feATURES

■ Micropower: $95 \mu \mathrm{~A}$ Supply Current Max

- Low Input Offset Voltage: $\mathbf{1 0 0 \mu V}$ Max
- Low Input Offset Voltage Drift: $0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Max
- Single Gain Set Resistor:

G = 1 to 1000 (LT1789-1)
G = 10 to 1000 (LT1789-10)

- Inputs Common Mode to V^{-}
- Wide Supply Range: 2.2V to 36V Total Supply
- CMRR at G = 10: 96dB Min
- Gain Error: G = 10, 0.25\% Max
- Gain Nonlinearity: G = 10, 40ppm Max
- Input Bias Current: 40nA Max
- PSRR at $G=10: 100 \mathrm{~dB}$ Min
- 1 kHz Voltage Noise: $48 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- 0.1 Hz to 10 Hz Noise: $1.5 \mu \mathrm{~V}$ P-p

APPLICATIONS

- Portable Instrumentation
- Bridge Amplifiers
- Strain Gauge Amplifiers
- Thermocouple Amplifiers
- Differential to Single-Ended Converters
- Medical Instrumentation

DESCRIPTION

The LT®1789-1/LT1789-10 are micropower, precision instrumentation amplifiers that are optimized for single supply operation from 2.2 V to 36 V . The quiescent current is $95 \mu \mathrm{~A} \mathrm{max}$, the inputs common mode to ground and the output swings within 110 mV of ground. The gain is set with a single external resistor for a gain range of 1 to 1000 for the LT1789-1 and 10 to 1000 for the LT1789-10.

The high accuracy of the LT1789-1 (40ppm maximum nonlinearity and 0.25% max gain error) is unmatched by other micropower instrumentation amplifiers. The LT1789-10 maximizes both the input common mode range and dynamic output rangewhen anamplification of 10 orgreater is required, allowing precise signal processing where other instrumentation amplifiers fail to operate. The LT1789-1/LT1789-10 are laser trimmed for very low input offset voltage, low input offset voltage drift, high CMRR and high PSRR. The output can handle capacitive loads up to 400pF (LT1789-1), 1000pF (LT1789-10) in any gain configuration while the inputs are ESD protected up to 10kV (human body).
The LT1789-1/LT1789-10 are offered in the 8-pin SO package, requiring significantly less PC board area than discrete multi op amp and resistor designs.
$\boldsymbol{\boxed { \top }}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TYPICAL APPLICATION

0.5A to 4A Voltage Controlled Current Source

LT1789-1/LT1789-10

absolute maximum ratings
(Note 1)
Supply Voltage (V^{+}to V^{-}).. 36 V
Input Differential Voltage ..36V
Input Current (Note 3).. $\pm 20 \mathrm{~mA}$
Output Short-Circuit Duration.......................... Indefinite
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Specified Temperature Range (Note 4)
LT1789C-1, LT1789C-10 \qquad $.40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1789I-1, LT1789I-10 \qquad $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec). \qquad $300^{\circ} \mathrm{C}$

PIn CONFIGURATION

ORDER InFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LT1789CS8-1\#PBF	LT1789CS8-1\#TRPBF	17891	8 -Lead Plastic SO	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1789IS8-1\#PBF	LT1789IS8-1\#TRPBF	178911	8 -Lead Plastic SO	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1789CS8-10\#PBF	LT1789CS8-10\#TRPBF	178910	8 -Lead Plastic SO	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1789IS8-10\#PBF	LT1789IS8-10\#TRPBF	789110	8 -Lead Plastic SO	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LEAD BASED FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LT1789CS8-1	LT1789CS8-1\#TR	17891	8 -Lead Plastic SO	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1789IS8-1	LT1789IS8-1\#TR	178911	8 -Lead Plastic SO	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1789CS8-10	LT1789CS8-10\#TR	178910	8 -Lead Plastic SO	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1789IS8-10	LT1789IS8-10\#TR	789110	8 -Lead Plastic SO	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/
3V AnP $5 V$ ELECTRICAL CHARACTERISTICS $v_{S}=3 V, 0 \mathrm{~V} ; \mathrm{v}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=20 \mathrm{k}, \mathrm{v}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{REF}}=$ half supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	LT1789-1			LT1789-10			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
G	Gain Range	$\begin{aligned} & \text { LT1789-1, } G=1+\left(200 \mathrm{k} / \mathrm{R}_{\mathrm{G}}\right) \\ & \text { LT1789-10, } \mathrm{G}=10 \cdot\left[1+\left(200 \mathrm{k} / \mathrm{R}_{\mathrm{G}}\right)\right] \end{aligned}$	1		1000	10		1000	
	Gain Error (Note 6)	$\mathrm{G}=1, \mathrm{~V}_{0}=0.1 \mathrm{~V}$ to $\left(+V_{S}\right)-1 \mathrm{~V}$		0.02	0.20				\%
		$\begin{aligned} & \text { LT1789-1, } V_{0}=0.1 \mathrm{~V} \text { to }\left(+V_{S}\right)-0.3 \mathrm{~V} \\ & \text { LT1789-10, } V_{0}=0.2 \mathrm{~V} \text { to }\left(+V_{S}\right)-0.3 \mathrm{~V} \\ & G=10 \text { (Note 2) } \\ & G=100 \text { (Note 2) } \\ & G=1000 \text { (Note 2) } \end{aligned}$		$\begin{aligned} & 0.06 \\ & 0.06 \\ & 0.13 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.27 \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.09 \\ & 0.16 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.30 \end{aligned}$	\% $\%$ $\%$
	Gain Nonlinearity (Note 6)	$\mathrm{G}=1, \mathrm{~V}_{0}=0.1 \mathrm{~V}$ to $\left(+V_{S}\right)-1 \mathrm{~V}$		35	100				ppm
		LT1789-1, $\mathrm{V}_{0}=0.1 \mathrm{~V}$ to $\left(+\mathrm{V}_{\mathrm{S}}\right)-0.3 \mathrm{~V}$ LT1789-10, $\mathrm{V}_{0}=0.2 \mathrm{~V}$ to $4.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}$ (Note 8) $\begin{aligned} & G=10 \\ & G=100 \\ & G=1000 \end{aligned}$		12 18 90	$\begin{aligned} & 40 \\ & 75 \end{aligned}$		$\begin{gathered} 15 \\ 20 \\ 100 \end{gathered}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	ppm ppm
									17899

