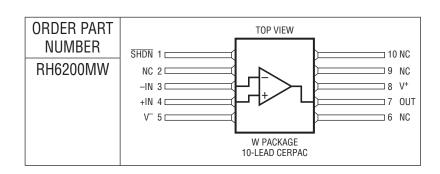


Low Noise, High Speed Rail-to-Rail Op Amp

DESCRIPTION

The RH6200 is an ultralow noise, rail-to-rail input and output unity-gain stable op amp that features $0.95 \text{nV}/\sqrt{\text{Hz}}$ noise voltage. This amplifier combines very low noise with a 165MHz gain bandwidth, $50 \text{V}/\mu\text{s}$ slew rate and is optimized for low voltage signal conditioning systems. A shutdown pin reduces supply current during standby conditions and thermal shutdown protects the part from overload conditions. The RH6200 maintains its pre-irradiation performance for supplies from 4.5V to 12.6V and is specified pre- and post-radiation at 5V and $\pm 5\text{V}$.

ABSOLUTE MAXIMUM RATINGS (Note 1)


Total Supply Voltage (V+ to V ⁻)	12.6V
Input Current (Note 2)	±40mA
Output Short-Circuit Duration (Note 3)	Indefinite
Pin Current While Exceeding Supplies (Note	e 4)±30mA
Operating Junction Temperature Range	
(Note 5)5	5°C to 125°C
Storage Temperature Range6	5°C to 150°C
Lead Temperature (Soldering, 10 sec)	300°C

[∠]T, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

BURN-IN CIRCUIT

10k 6.3V 8 200Ω 4 10k -6.3V

PACKAGE/ORDER INFORMATION

TABLE 1: ELECTRICAL CHARACTERISTICS (Preirradiation)

					T _A = 25°C SUB		SUB-	SUB55°C ≤ T _A ≤ 125°C		125°C	SUB-	
SYMBOL	PARAMETER	CONDITIONS	NOTES	MIN	TYP	MAX	GROUP	MIN	TYP	MAX	GROUP	UNITS
$\overline{V_{OS}}$	Input Offset	$V_S = 5V$, 0V; $V_{CM} = V^-$ to V^+			0.6	2	1			4	2,3	mV
	Voltage	$V_S = \pm 5V$; $V_{CM} = V^- \text{ to } V^+$			2.5	6	1			9	2,3	mV
I _B	Input Bias Current	$V_S = 5V, 0V; V_{CM} = V^+$			8	18	1			20	2,3	μА
_		$V_S = 5V, 0V; V_{CM} = V^-$		-50	-23		1	-100			2,3	μA
		$V_S = \pm 5V; V_{CM} = V^+$			8	18	1			20	2,3	μA
		$V_S = \pm 5V; V_{CM} = V^-$		-50	-23		1	-200			2,3	μA
I _{OS}	Input Offset	$V_S = 5V, 0V; V_{CM} = V^+$			0.02	4	1			5	2,3	μА
	Current	$V_S = 5V$, 0V; $V_{CM} = V^-$			0.4	5	1			25	2,3	μA
		$V_S = \pm 5V; V_{CM} = V^+$			1	7	1			12	2,3	μA
		$V_S = \pm 5V; V_{CM} = V^-$			3	12	1			50	2,3	μA

rh6200mfa

TABLE 1: ELECTRICAL CHARACTERISTICS (Preirradiation)

