Positive)	Guaranteed by CMRR	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet	$\begin{gathered} \hline 12.5 \\ 2.5 \end{gathered}$		V
	Input Voltage Range (Negative)	Guaranteed by CMRR	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet		$\begin{gathered} \hline-12.5 \\ -2.5 \end{gathered}$	V
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}= \pm 12.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}= \pm 2.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 92 \\ & 92 \end{aligned}$	± 4.5	dB dB
	Minimum Supply Voltage	Guaranteed by PSRR		\bullet			V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 4.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		\bullet	93		dB
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{\text {OUT }}= \pm 12,5 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 12.5 \mathrm{~V}, R_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & 75 \\ & 75 \\ & 75 \\ & 75 \\ & \hline \end{aligned}$		V / mV V / mV V / mV V / mV
$V_{\text {OUT }}$	Maximum Output Swing	$\begin{aligned} & R_{L}=10 k, 1 \mathrm{mV} \text { Overdrive } \\ & R_{L}=2 k, 1 \mathrm{mV} \text { Overdrive } \\ & R_{L}=10 \mathrm{k}, 1 \mathrm{mV} \text { Overdrive } \\ & R_{L}=2 k, 1 \mathrm{mV} \text { Overdrive } \\ & \hline \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\stackrel{\bullet}{\bullet}$	$\begin{gathered} \pm 12.8 \\ \pm 12.6 \\ \pm 2.8 \\ \pm 2.6 \end{gathered}$		V V V V
IOUT	Maximum Output Current	$\mathrm{V}_{\text {OUT }}= \pm 12.5 \mathrm{~V}$, 1 mV Overdrive $\mathrm{V}_{\text {OUt }}= \pm 2.5 \mathrm{~V}, 1 \mathrm{mV}$ Overdrive	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet	$\begin{aligned} & \pm 7 \\ & +7 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\underline{\text { IS }}$	Output Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, 0.2 \mathrm{~V}$ Overdrive (Note 3)	$\pm 15 \mathrm{~V}$	\bullet	± 12		mA
SR	Slew Rate	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$ (Note 6)	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet	$\begin{aligned} & 15 \\ & 11 \end{aligned}$		V/ $/ \mathrm{s}$ $\mathrm{V} / \mathrm{\mu s}$
GBW	Gain Bandwidth Product	$f=100 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet	$\begin{aligned} & 110 \\ & 100 \end{aligned}$	$\begin{aligned} & 200 \\ & 190 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
	Channel Separation	$\begin{aligned} & V_{\text {OUT }}= \pm 12.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & 96 \\ & 96 \\ & \hline \end{aligned}$		dB dB
IS	Supply Current	Per Amplifier	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet		$\begin{gathered} \hline 7 \\ 6.8 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{OS}$	Input Offset Voltage Match		$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	\bullet		$\begin{aligned} & 800 \\ & 800 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
$\Delta \mathrm{I}_{\mathrm{B}}-$	Inverting Input Bias Current Match		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet		78	nA
$\Delta \mathrm{l}_{\mathrm{B}}+$	Noninverting Input Bias Current Match		$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet		158	nA
$\Delta \mathrm{CMRR}$	Common Mode Rejection Match	$\begin{aligned} & V_{\mathrm{CM}}= \pm 12.5 \mathrm{~V} \text { (Note 9) } \\ & \mathrm{V}_{\mathrm{CM}}= \pm 2.5 \mathrm{~V} \text { (Note 9) } \end{aligned}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & +5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 89 \\ & 89 \end{aligned}$		dB dB
$\underline{\triangle \text { PSRR }}$	Power Supply Rejection Match	$\mathrm{V}_{S}= \pm 4.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ ((Note 9)		\bullet	90		dB
							146929

LT1469-2

ELECTRICAL CHARACTERISTICS

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The inputs are protected by back-to-back diodes and two 100Ω series resistors. If the differential input voltage exceeds 0.7 V , the input current should be limited to less than 10 mA . Input voltages outside the supplies will be clamped by ESD protection devices and input currents should also be limited to less than 10 mA .
Note 3: A heat sink may be required to keep the junction temperature below absolute maximum when the output is shorted indefinitely.
Note 4: The LT1469C-2 and LT1469I-2 are guaranteed functional over the operating temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Note 5: The LT1469C-2 is guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and is designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but is not tested or QA sampled at these temperatures. The LT1469I-2 is guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 6: Slew rate is measured between $\pm 8 \mathrm{~V}$ on the output with $\pm 12 \mathrm{~V}$ swing for $\pm 15 \mathrm{~V}$ supplies and $\pm 2 \mathrm{~V}$ on the output with $\pm 3 \mathrm{~V}$ swing for $\pm 5 \mathrm{~V}$ supplies. Tested in $A_{V}=-10$
Note 7: Full-power bandwidth is calculated from the slew rate.
FPBW $=\mathrm{SR} / 2 \pi \mathrm{~V}_{\mathrm{p}}$.
Note 8: This parameter is not 100% tested.
Note 9: Δ CMRR and \triangle PSRR are defined as follows: 1) CMRR and PSRR are measured in $\mu \mathrm{V} / \mathrm{V}$ on each amplifier; 2) the difference between the two sides is calculated in $\mu \mathrm{V} / \mathrm{V} ; 3$) the result is converted to dB .