3V AnD 5V ELECTRICAL CHARACTERISTICS
 $V_{S}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=20 \mathrm{k}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {REF }}=$ half

 supply, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.| SYMBOL | PARAMETER | CONDITIONS | LT1789-1 | | | LT1789-10 | | | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | MIN | TYP | MAX | MIN | TYP | MAX | |
| $\mathrm{V}_{\text {OST }}$ | Total Input Referred Offset Voltage | $\mathrm{V}_{\text {OST }}=\mathrm{V}_{\text {OSI }}+\mathrm{V}_{\text {OSO }} / \mathrm{G}$ | | | | | | | |
| $\mathrm{V}_{\text {OSI }}$ | Input Offset Voltage | $G=1000$ | | 15 | 100 | | 20 | 160 | $\mu \mathrm{V}$ |
| $\mathrm{V}_{\text {OSO }}$ | Output Offset Voltage | $\mathrm{G}=1$ (LT1789-1), G =10 (LT1789-10) | | 150 | 750 | | 650 | 3000 | $\mu \mathrm{V}$ |
| Ios | Input Offset Current | (Note 6) | | 0.2 | 4 | | 0.2 | 4 | nA |
| I_{B} | Input Bias Current | (Note 6) | | 19 | 40 | | 19 | 40 | nA |
| e_{n} | Input Noise Voltage, RTI (Referred to Input) | $\begin{aligned} & G=1, f_{0}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & G=10 \\ & G=100,1000 \end{aligned}$ | | $\begin{aligned} & 5.0 \\ & 1.5 \\ & 1.0 \end{aligned}$ | | | $\begin{aligned} & 4.6 \\ & 1.1 \end{aligned}$ | | $\begin{aligned} & \mu V_{p-P} \\ & \mu V_{P-P} \\ & \mu V_{p-P} \end{aligned}$ |
| Total RTI Noise $=\sqrt{\mathrm{enir}^{2}+\left(\mathrm{e}_{\mathrm{no}} / \mathrm{G}\right)^{2}}$ | | | | | | | | | |
| $\mathrm{e}_{\text {ni }}$ | Input Noise Voltage Density, RTI | $\mathrm{f}_{0}=1 \mathrm{kHz}$ (Note 7) | | 48 | 85 | | 52 | 90 | $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ |
| e_{no} | Output Noise Voltage Density, RTI | $\mathrm{f}_{0}=1 \mathrm{kHz}$ (Note 3) | | 330 | | | 270 | | $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ |
| i_{n} | Input Noise Current | $\mathrm{f}_{0}=0.1 \mathrm{~Hz}$ to 10 Hz | | 16 | | | 16 | | pAp-p |
| | Input Noise Current Density | $\mathrm{f}_{0}=1 \mathrm{kHz}$ | | 62 | | | 62 | | $\mathrm{fA} / \sqrt{\mathrm{Hz}}$ |
| $\mathrm{R}_{\text {IN }}$ | Input Resistance | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to ($+\mathrm{V}_{\text {S }}$) - 1V (Note 6) | 0.75 | 1.6 | | 0.75 | 1.6 | | $\mathrm{G} \Omega$ |
| $\mathrm{C}_{\text {IN }}$ | Input Capacitance | Differential Common Mode | | $\begin{aligned} & 1.6 \\ & 1.6 \end{aligned}$ | | | $\begin{aligned} & \hline 1.6 \\ & 1.6 \end{aligned}$ | | $\begin{aligned} & \overline{\mathrm{pF}} \\ & \mathrm{pF} \end{aligned}$ |
| $\mathrm{V}_{\text {CM }}$ | Input Voltage Range | | 0 | | $+\mathrm{V}_{S}-1$ | 0 | | + $\mathrm{V}_{S}-1.2$ | V |
| CMRR | Common Mode Rejection Ratio | 1k Source Imbalance (Note 6)
 LT1789-1, $\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$ to $\left(+\mathrm{V}_{\mathrm{S}}\right)-1 \mathrm{~V}$
 LT1789-10, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to $\left(+\mathrm{V}_{\mathrm{S}}\right)-1.2 \mathrm{~V}$ $G=1$
 $G=10$
 $G=100$
 $G=1000$ | $\begin{gathered} 79 \\ 96 \\ 100 \\ 100 \end{gathered}$ | $\begin{gathered} 88 \\ 106 \\ 114 \\ 114 \end{gathered}$ | | $\begin{aligned} & 88 \\ & 98 \\ & 98 \end{aligned}$ | $\begin{aligned} & 105 \\ & 113 \\ & 113 \end{aligned}$ | | dB dB dB dB |
| PSRR | Power Supply Rejection Ratio | $\begin{aligned} & V_{S}=2.5 \mathrm{~V} \text { to } 12.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {REF }}=1 \mathrm{~V} \\ & \mathrm{G}=1 \\ & \mathrm{G}=10 \\ & \mathrm{G}=100 \\ & \mathrm{G}=1000 \end{aligned}$ | $\begin{gathered} 90 \\ 100 \\ 102 \\ 102 \end{gathered}$ | $\begin{aligned} & 100 \\ & 113 \\ & 116 \\ & 116 \end{aligned}$ | | $\begin{gathered} 94 \\ 102 \\ 102 \end{gathered}$ | $\begin{aligned} & 109 \\ & 120 \\ & 120 \end{aligned}$ | | dB dB dB dB |
| | Minimum Supply Voltage | | | 2.2 | 2.5 | | 2.2 | 2.5 | V |
| Is | Supply Current | (Note 7) | | 67 | 95 | | 67 | 95 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\text {OL }}$ | Output Voltage Swing LOW | (Note 7) | | 54 | 100 | | 62 | 110 | mV |
| V_{OH} | Output Voltage Swing HIGH | (Note 7) | $+V_{S}-0.3+V_{S}-0.19$ | | | $+V_{S}-0.3+V_{S}-0.19$ | | | V |
| ISC | Short-Circuit Current | Short to GND Short to $+V_{S}$ | | $\begin{aligned} & 2.2 \\ & 8.5 \end{aligned}$ | | | $\begin{aligned} & \hline 2.2 \\ & 8.5 \\ & \hline \end{aligned}$ | | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |
| BW | Bandwidth | $\begin{aligned} \mathrm{G} & =1 \\ \mathrm{G} & =10 \\ \mathrm{G} & =100 \\ \mathrm{G} & =1000 \end{aligned}$ | | $\begin{gathered} 60 \\ 30 \\ 3 \\ 0.2 \end{gathered}$ | | | $\begin{aligned} & 25 \\ & 12 \\ & 1.5 \end{aligned}$ | | $\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \\ & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$ |
| SR | Slew Rate | $\mathrm{G}=10, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V}$ to 4.5 V | | 0.023 | | | 0.062 | | $\mathrm{V} / \mathrm{\mu s}$ |
| | Settling Time to 0.01\% | 4V Step | | 240 | | | 190 | | $\mu \mathrm{s}$ |
| $\mathrm{R}_{\text {REFIN }}$ | Reference Input Resistance | | | 220 | | | 220 | | k Ω |
| $\mathrm{I}_{\text {REFIN }}$ | Reference Input Current | $\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$ | | 2.7 | | | 2.7 | | $\mu \mathrm{A}$ |
| $\mathrm{AV}_{\text {REF }}$ | Reference Gain to Output | | | ± 0.0001 | | | ± 0.000 | | |