					T _A = 25°C		SUB-	-55°C ≤ T _A ≤ 125°C			SUB-	
SYMBOL	PARAMETER	CONDITIONS	NOTES	MIN	TYP	MAX	GROUP	MIN	TYP	MAX	GROUP	UNITS
	Input Noise Voltage	0.1Hz to 10Hz	6		600							nV _{P-P}
e _n	Input Noise Voltage Density	$V_S = 5V$, 0V; f = 100kHz $V_S = 5V$, 0V; f = 10kHz $V_S = \pm 5V$; f = 100kHz $V_S = \pm 5V$; f = 10kHz	6		1.1 1.5 0.95 1.4	2.4 2.3						nV/√Hz nV/√Hz nV/√Hz nV/√Hz
i _n	Input Noise Current Density	f = 10kHz Balanced Source f = 10kHz Unbalanced Source	6 6		2.2 3.5							pA/√Hz pA/√Hz
A _{VOL}	Large Signal Open-Loop Voltage Gain	$ \begin{array}{l} V_S = 5V, 0V; R_L = 1k; V_{OUT} = 0.5V \ to \ 4.5V \\ V_S = 5V, 0V; R_L = 100\Omega; V_{OUT} = 1V \ to \ 4V \\ V_S = 5V, 0V; R_L = 100\Omega; V_{OUT} = 1.5V \ to \ 3.5V \\ V_S = \pm 5V; R_L = 1k; V_{OUT} = \pm 4.5V \\ V_S = \pm 5V; R_L = 100\Omega; V_{OUT} = \pm 2V \\ \end{array} $		70 11 115 15	120 18 200 26		4 4 4 4	35 5.5 40 7			5,6 5,6 5,6 5,6	V/mV V/mV V/mV V/mV
CMRR	Common Mode Rejection Ratio	$V_S = 5V$, 0V; $V_{CM} = 0V$ to 5V $V_S = 5V$, 0V; $V_{CM} = 1.5V$ to 3.5V $V_S = \pm 5V$; $V_{CM} = \pm 5V$ $V_S = \pm 5V$; $V_{CM} = \pm 2V$		65 85 68 75	90 112 96 100		1 1 1 1	58 76 63 72			2,3 2,3 2,3 2,3	dB dB dB dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 2.25 V \text{ to } \pm 5 V$		60	68		1	58			2,3	dB
V _{0L}	Output Voltage Swing Low	$ \begin{array}{l} V_S = 5 V, 0 V; I_L = 0 \\ V_S = 5 V, 0 V; I_L = 5 mA \\ V_S = 5 V, 0 V; I_L = 20 mA \\ V_S = \pm 5 V; I_L = 0 \\ V_S = \pm 5 V; I_L = 5 mA \\ V_S = \pm 5 V; I_L = 20 mA \\ \end{array} $			9 50 150 12 55 150	50 100 290 50 110 290	4 4 4 4 4 4			100 150 350 100 150 350	5,6 5,6 5,6 5,6 5,6 5,6	mV mV mV mV mV
V _{OH}	Output Voltage Swing High	$ \begin{array}{l} V_S = 5 V, \ 0 V; \ I_L = 0 \\ V_S = 5 V, \ 0 V; \ I_L = 5 mA \\ V_S = 5 V, \ 0 V; \ I_L = 20 mA \\ V_S = \pm 5 V; \ I_L = 0 \\ V_S = \pm 5 V; \ I_L = 5 mA \\ V_S = \pm 5 V; \ I_L = 20 mA \\ \end{array} $			55 95 220 70 110 225	110 190 400 130 210 420	4 4 4 4 4 4			150 250 500 200 275 550	5,6 5,6 5,6 5,6 5,6 5,6	mV mV mV mV mV
I _{SC}	Short-Circuit Current	$V_S = 5V$, $0V$ or $V_S = \pm 5V$		±60	±90		1	±45			2,3	mA
I _S	Supply Current	$V_S = 5V$, $0V$ $V_S = \pm 5V$			16.5 20	20 23	1			30 35	2,3 2,3	mA mA
I _{S(SHDN)}	Shutdown Supply Current	$V_S = 5V, 0V V_S = \pm 5V$			1.3 1.6	1.8 2.1	1			2.2 2.5	2,3 2,3	mA mA
I _{SHDN}	Shutdown Pin Current	$V_S = 5V$, 0V or $V_S = \pm 5V$; $V_{SHDN} = 0.3V$		-280	-200		1	-300			2,3	μА
t _{ON}	Turn-On Time	SHDN from Low to High	6		180							ns
t _{OFF}	Turn-On Time	SHDN from High to Low	6		180							ns
GBW	Gain Bandwidth Product	$V_S = 5V$, 0V; at f = 1MHz $V_S = \pm 5V$; at f = 1MHz	6	110	145 165							MHz MHz
SR	Slew Rate	$V_S = 5V$, 0V; $A_V = -1$; $R_L = 1k$; $V_0 = 4V$ $V_S = \pm 5V$; $A_V = -1$, $R_L = 1k$; $V_0 = 4V$		31 35	44 50		4 4					V/µs V/µs