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

Input Bias Current vs Temperature

14692 G07

Output Voltage Swing vs Supply Voltage

14692 G10

> Open-Loop Gain vs Resistive Load

Input Bias Current
vs Input Common Mode Voltage

14692 G08
Output Voltage Swing
vs Load Current

14692 G11
Open-Loop Gain
vs Temperature

14692 G14

Input Common Mode Range
vs Supply Voltage

Output Short-Circuit Current vs Temperature

14692 G12

TYPICAL PERFORMANCE CHARACTERISTICS

Settling Time vs Output Step,
$A_{V}=-1$

Large-Signal Transient, $A_{V}=-1$

Small-Signal Transient, $A_{V}=-1$

APPLICATIONS INFORMATION

Gain of 2 Stable

The LT1469-2 is a decompensated version of the LT1469. The DC precision performance is identical, but the internal compensation capacitors have been reduced to a point where the op amp needs a gain of 2 or greater in order to be stable.
In general, for applications where the gain around the op amp is ≥ 2, the decompensated version should be used, because it will give the best AC performance. In applications where the gain is <2, the unity-gain stable version should be used.

The appropriate way to define the 'gain' is as the inverse of the feedback ratio from output to differential input, including all relevant parasitics. Moreover, as with all feedback loops, the stability of the loop depends on the value of that feedback ratio at frequencies where the total loop-gain would cross unity. Therefore, it is possible to have circuits in which the gain at DC is lower than the gain at high frequency, and these circuits can be stable even with a non unity-gain stable op amp. An example is many current-output DAC buffer applications.

Layout and Passive Components

The LT1469 requires attention to detail in board layout in order to maximize DC and AC performance. For best AC results (for example, fast settling time) use a ground plane, short lead lengths and RF quality bypass capacitors $(0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F})$ in parallel with low ESR bypass capacitors ($1 \mu \mathrm{Fto} 10 \mu \mathrm{~F}$ tantalum). For best DC performance, use "star" grounding techniques, equalize input trace lengths and minimize leakage (e.g., 1.5G Ω of leakage between an

Figure 1. Nulling Input Capacitance
input and a 15 V supply will generate 10 nA —equal to the maximum $I_{B}-$ specification).
Board leakage can be minimized by encircling the input circuitry with a guard ring operated at a potential close to that of the inputs: for inverting configurations tie the ring to ground, in noninverting connections tie the ring to the inverting input (note the input capacitance will increase which may require a compensating capacitor as discussed below).

Microvolt level error voltages can also be generated in the external circuitry. Thermocouple effects caused by temperature gradients across dissimilar metals at the contacts to the inputs can exceed the inherent drift of the amplifier. Air currents over device leads should be minimized, package leads should be short and the two input leads should be as close together as possible and maintained at the same temperature.
The parallel combination of the feedback resistor and gain setting resistor on the inverting input can combine with the input capacitance to form a pole which can cause peaking or even oscillations. A feedback capacitor of value C_{F} $=R_{G} \bullet C_{I_{N}} / R_{F}$ may be used to cancel the input pole and optimize dynamic performance. For applications where the DC noise gain is one, and a large feedback resistor is used, C_{F} should be less than or equal to one half of C_{IN}. An example would be a DAC I-to-V converter as shown on the front page of the data sheet where the DAC can have many tens of picofarads of output capacitance.

Figure 2. Input Stage Protection

LT 1469-2

APPLICATIONS INFORMATION

Input Considerations

Each input of the LT1469 is protected with a 100Ω series resistor and back-to-back diodes across the bases of the input devices. If large differential input voltages are anticipated, limit the input current to less than 10 mA with an external series resistor. Each input also has two ESD clamp diodes-one to each supply. If an input is driven beyond the supply, limit the current with an external resistor to less than 10 mA .

The LT1469 employs bias current cancellation at the inputs. The inverting input current is trimmed at zero common mode voltage to minimize errors in inverting applications such as I-to-V converters. The noninverting input current is not trimmed and has a wider variation and therefore a larger maximum value. As the input offset current can be greater than either input current, the use of balanced source resistance is NOT recommended as it actually degrades DC accuracy and also increases noise.

The input bias currents vary with common mode voltage. The cancellation circuitry was not designed to track this common mode voltage because the settling time would have been adversely affected.

The LT1469 inputs can be driven to the negative supply and to within 0.5 V of the positive supply without phase reversal. As the input moves closer than 0.5 V to the positive supply, the output reverses phase.

Total Input Noise

The total input noise of the LT1469 is optimized for a source resistance between 1 k and 20k. Within this range, the total input noise is dominated by the noise of the source resistance itself. When the source resistance is below 1 k , voltage noise of the amplifier dominates. When the source resistance is above 20 k , the input noise current is the dominant contributor.

SImPLIFIED SCHEmATIC

PACKAGE DESCRIPTION

S8 Package

8-Lead Plastic Small Outline (Narrow 0.150)
(Reference LTC DWG \# 05-08-1610)

DF Package
12-Lead Plastic DFN (4mm $\times 4 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1773 Rev Ø)

Information furnished by Linear Technology Corporation is believed to be accurate and reliable However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

LT 1469-2

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1167	Precision Instrumentation Amplifier	Single Resistor Gain Set, 0.04\% Max Gain Error, 10ppm Max Gain Nonlinearity
LT1468	Single 90MHz, 22V/ $\mu \mathrm{s}$, 16-Bit Accurate Op Amp	75μ V Max V ${ }_{0 S}$, Single Version of LT1469
LTC1595/LTC1596	16-Bit Serial Multiplying Iout DAC	± 1 LSB Max INL/DNL, Low Glitch, DAC8043 16-Bit Upgrade
LTC1597	16-Bit Parallel Multiplying Iout DAC	± 1 LSB Max INL/DNL, Low Glitch, On-Chip Bipolar Resistors
LTC1604	16-Bit, 333ksps Sampling ADC	$\pm 2.5 \mathrm{~V}$ Input, SINAD = 90dB, THD $=-100 \mathrm{~dB}$
LTC1605	Single 5V, 16-Bit, 100ksps Sampling ADC	Low Power, $\pm 10 \mathrm{~V}$ Inputs, Paralle/Byte Interface