LT1789-1/LT1789-10

ELECTRICAL CHARACTERISTICS The • denotes the speciitications which apply over the temperature range of $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=20 \mathrm{k}, \mathrm{V}_{\mathrm{REF}}=$ half supply, unless otherwise noted. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		LT1789-1			LT1789-10			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
	Gain Error (Note 6)	$\mathrm{G}=1, \mathrm{~V}_{0}=0.3 \mathrm{~V}$ to $\left(+\mathrm{V}_{S}\right)-1 \mathrm{~V}$	\bullet			0.25				\%
		$\begin{aligned} & \mathrm{V}_{0}=0.3 \mathrm{~V} \text { to }\left(+\mathrm{V}_{\mathrm{S}}\right)-0.5 \mathrm{~V} \\ & \mathrm{G}=10 \text { (Note 2) } \\ & \mathrm{G}=100 \text { (Note 2) } \end{aligned}$	\bullet			$\begin{aligned} & 0.53 \\ & 0.55 \end{aligned}$			$\begin{aligned} & 0.30 \\ & 0.53 \end{aligned}$	\%
	Gain Nonlinearity (Note 6)	$\mathrm{G}=1, \mathrm{~V}_{0}=0.3 \mathrm{~V}$ to $\left(+\mathrm{V}_{\mathrm{S}}\right)-1 \mathrm{~V}$	\bullet			185				ppm
		LT1789-1, $\mathrm{V}_{0}=0.3 \mathrm{~V}$ to $\left(+\mathrm{V}_{\mathrm{S}}\right)-0.5 \mathrm{~V}$ LT1789-10, $\mathrm{V}_{0}=0.3 \mathrm{~V}$ to $4.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}$ (Note 8) $\begin{aligned} & G=10 \\ & G=100 \end{aligned}$	\bullet			$\begin{gathered} 90 \\ 120 \end{gathered}$			$\begin{aligned} & 130 \\ & 130 \end{aligned}$	ppm ppm
G/T	Gain vs Temperature	G < 1000 (Notes 2, 3)	\bullet		5	50		5	50	ppm/ $/{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {OST }}$	Total Input Referred Offset Voltage $\mathrm{V}_{\text {OST }}=\mathrm{V}_{\text {OSI }}+\mathrm{V}_{\text {OSO }} / \mathrm{G}$									
$\mathrm{V}_{\text {OSI }}$	Input Offset Voltage	$G=1000$	\bullet			150			190	$\mu \mathrm{V}$
$\mathrm{V}_{\text {OSIH }}$	Input Offset Voltage Hysteresis	(Notes 3, 5)	\bullet		3	10		3	10	$\mu \mathrm{V}$
$\mathrm{V}_{\text {OSO }}$	Output Offset Voltage	$\mathrm{G}=1$ (LT1789-1), G = 10 (LT1789-10)	\bullet			950			3700	$\mu \mathrm{V}$
$\mathrm{V}_{\text {OSOH }}$	Output Offset Voltage Hysteresis	(Notes 3, 5)	\bullet		50	100		300	900	$\mu \mathrm{V}$
$\mathrm{V}_{\text {OSI }} / T$	Input Offset Voltage Drift (RTI)	(Note 3)	\bullet		0.2	0.5		0.3	0.7	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Voso/T	Output Offset Voltage Drift	(Note 3)	\bullet		1.5	4		7	20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ios	Input Offset Current	(Note 6)	\bullet			4.5			4.5	nA
$\underline{\text { OS/T }}$	Input Offset Current Drift		\bullet		3			3		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	(Note 6)	\bullet			45			45	nA
$\mathrm{I}_{\mathrm{B}} / \mathrm{T}$	Input Bias Current Drift		\bullet		50			50		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CM }}$	Input Voltage Range		\bullet	0.2		$\left(+V_{S}\right)-1$	0.2		$\left(+V_{S}\right)-1.5$	V
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & \text { 1k Source Imbalance (Note 6) } \\ & \text { LT1789-1, } V_{C M}=0.2 \mathrm{~V} \text { to }\left(+V_{S}\right)-1 \mathrm{~V} \\ & \text { LT1789-10, } V_{C M}=0.2 \mathrm{~V} \text { to }\left(+V_{S}\right)-1.5 \mathrm{~V} \\ & G=1 \\ & G=10 \\ & G=100,1000 \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & 77 \\ & 94 \\ & 98 \end{aligned}$			$\begin{aligned} & 85 \\ & 96 \end{aligned}$			dB $d B$ $d B$
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & V_{S}=2.5 \mathrm{~V} \text { to } 12.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {REF }}=1 \mathrm{~V} \\ & \mathrm{G}=1 \\ & \mathrm{G}=10 \\ & \mathrm{G}=100,1000 \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{gathered} 88 \\ 98 \\ 100 \end{gathered}$			$\begin{gathered} 92 \\ 100 \end{gathered}$			dB dB $d B$
	Minimum Supply Voltage		\bullet			2.5			2.5	V
Is	Supply Current	(Note 7)	\bullet			115			115	$\mu \mathrm{A}$
$\mathrm{V}_{0 \mathrm{~L}}$	Output Voltage Swing LOW	(Note 7)	\bullet			110			120	mV
V_{OH}	Output Voltage Swing HIGH	(Note 7)	-	$+V_{S}-0.38$			$+V_{S}-0.38$			V