TABLE 1A: ELECTRICAL CHARACTERISTICS (Postirradiation) TA = 25°C

			10KR	AD(Si)	20KR	AD(Si)	50KR	AD(Si)			200KR	200KRAD(Si)	
SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
V _{0S}	Input Offset Voltage	$V_S = 5V$, 0V; $V_{CM} = V^- \text{ to } V^+$ $V_S = \pm 5V$; $V_{CM} = V^- \text{ to } V^+$		2.2 6.5		2.4 7		2.6 7.5		2.8 8		3 8.5	mV mV
I _B	Input Bias Current	$ \begin{aligned} &V_S = 5V, 0V, V_{CM} = V^+ \\ &V_S = 5V, 0V, V_{CM} = V^- \\ &V_S = \pm 5V, V_{CM} = V^+ \\ &V_S = \pm 5V, V_{CM} = V^- \end{aligned} $	-55 -55	20 20	-60 -60	22 22	-65 -65	24 24	-70 -70	26 26	-75 -75	28 28	μΑ μΑ μΑ μΑ
I _{OS}	Input Offset Current	$ \begin{array}{l} V_S = 5V, \ 0V; \ V_{CM} = V^+ \\ V_S = 5V, \ 0V; \ V_{CM} = V^- \\ V_S = \pm 5V; \ V_{CM} = V^+ \\ V_S = \pm 5V; \ V_{CM} = V^- \end{array} $		5 6 8 13		6 7 9 14		7 8 10 15		8 9 11 16		9 10 12 17	μΑ μΑ μΑ
A _{VOL}	Large Signal Open Loop Voltage Gain	$\begin{array}{l} V_S = 5 \text{V, 0V; R}_L = 1 \text{k; V}_{OUT} = 0.5 \text{V to } 4.5 \text{V} \\ V_S = 5 \text{V, 0V; R}_L = 100 \Omega; V_{OUT} = 1 \text{V to } 4 \text{V} \\ V_S = \pm 5 \text{V; R}_L = 1 \text{k; V}_{OUT} = \pm 4.5 \text{V} \\ V_S = \pm 5 \text{V; R}_L = 100 \Omega; V_{OUT} = \pm 2 \text{V} \end{array}$	65 10 110 13.5		60 9 100 12		55 8 90 10.5		50 7 80 9		45 6 70 7.5		V/mV V/mV V/mV V/mV
CMRR	Common Mode Rejection Ratio	$\begin{array}{l} V_S = 5V, 0V; V_{CM} = 0V \ to \ 5V \\ V_S = 5V, 0V; V_{CM} = 1.5V \ to \ 3.5V \\ V_S = \pm 5V; V_{CM} = \pm 5V \\ V_S = \pm 5V; V_{CM} = \pm 2V \end{array}$	64 84 67 74		63 83 66 73		62 82 65 72		61 81 64 71		60 80 63 70		dB dB dB dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 2.25V \text{ to } \pm 5V$	59		58		57		56		55		dB
V _{OL}	Output Voltage Swing Low	$V_S = 5V$, $0V$; $I_L = 0$ $V_S = 5V$, $0V$; $I_L = 5mA$ $V_S = 5V$, $0V$; $I_L = 20mA$ $V_S = \pm 5V$; $I_L = 0$ $V_S = \pm 5V$; $I_L = 5mA$ $V_S = \pm 5V$; $I_L = 20mA$		52 104 296 52 114 296		54 108 302 54 118 302		56 112 308 56 122 308		58 116 314 58 126 314		60 120 320 60 130 320	mV mV mV mV mV
V _{OH}	Output Voltage Swing High	$V_S = 5V$, $0V$; $I_L = 0$ $V_S = 5V$, $0V$; $I_L = 5mA$ $V_S = 5V$, $0V$; $I_L = 20mA$ $V_S = \pm 5V$; $I_L = 0$ $V_S = \pm 5V$; $I_L = 5mA$ $V_S = \pm 5V$; $I_L = 20mA$		114 198 415 134 218 430		118 206 430 138 226 455		122 214 445 142 234 470		126 222 460 146 242 485		130 230 475 150 250 500	mV mV mV mV mV
I _{SC}	Short-Circuit Current	$V_S = 5V$, 0V or $V_S = \pm 5V$		58		56		54		52		50	mA
Is	Supply Current	$V_S = 5V, 0V$ $V_S = \pm 5V$		20.4 23.4		20.8 23.8		21.2 24.2		21.6 24.6		22 25	mA mA
I _{S(SHDN)}	Shutdown Supply Current	$V_S = 5V, 0V$ $V_S = \pm 5V$		1.84 2.14		1.88 2.18		1.92 2.22		1.96 2.26		2 2.3	mA mA
I _{SHDN}	Shutdown Pin Current	$V_S = 5V$, 0V or $V_S = \pm 5V$; $V_{SHDN} = 0.3V$		-284		-288		-292		-296		-300	μА

