

Low-Input-Current **Operational Amplifier**

PM108

1.0 **SCOPE**

This specification documents the detailed requirements for Analog Devices space qualified die including die qualification as described for Class K in MIL-PRF-38534, Appendix C, Table C-II except as modified herein.

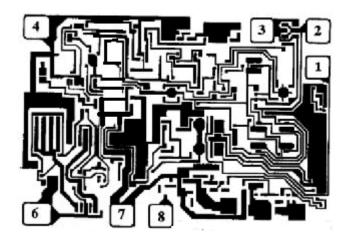
The manufacturing flow described in the STANDARD DIE PRODUCTS PROGRAM brochure at http://www.analog.com/marketSolutions/militaryAerospace/pdf/Die_Broc.pdf is to be considered a part of this specification.

This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at www.analog.com/PM108

2.0 Part Number. The complete part number(s) of this specification follow:

Part Number Description

Low-Input-Current Operational Amplifier PM108-000C


PM108R000C Radiation tested Low-Input-Current Operational Amplifier

3.0 **Die Information**

Die Dimensions 3.1

Die Size	Die Thickness	Bond Pad Metalization
54 mil x 74 mil	19 mil ± 2 mil	Al/Cu

3.2 **Die Picture**

- **COMP**
- -IN
- 3. +IN
- 4. V-
- 5. NC
- OUT 6.
- 7. V+
- **COMP**

ASD0012750

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

3.3 Absolute Maximum Ratings 1/

Supply Voltage (Vcc)	±22 V
Input Voltage (V _{IN}) <u>2/</u>	±15 V
Differential Input Current 3/	±10 mA
Output Short-Circuit Duration	Indefinite
Storage Temperature Range	65 °C to +150 °C
Junction Temperature (T _J)	+175 °C
Ambient Temperature Range	
Abaaluta Marimum Datinga Notas	

Absolute Maximum Ratings Notes:

- 1/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.
- 2/ For supply voltages less than ±15 V, the absolute maximum input voltage is equal to the supply voltage.
- 3/ The inputs are shunted with back-to-back diodes for overvoltage protection. Therefore, if a differential input voltage in excess of 1 V is applied between the inputs, excessive current will flow, unless some limiting resistance is provided.

4.0 <u>Die Qualification</u>

In accordance with class-K version of MIL-PRF-38534, Appendix C, Table C-II, except as modified herein.

- (a) Qual Sample Size and Qual Acceptance Criteria 10/0
- (b) Qual Sample Package DIP
- (c) Pre-screen electrical test over temperature performed post-assembly prior to die qualification.

Table I Notes:

Table I - Dice Electrical Characteristics						
Parameter	Symbol Conditions 1/		Limit Min	Limit Max	Units	
Input Offset Voltage	V _{IO}		-0.5	0.5	mV	
Input Offset Current	lιο		-0.2	0.2	nA	
Input Bias Current	±Ι _{ΙΒ}		-0.1	2	nA	
	+PSRR	$+V_{CC} = +10 \text{ V to } +20 \text{ V},$ $-V_{CC} = -20 \text{ V}$	-16	16	2404	
Power Supply Rejection Ratio	-PSRR	+V _{CC} = +20 V, -V _{CC} = -10 V to -20 V	-16	16	μV/V	
Input Voltage Range	IVR		±15		V	
Input Voltage Common Mode Rejection	CMR	$V_{CM} = IVR$	96		dB	
Supply Current	I _{CC}	$\pm V_{CC} = \pm 15 \text{ V}$		0.6	mA	
Output Voltage Swing	±V _{OP}	$\pm V_{CC} = \pm 20 \text{ V}, R_L = 10 \text{ k}\Omega$	±16		V	
Open Loop Voltage Gain	Avs	$\pm V_{CC} = \pm 15 \text{ V, R}_L = 10 \text{ k}\Omega$ $V_{OUT} = \pm 10 \text{ V}$	80		V/mV	

Table I Notes:

 $\underline{1/V_{CC}}$ = ±20 V, R_S = 50 Ω , V_{CM} = 0 V, and T_A = 25 °C, unless otherwise specified.