LT1789-1/LT1789-10

ELECTRICAL CHARACTERISTICS The • denotes the speciifications which apply over the temperature range of $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} . \mathrm{V}_{S}=3 \mathrm{VV}, \mathrm{OV} ; \mathrm{V}_{\mathrm{S}}=5 \mathrm{VV}, \mathrm{OV} ; \mathrm{R}_{\mathrm{L}}=20 \mathrm{k}, \mathrm{V}_{\text {REF }}=$ half supply, unless otherwise noted. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		LT1789-1			LT1789-10			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
	Gain Error (Note 6)	$\mathrm{G}=1, \mathrm{~V}_{0}=0.3 \mathrm{~V}$ to $\left(+\mathrm{V}_{S}\right)-1 \mathrm{~V}$	\bullet			0.30				\%
		$\begin{aligned} & \mathrm{V}_{0}=0.3 \mathrm{~V} \text { to }\left(+\mathrm{V}_{\mathrm{S}}\right)-0.5 \mathrm{~V} \\ & \mathrm{G}=10 \text { (Note 2) } \\ & \mathrm{G}=100 \text { (Note 2) } \end{aligned}$				$\begin{aligned} & 0.57 \\ & 0.59 \end{aligned}$			$\begin{aligned} & 0.35 \\ & 0.62 \end{aligned}$	\%
	Gain Nonlinearity (Note 6)	$\mathrm{G}=1, \mathrm{~V}_{0}=0.3 \mathrm{~V}$ to $\left(+\mathrm{V}_{\mathrm{S}}\right)-1 \mathrm{~V}$	\bullet			250				ppm
		LT1789-1, $\mathrm{V}_{0}=0.3 \mathrm{~V}$ to $\left(+\mathrm{V}_{\mathrm{S}}\right)-0.5 \mathrm{~V}$ LT1789-10, $\mathrm{V}_{0}=0.3 \mathrm{~V}$ to $4.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=5 \mathrm{~V}$ (Note 8) $\begin{aligned} & G=10 \\ & G=100 \end{aligned}$				$\begin{aligned} & 105 \\ & 160 \end{aligned}$			$\begin{aligned} & 150 \\ & 170 \end{aligned}$	ppm ppm
G/T	Gain vs Temperature	G < 1000 (Notes 2, 3)	-		5	50		5	50	ppm $/{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {OST }} \quad$ Total Input Referred Offset Voltage $\mathrm{V}_{\text {OST }}=\mathrm{V}_{\text {OSI }}+\mathrm{V}_{\text {OSO}} / \mathrm{G}$	Total Input Referred Offset Voltage $\mathrm{V}_{\text {OST }}=\mathrm{V}_{\text {OSI }}+\mathrm{V}_{\text {OSO }} / \mathrm{G}$									
$\mathrm{V}_{\text {OSI }}$	Input Offset Voltage	$G=1000$	\bullet			175			205	$\mu \mathrm{V}$
$\mathrm{V}_{\text {OSIH }}$	Input Offset Voltage Hysteresis	(Notes 3, 5)	\bullet		3	10		3	10	$\mu \mathrm{V}$
$\mathrm{V}_{\text {OSO }}$	Output Offset Voltage	$\mathrm{G}=1$ (LT1789-1), G = 10 (LT1789-10)	\bullet			1050			4000	$\mu \mathrm{V}$
$\mathrm{V}_{\text {OSOH }}$	Output Offset Voltage Hysteresis	(Notes 3, 5)	\bullet		50	100		300	900	$\mu \mathrm{V}$
$\mathrm{V}_{\text {OSI } / T}$	Input Offset Voltage Drift (RTI)	(Note 3)	\bullet		0.2	0.5		0.3	0.7	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {oso }} / \mathrm{T}$	Output Offset Voltage Drift	(Note 3)	\bullet		1.5	4		7	20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	(Note 6)	\bullet			5			5	nA
$\underline{\text { Ios/T }}$	Input Offset Current Drift		\bullet		3			3		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	(Note 6)	\bullet			50			50	nA
$\mathrm{I}_{\mathrm{B}} / \mathrm{T}$	Input Bias Current Drift		\bullet		50			50		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CM }}$	Input Voltage Range		\bullet	0.2		$+V_{S}-1$	0.2		$+V_{S}-1.5$	V
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & \text { 1k Source Imbalance (Note 6) } \\ & \text { LT1789-1, } \mathrm{V}_{\mathrm{CM}}=0.2 \mathrm{~V} \text { to }\left(+\mathrm{V}_{\mathrm{S}}\right)-1 \mathrm{~V} \\ & \text { LT1789-10, } \mathrm{V}_{\mathrm{CM}}=0.2 \mathrm{~V} \text { to }\left(+\mathrm{V}_{\mathrm{S}}\right)-1.5 \mathrm{~V} \\ & \mathrm{G}=1 \\ & \mathrm{G}=10 \\ & \mathrm{G}=100,1000 \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & 75 \\ & 92 \\ & 96 \end{aligned}$			$\begin{aligned} & 84 \\ & 94 \end{aligned}$			dB dB dB
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & V_{S}=2.5 V \text { to } 12.5 \mathrm{~V}, V_{C M}=V_{\text {REF }}=1 \mathrm{~V} \\ & G=1 \\ & G=10 \\ & G=100,1000 \end{aligned}$	$\bullet \bullet$	$\begin{aligned} & 86 \\ & 96 \\ & 98 \end{aligned}$			$\begin{aligned} & 90 \\ & 98 \end{aligned}$			dB dB dB
	Minimum Supply Voltage		\bullet			2.5			2.5	V
Is	Supply Current	(Note 7)	\bullet			125			125	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing LOW	(Note 7)	\bullet			120			130	mV
V_{OH}	Output Voltage Swing HIGH	(Note 7)	\bullet	$+V_{S}-0.40$			$+V_{S}-0.40$			V