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: Inputs are protected by back-to-back diodes. If the differential input voltage exceeds 0.7V, the input current must be limited to less than 40mA.

Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely.

Note 4: There are reverse-biased ESD diodes from all inputs and outputs to the respective supply pins. If these pins are forced beyond either supply, unlimited current will flow through these diodes. If the current is transient in nature and limited to less than 30mA, no damage to the device will occur.

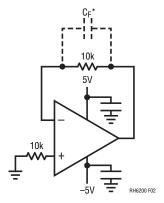
Note 5: The RH6200 is tested under pulse load conditions such that $T_J \approx T_A.$ The thermal resistance of the W 10-lead CERPAC package (without heat sink) is estimated at 170°C/W. For a given application, multiply the RMS power dissipation of the RH6200 times the package thermal resistance (including any heat sinking if present) to calculate the temperature difference between the ambient temperature and the junction temperature. The RH6200 has a thermal shutdown feature that protects the part from excessive junction temperature. The amplifier will shut down to an inactive, low current condition when the junction temperature exceeds approximately 160°C. The amplifier will remain shut down until the die cools off to below approximately 150°C, at which point the amplifier will return to normal operation.

Note 6: This parameter is not production tested. Typical bench evaluation performance listed for information only.

rh6200mfa

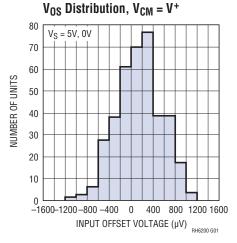
TABLE 2: ELECTRICAL TEST REQUIREMENTS

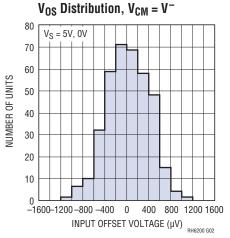
MIL-STD-883 TEST REQUIREMENTS	SUBGROUP
Final Electrical Test Requirements (Method 5004)	1*, 2, 3, 4, 5, 6
Group A Test Requirements (Method 5005)	1*, 2, 3, 4, 5, 6
Group B and D for Class S, End Point Electrical Parameters (Method 5005)	1, 2, 3

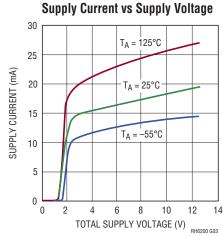

^{*}PDA applies to subgroup 1. See PDA Test Notes.