Table II - Electrical Characteristics for Qual Samples							
Parameter	Symbol	Conditions <u>1/3</u> /		Sub- groups	Limit Min	Limit Max	Units
				1	-0.5	0.5	
Input Offset Voltage <u>3</u> /	V _{IO}			2, 3	-1	1	mV
			M, D, L, R	1	-2	2	
				1	-0.2	0.2	
Input Offset Current 3/	l _{IO}			2, 3	-0.4	0.4	
			M, D, L, R	1	-1	1	nA
				1	-0.1	2	IIA
Input Bias Current <u>3</u> /	±I _{IB}			2, 3	-0.4	0.4]
			M, D, L, R	1	-25	25	
Input Offset Voltage Temperature Sensitivity <u>2</u> /	$\Delta V_{IO}/\Delta T$			2, 3	-5	5	μV/°C
	V _{VS}	$\pm V_{CC} = \pm 15 \text{ V}, R_L = 10 \text{ K}\Omega,$		4	80		
Open Loop Voltage Gain <u>3</u> /		$V_{OUT} =$	±10 V	5, 6	40		V/mV
			M, D, L, R	4	10		
Power Supply Rejection Ratio <u>2</u> /	+PSRR		$+V_{CC} = +10 \text{ V to } +20 \text{ V}$ $-V_{CC} = -20 \text{ V}$		-16	16	\/\/
Power Supply Rejection Ratio <u>2</u> /	-PSRR	$+V_{CC} = +20 \text{ V}$ $-V_{CC} = -10 \text{ V to } -20 \text{ V}$		1, 2, 3	-16	16	μV/V
Input Voltage Range <u>2</u> /	IVR			1, 2, 3	±15		V
Supply Current <u>2</u> /		V +15.V		1, 2		0.6	mA
Supply Current <u>z</u> /	l _{cc}	V CC —	$V_{CC} = \pm 15 \text{ V}$			0.8	IIIA
Input Voltage Common Mode Rejection Ratio <u>2</u> /	CMRR	$V_{CM} = IVR$		1, 2, 3	96		dB
Output Short-Circuit Current <u>2</u> /	I _{OS(+)}	$\pm V_{CC} = \pm 15 \text{ V, t} \le 25 \text{ mS}$		1	-15	15	mA
Output Voltage Swing 2/	±V _{OP}	$\pm V_{CC} = \pm 20 \text{ V, R}_L = 10 \text{ K}\Omega$		4, 5, 6	±16		V

Table II Notes: 1/2 $V_{CC} = \pm 20$ V, $R_S = 50$ Ω , and $V_{CM} = 0$ V, unless otherwise specified. 1/2 Not tested post-irradiation Irradiated at doe rate = 50 - 300 rads (Si)/s in accordance with MIL Irradiated at doe rate = 50 - 300 rads (Si)/s in accordance with MIL Irradiated at dose rate = 50 - 300 rads (Si)/s in accordance with MIL-STD-883, method 1019, condition A, and is guaranteed to a maximum total dose specified of 100 krad (Si). The effective dose rate after extended room temperature anneal = 1.15 rad (Si)/s per MIL-STD-883, method 1019, condition A, section 3.11.2. The total dose specification for this device only applies to the specified effective dose rate, or lower, environment.

PM108

Table III - Life Test Endpoint and Delta Parameter (Product is tested in accordance with Table II with the following exceptions)

Parameter	Symbol	Sub- groups	Post Burn-in Limit		Post Life Test Limit		Life Test	Units
raiametei			Min	Max	Min	Max	Delta	Offics
Input Offset Voltage Vic	W	1		±0.75		±1	±0.25	\/
	VIO	2, 3				±1.5		mV
	±I _{IB}	1	-0.1	2.5	-0.1	±3	±0.5	
Input Bias Current		2			-1	±3		nA
		3			-0.1	±4		
Input Offset Current	lio	1		±0.3		±0.3		A
		2, 3				±0.5		nA

5.0 <u>Life Test/Burn-In Information</u>

- 5.1 HTRB is not applicable for this drawing.
- 5.2 Burn-in is per MIL-STD-883 Method 1015 test condition B or C.
- 5.3 Steady state life test is per MIL-STD-883 Method 1005.

Rev	Description of Change	Date
Α	Initiate	7-Feb-02
В	Add radiation test limits. Update web address.	9-Jan-03
С	Make correction file names (see OP215)	9-Jan-03
D	Update 1.0 Scope description.	09-Jul-07
Е	Update header/footer & add to 1.0 scope description.	19-Feb-08
F	Add Junction Temperature(T _J)175°C to 3.3 Absolute Maximum Ratings	March 31, 2008
G	Updated Section 4.0c note to indicate pre-screen temp testing being performed.	6-JUN-2009
Н	Update fonts and sizes to ADI standard	3-Oct-2011
I	Add dose rate environment at Table II Notes.	08-Jun-21

www.analog.com