LT1789-1/LT1789-10

ELECTRICAL CHARACTERISTICS

$V_{S}= \pm 15 \mathrm{~V}, R_{L}=20 \mathrm{k}, V_{C M}=V_{O U T}=0 V, T_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	LT1789-1			LT1789-10			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
G	Gain Range	$\begin{aligned} & \text { LT1789-1, } \mathrm{G}=1+\left(200 \mathrm{k} / \mathrm{R}_{\mathrm{G}}\right) \\ & \text { LT1789-10, } \mathrm{G}=10 \cdot\left[1+\left(200 \mathrm{k} / \mathrm{R}_{\mathrm{G}}\right)\right] \end{aligned}$	1		1000	10		1000	
	Gain Error	$\begin{aligned} & V_{0}= \pm 10 \mathrm{~V} \\ & \mathrm{G}=1 \\ & \mathrm{G}=10 \text { (Note 2) } \\ & \mathrm{G}=100 \text { (Note 2) } \\ & \mathrm{G}=1000 \text { (Note 2) } \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.04 \\ & 0.04 \\ & 0.07 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.15 \\ & 0.15 \\ & 0.20 \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.03 \\ & 0.03 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.20 \\ & 0.25 \end{aligned}$	\% $\%$ $\%$ $\%$
	Gain Nonlinearity	$\begin{aligned} & V_{0}= \pm 10 \mathrm{~V} \\ & G=1 \\ & G=10 \\ & G=100 \\ & G=1000 \end{aligned}$		$\begin{gathered} 8 \\ 1 \\ 6 \\ 20 \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ 10 \\ 20 \\ 100 \end{gathered}$		$\begin{gathered} 5 \\ 5 \\ 25 \end{gathered}$	$\begin{gathered} 40 \\ 40 \\ 160 \end{gathered}$	ppm ppm ppm ppm
$\mathrm{V}_{\text {OST }} \quad$ Total Input Referred Offset Voltage $\mathrm{V}_{\text {OST }}=\mathrm{V}_{\text {OSI }}+\mathrm{V}_{\text {OSO }} / \mathrm{G}$	Total Input Referred Offset Voltage $\mathrm{V}_{\text {OST }}=\mathrm{V}_{\text {OSI }}+\mathrm{V}_{\text {OSO }} / \mathrm{G}$								
$\mathrm{V}_{\text {OSI }}$	Input Offset Voltage	$\mathrm{G}=1000$		30	235		30	295	$\mu \mathrm{V}$
Voso	Output Offset Voltage	$\mathrm{G}=1$ (LT1789-1), G =10 (LT1789-10)		0.2	1		0.6	3.3	mV
los	Input Offset Current			0.2	4		0.2	4	nA
I_{B}	Input Bias Current			17	40		17	40	nA
e_{n}	Input Noise Voltage, RTI	$\begin{aligned} & f_{0}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \mathrm{G}=1 \\ & \mathrm{G}=10 \\ & \mathrm{G}=100,1000 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 1.5 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 4.6 \\ & 1.1 \end{aligned}$		$\begin{aligned} & \mu \mathrm{V}_{\text {P-P }} \\ & \mu \mathrm{V}_{\text {p- }} \\ & \mu \mathrm{V}_{\text {p-p }} \end{aligned}$

Total RTI Noise $=\sqrt{\mathrm{e}_{\mathrm{ni}}{ }^{2}+\left(\mathrm{e}_{\mathrm{no}} / \mathrm{G}\right)^{2}}$