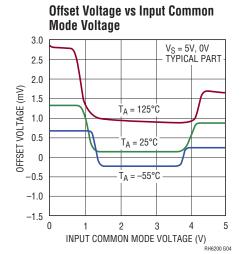
PDA Test Notes

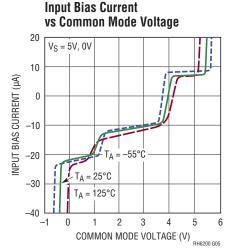
The PDA is specified as 5% based on failures from group A, subgroup 1, tests after cooldown as the final electrical test in accordance with method 5004 of MIL-STD-883. The verified failures of group A, subgroup 1, after burn-in divided by the total number of devices submitted for burn-in in that lot shall be used to determine the percent for the lot.

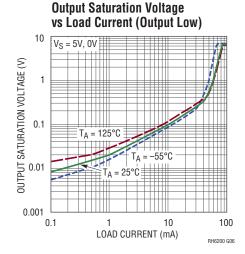

Linear Technology Corporation reserves the right to test to tighter limits than those given.

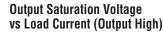

TOTAL DOSE BIAS CIRCUIT

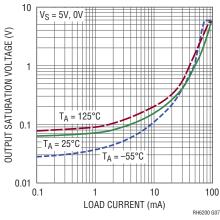


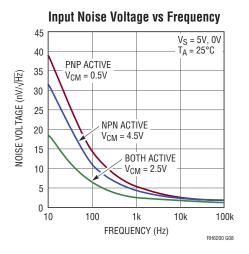

*C_F IS COMPONENT OR PARASITIC CAPACITANCE ENSURING STABILITY

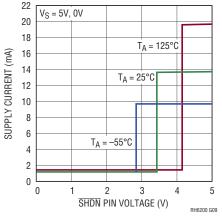

TYPICAL PERFORMANCE CHARACTERISTICS

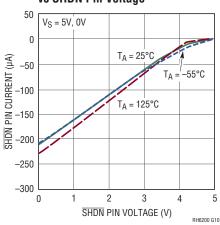


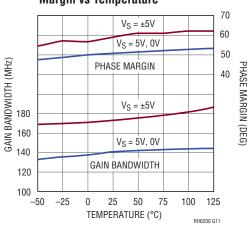


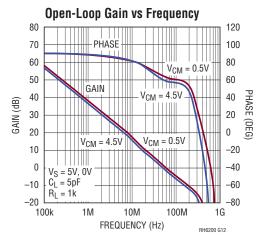


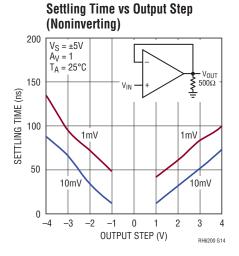


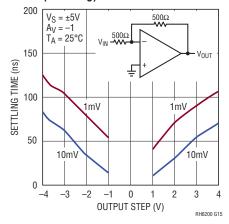


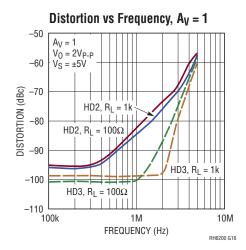


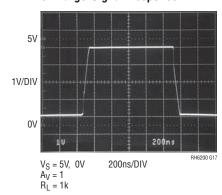

Supply Current vs SHDN Pin Voltage


SHDN Pin Current vs SHDN Pin Voltage

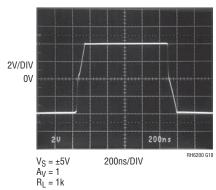

Gain Bandwidth and Phase Margin vs Temperature

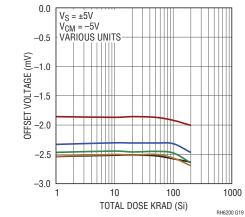

rh6200mfa

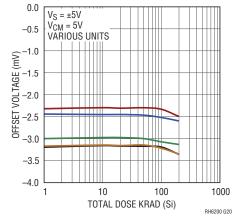


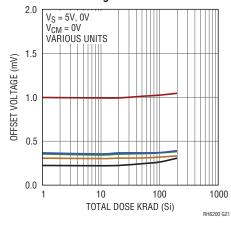


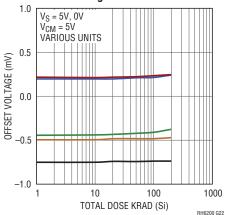
Settling Time vs Output Step (Inverting)