$\mathrm{e}_{\text {ni }}$	Input Noise Voltage Density, RTI	$\mathrm{f}_{0}=1 \mathrm{kHz}$		49	90		53	95	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
e_{no}	Output Noise Voltage Density, RTI	$\mathrm{f}_{0}=1 \mathrm{kHz}$		330			270		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current	$\mathrm{f}_{0}=0.1 \mathrm{~Hz}$ to 10 Hz		19			19		pAp-p
	Input Noise Current Density	$\mathrm{f}_{0}=1 \mathrm{kHz}$		62			62		$\mathrm{fA} / \sqrt{\mathrm{Hz}}$
$\mathrm{R}_{\text {IN }}$	Input Resistance		2	4.7		2	4.7		$\mathrm{G} \Omega$
$\mathrm{ClN}^{\text {N }}$	Input Capacitance	Differential Common Mode		$\begin{aligned} & \hline 20 \\ & 17 \end{aligned}$			$\begin{aligned} & 20 \\ & 17 \end{aligned}$		pF pF
$\mathrm{V}_{\text {CM }}$	Input Voltage Range		-15		-14	-15		-14	V
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & 1 \mathrm{k} \text { Source Imbalance, } \mathrm{V}_{\mathrm{CM}}=-15 \mathrm{~V} \text { to } 14 \mathrm{~V} \\ & \mathrm{G}=1 \\ & \mathrm{G}=10 \\ & \mathrm{G}=100,1000 \end{aligned}$	$\begin{gathered} 80 \\ 98 \\ 102 \end{gathered}$	$\begin{gathered} 89 \\ 108 \\ 117 \end{gathered}$		$\begin{gathered} 93 \\ 102 \end{gathered}$	$\begin{aligned} & 108 \\ & 123 \end{aligned}$		dB dB dB
$\overline{\text { PSRR }}$	Power Supply Rejection Ratio	$\begin{aligned} & \text { LT1789-1 } V_{S}= \pm 1.25 \mathrm{~V} \text { to } \pm 16 \mathrm{~V} \\ & \text { LT1789-10 } V_{S}= \pm 1.50 \mathrm{~V} \text { to } \pm 16 \mathrm{~V} \\ & \mathrm{G}=1 \\ & \mathrm{G}=10 \\ & \mathrm{G}=100,1000 \end{aligned}$	$\begin{gathered} 94 \\ 104 \\ 102 \end{gathered}$	$\begin{aligned} & 107 \\ & 118 \\ & 121 \end{aligned}$		$\begin{aligned} & 100 \\ & 106 \end{aligned}$	$\begin{aligned} & 115 \\ & 123 \end{aligned}$		dB $d B$ $d B$
	Minimum Supply Voltage				± 1.25			± 1.50	V
I_{S}	Supply Current			85	130		85	130	$\mu \mathrm{A}$
V_{0}	Output Voltage Swing		± 14.5	± 14.7		± 14.5	± 14.7		V
ISC	Short-Circuit Current	Short to $-V_{S}$ Short to $+V_{S}$		$\begin{aligned} & 2.2 \\ & 8.5 \end{aligned}$			$\begin{aligned} & 2.2 \\ & 8.5 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	LT1789-1			LT1789-10			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
BW	Bandwidth	$\begin{aligned} & G=1 \\ & G=10 \\ & G=100 \\ & G=1000 \end{aligned}$		$\begin{gathered} 60 \\ 30 \\ 3 \\ 0.2 \end{gathered}$			$\begin{array}{r} 25 \\ 12 \\ 1.5 \end{array}$		$\begin{aligned} & \hline \mathrm{kHz} \\ & \mathrm{kHz} \\ & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
SR	Slew Rate	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	0.012	0.026		0.028	0.066		$\mathrm{V} / \mathrm{\mu s}$
	Settling Time to 0.01\%	10V Step		460			270		$\mu \mathrm{s}$
$\underline{\mathrm{R}_{\text {REFIN }}}$	Reference Input Resistance			220			220		k Ω
$\mathrm{I}_{\text {REFIN }}$	Reference Input Current	$\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$		2.7			2.7		$\mu \mathrm{A}$
$\mathrm{AV}_{\text {REF }}$	Reference Gain to Output			1 ± 0.0001			1 ± 0.0001		

The \bullet denotes the specifications which apply over the temperature range of $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{REF}}=0 \mathrm{~V}$, unless otherwise noted. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		LT1789-1			LT1789-10			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
	Gain Error	$\begin{aligned} & V_{0}= \pm 10 \mathrm{~V} \\ & \mathrm{G}=1 \\ & \mathrm{G}=10 \text { (} \text { (ote 2) } \\ & \mathrm{G}=100 \text { (Note 2) } \\ & \mathrm{G}=1000 \text { (Note 2) } \end{aligned}$	$\bullet \cdot$			$\begin{aligned} & 0.15 \\ & 0.38 \\ & 0.38 \\ & 0.43 \end{aligned}$			$\begin{aligned} & 0.20 \\ & 0.43 \\ & 0.48 \end{aligned}$	\% $\%$ $\%$ $\%$
	Gain Nonlinearity	$\begin{aligned} & V_{0}= \pm 10 \mathrm{~V} \\ & \mathrm{G}=1 \\ & \mathrm{G}=10 \\ & \mathrm{G}=100 \\ & \mathrm{G}=1000 \end{aligned}$	$\bullet \bullet$			$\begin{gathered} 25 \\ 15 \\ 25 \\ 120 \end{gathered}$			$\begin{gathered} 45 \\ 45 \\ 180 \end{gathered}$	ppm ppm ppm ppm
G/T	Gain vs Temperature	G < 1000 (Notes 2, 3)	\bullet		5	50		5	50	ppm/ ${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {OST }} \quad$ Total Input Referred Offset Voltage $\mathrm{V}_{\text {OST }}=\mathrm{V}_{\text {OSI }}+\mathrm{V}_{\text {OSO }} / \mathrm{G}$	Total Input Referred Offset Voltage $\mathrm{V}_{\text {OST }}=\mathrm{V}_{\text {OSI }}+\mathrm{V}_{\text {OSO }} / \mathrm{G}$									
$\mathrm{V}_{\text {OSI }}$	Input Offset Voltage	$\mathrm{G}=1000$	\bullet			285			325	$\mu \mathrm{V}$
$\mathrm{V}_{\text {OSIH }}$	Input Offset Voltage Hysteresis	(Notes 3, 5)	\bullet		8	30		8	30	$\mu \mathrm{V}$
$\mathrm{V}_{\text {OSO }}$	Output Offset Voltage	$\mathrm{G}=1$	\bullet			1.2			4	mV
$\mathrm{V}_{\mathrm{OSOH}}$	Output Offset Voltage Hysteresis	(Notes 3, 5)	\bullet		50	120		400	1000	$\mu \mathrm{V}$
V ${ }_{\text {OSI }} / T$	Input Offset Voltage Drift (RTI)	(Note 3)	\bullet		0.2	0.7		0.3	0.8	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {OSO}} / \mathrm{T}$	Output Offset Voltage Drift	(Note 3)	\bullet		1.5	5		8	22	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ios	Input Offset Current		\bullet			4.5			4.5	nA
$\mathrm{IOS}^{\text {/ } / T}$	Input Offset Current Drift		\bullet		2			2		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		\bullet			45			45	nA
$\underline{\mathrm{I}_{B} / T}$	Input Bias Current Drift		\bullet		35			35		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CM }}$	Input Voltage Range	$G=1$, Other Input Grounded	\bullet	-14.8		14	-14.8		14	V
CMRR	Common Mode Rejection Ratio	1k Source Imbalance, $V_{C M}=-14.8 \mathrm{~V}$ to 14 V $G=1$ $G=10$ $G=100,1000$	\bullet	$\begin{gathered} 78 \\ 96 \\ 100 \end{gathered}$			$\begin{gathered} 91 \\ 100 \end{gathered}$			dB dB dB

LT1789-1/LT1789-10

ELECTRICAL CHARACTERISTICS The • denotes the speciitications which apply over the temperature range of $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{REF}}=0 \mathrm{~V}$, unless otherwise noted. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		LT1789-1			LT1789-10			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & \text { LT1789-1, } V_{S}= \pm 1.25 \mathrm{~V} \text { to } \pm 16 \mathrm{~V} \\ & \text { LT1789-10, } \mathrm{V}_{S}= \pm 1.50 \mathrm{~V} \text { to } \pm 16 \mathrm{~V} \\ & \mathrm{G}=1 \\ & \mathrm{G}=10 \\ & \mathrm{G}=100,1000 \end{aligned}$	\bullet	$\begin{gathered} 92 \\ 102 \\ 104 \end{gathered}$			$\begin{gathered} 98 \\ 104 \end{gathered}$			dB dB dB
	Minimum Supply Voltage		\bullet			± 1.25			± 1.50	V
I_{S}	Supply Current		\bullet			150			150	$\mu \mathrm{A}$
V_{0}	Output Voltage Swing		\bullet	± 14.25			± 14.25			V
SR	Slew Rate	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	\bullet	0.010			0.026			V/us

The \bullet denotes the specifications which apply over the temperature range of $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{REF}}=0 \mathrm{~V}$, unless otherwise noted. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		LT1789-1			LT1789-10			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
	Gain Error	$\begin{aligned} & V_{0}= \pm 10 \mathrm{~V} \\ & \mathrm{G}=1 \\ & \mathrm{G}=10 \text { (Note 2) } \\ & \mathrm{G}=100 \text { (Note 2) } \\ & \mathrm{G}=1000 \text { (Note 2) } \end{aligned}$				$\begin{aligned} & 0.20 \\ & 0.57 \\ & 0.57 \\ & 0.62 \end{aligned}$			$\begin{aligned} & 0.25 \\ & 0.62 \\ & 0.67 \end{aligned}$	$\begin{aligned} & \% \\ & \% \\ & \% \\ & \% \\ & \hline \end{aligned}$
	Gain Nonlinearity	$\begin{aligned} & V_{0}= \pm 10 \mathrm{~V} \\ & \mathrm{G}=1 \\ & \mathrm{G}=10 \\ & \mathrm{G}=100 \\ & \mathrm{G}=1000 \end{aligned}$				$\begin{gathered} 30 \\ 20 \\ 30 \\ 130 \end{gathered}$			$\begin{gathered} 50 \\ 50 \\ 200 \end{gathered}$	ppm ppm ppm ppm
G/T	Gain vs Temperature	G < 1000 (Notes 2, 3)	\bullet		5	50		5	50	ppm $/{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {OST }} \quad$ Total Input Referred Offset Voltage $\mathrm{V}_{\text {OST }}=\mathrm{V}_{\text {OSI }}+\mathrm{V}_{\text {OSO }} / \mathrm{G}$	Total Input Referred Offset Voltage $\mathrm{V}_{\text {OST }}=\mathrm{V}_{\text {OSI }}+\mathrm{V}_{\text {OSO }} / \mathrm{G}$									
$\mathrm{V}_{\text {OSI }}$	Input Offset Voltage	$\mathrm{G}=1000$	\bullet			305			340	$\mu \mathrm{V}$
$\mathrm{V}_{\text {OSIH }}$	Input Offset Voltage Hysteresis	(Notes 3, 5)	\bullet		8	30		8	30	$\mu \mathrm{V}$
$\mathrm{V}_{\text {OSO }}$	Output Offset Voltage	$\mathrm{G}=1$	\bullet			1.3			4.2	mV
$\mathrm{V}_{\text {OSOH }}$	Output Offset Voltage Hysteresis	(Notes 3, 5)	\bullet		50	120		400	1000	$\mu \mathrm{V}$
$\mathrm{V}_{\text {OS/ } / T}$	Input Offset Voltage Drift (RTI)	(Note 3)	\bullet		0.2	0.7		0.3	0.8	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Voso/T	Output Offset Voltage Drift	(Note 3)	\bullet		1.5	5		8	22	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ios	Input Offset Current		\bullet			5			5	nA
Ios/T	Input Offset Current Drift		\bullet		2			2		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		\bullet			50			50	nA
$\mathrm{I}_{\mathrm{B}} / \mathrm{T}$	Input Bias Current Drift		\bullet		35			35		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CM }}$	Input Voltage Range	$\mathrm{G}=1$, Other Input Grounded	\bullet	-14.8		14	-14.8		14	V
CMRR	Common Mode Rejection Ratio	1 k Source Imbalance, $V_{\text {CM }}=-14.8 \mathrm{~V}$ to 14 V $G=1$ $G=10$ $G=100,1000$	\bullet	$\begin{aligned} & 76 \\ & 94 \\ & 98 \end{aligned}$			$\begin{aligned} & 89 \\ & 98 \end{aligned}$			dB dB dB

ELECTRICAL CHARACTERISTICS The • denotes the speciitications which apply over the temperature range of $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} . \mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=20 \mathrm{k}, \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{REF}}=0 \mathrm{~V}$, unless otherwise noted. (Note 4)

SYMBOL	PARAMETER	CONDITIONS		LT1789-1			LT1789-10			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
PSRR	Power Supply Rejection Ratio	$\begin{aligned} & \text { LT1789-1, } V_{S}= \pm 1.25 \mathrm{~V} \text { to } \pm 16 \mathrm{~V} \\ & \text { LT1789-10, } \mathrm{V}_{S}= \pm 1.50 \mathrm{~V} \text { to } \pm 16 \mathrm{~V} \\ & \mathrm{G}=1 \\ & \mathrm{G}=10 \\ & \mathrm{G}=100,1000 \end{aligned}$	\bullet	$\begin{gathered} 90 \\ 100 \\ 102 \end{gathered}$			$\begin{gathered} 96 \\ 102 \end{gathered}$			dB dB dB
	Minimum Supply Voltage		\bullet			± 1.25			± 1.50	V
Is	Supply Current		\bullet			160			160	$\mu \mathrm{A}$
V_{0}	Output Voltage Swing		\bullet	± 14.15			± 14.15			V
SR	Slew Rate	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	\bullet	0.008			0.024			V/ $/ \mathrm{s}$

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: Does not include the effect of the external gain resistor R_{G}.
Note 3: This parameter is not 100% tested.
Note 4: The LT1789C-1/ LT1789C-10 is guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ and is designed, characterized and expected to meet these extended temperature limits, but is not tested at $-40^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$. The LT1789I- $1 /$ LT1789I-10 is guaranteed to meet the extended temperature limits.