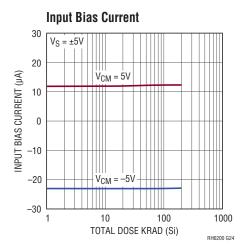

5V Large-Signal Response

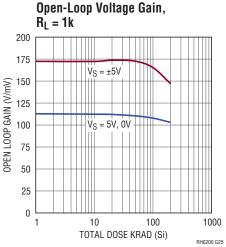

±5V Large-Signal Response

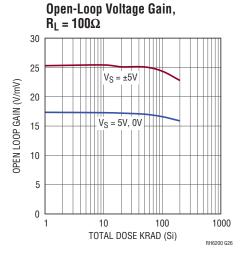

Offset Voltage

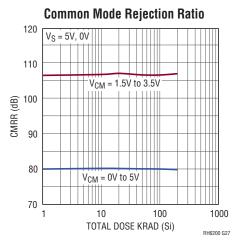

Offset Voltage

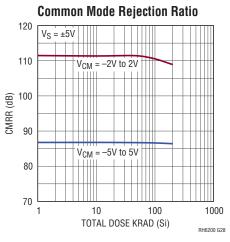
Offset Voltage

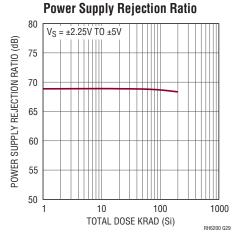


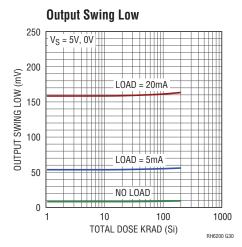

Offset Voltage

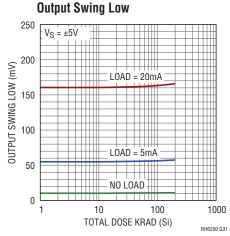


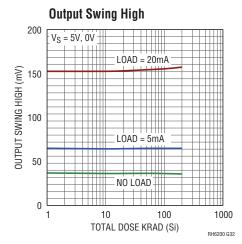

Input Bias Current

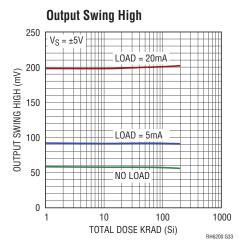


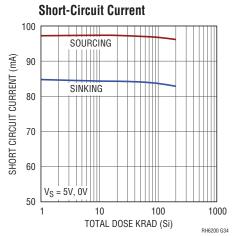


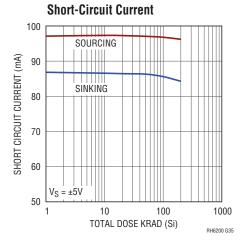


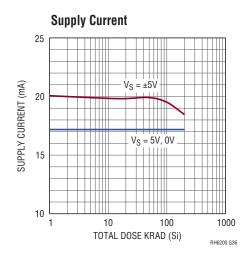


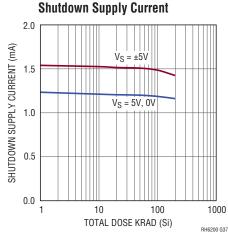


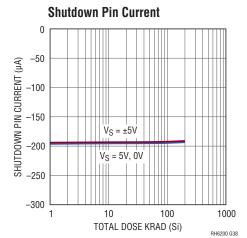












REVISION HISTORY

REV	DATE	DESCRIPTION	PAGE NUMBER
Α	11/11	Revised Conditions for A _{VOL} in Table 1: Electrical Characteristics	2

LT 1111 REV A · PRINTED IN USA

© LINEAR TECHNOLOGY CORPORATION 2011