Note 5: Hysteresis in offset voltage is created by package stress that differs depending on whether the IC was previously at a higher or lower temperature. Offset voltage hysteresis is always measured at $25^{\circ} \mathrm{C}$, but the IC is cycled to $85^{\circ} \mathrm{Cl}$-grade (or $70^{\circ} \mathrm{C} \mathrm{C}$-grade) or $-40^{\circ} \mathrm{C}$-grade ($0^{\circ} \mathrm{C} \mathrm{C}$-grade) before successive measurement. 60% of the parts will pass the typical limit on the data sheet.
Note 6: $\mathrm{V}_{S}=5 \mathrm{~V}$ limits are guaranteed by correlation to $\mathrm{V}_{S}=3 \mathrm{~V}$ and $V_{S}= \pm 15 \mathrm{~V}$ tests.
Note 7: $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$ limits are guaranteed by correlation to $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ and $V_{S}= \pm 15 \mathrm{~V}$ tests.
Note 8: This parameter is not tested at $\mathrm{V}_{S}=3 \mathrm{~V}$ on the LT1789-10 due to an increase in sensitivity to test system noise. Actual performance is expected to be similar to performance at $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$.

TYPICAL PGRFORMAOCE CHARACTERISTICS

(LT1789-1, LT1789-10)

TYPICAL PERFORMANCE CHARACTERISTICS (IT1799-1)

\qquad

TYPICAL PERFORMANCE CHARACTERISTICS (LT1789-1)

0.1 Hz to 10 Hz Noise Voltage,
$\mathrm{G}=1$

1789 G15

0.1 Hz to 10 Hz Noise Current

Current Noise Density vs Frequency

0.1 Hz to 10 Hz Noise Voltage,

RTI, $\mathrm{G}=1000$

Turn-On Characteristics

TYPICAL PERFORMANCG CHARACTERISTICS
 (LT1789-10)

Output Impedance vs Frequency

1789 G23
Positive Power Supply Rejection Ratio vs Frequency

178962

1789 G27

Gain vs Frequency

1789 G22

Negative Power Supply Rejection Ratio vs Frequency

Overshoot vs Capacitive Load

Settling Time to 0.01% vs Output Step

TYPICAL PERFORMANCE CHARACTGRISTICS (LIT89-10)

0.1 Hz to 10 Hz Noise Voltage,

RTI, $\mathrm{G}=10$

1789 G32

0.1 Hz to 10 Hz Noise Voltage,

RTI, $\mathrm{G}=1000$

Turn-On Characteristics

13

LT1789-1/LT1789-10

TYPICAL PGRFORMANCE CHARACTERISTICS (LT189-1)

Small-Signal Transient Response
$\mathrm{G}=1$

Small-Signal Transient Response

Large-Signal Transient Response
$G=1000$

Small-Signal Transient Response
$\mathrm{G}=10$

Small-Signal Transient Response
$G=1000$

LT1789-1/LT1789-10

TYPICAL PERFORMANCE CHARACTERISTICS (LIT79-10)

LT1789-1/LT1789-10

TYPICAL PERFORMANCE CHARACTERISTICS (IT1799-1)

1789 G52

Valid Output Voltage vs Input Common Mode Voltage
$V_{S}=3 V$

TYPICAL PERFORMANCE CHARACTERISTICS (LIT89-10)

Valid Output Voltage vs Input Common Mode Voltage
$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

Valid Output Voltage vs Input Common Mode Voltage

1789 G57

Valid Output Voltage vs Input Common Mode Voltage
$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$

1789 G58

LT1789-1/LT1789-10

BLOCK DIAGRAM

Figure 1. Block Diagram

APPLICATIONS INFORMATION

Setting the Gain

The gain of the LT1789-1 and LT1789-10 is set by the value of resistor R_{G}, applied across pins 1 and 8 . For the LT1789-1, the gain G will be:

$$
G=1+200 \mathrm{k} / R_{G}
$$

and R_{G} can be calculated from the desired gain by

$$
R_{G}=200 \mathrm{~K} /(\mathrm{G}-1)
$$

For the LT1789-10, the gain G will be

$$
G=10 \cdot\left(1+200 k / R_{G}\right)
$$

and R_{G} can be calculated from the desired gain by

$$
R_{G}=200 \mathrm{k} /(0.1 \cdot G-1)
$$

For the lowest achievable gain, R_{G} may be set to infinity by leaving Pins 1 and 8 open.

Input and Output Offset Voltage

The offset voltage of the LT1789-1/LT1789-10 has two components: the output offset and the input offset. The total offset voltage referred to the input (RTI) is found by dividing the output offset by the programmed gain (G) and adding it to the input offset. At high gains the input offset voltage dominates, whereas at low gains the output offset voltage dominates. The total offset voltage is:
Total input offset voltage
= input offset + (output offset/G)
Total output offset voltage $=$ (input offset \bullet G) + output offset

APPLICATIONS INFORMATION

Reference Terminal

The output voltage of the LT1789-1/LT1789-10 (Pin 6) is referenced to the voltage on the reference terminal (Pin 5). Resistance in series with the REF pin must be minimized for best common mode rejection. For example, a 22Ω resistance from the REF pin to ground will not only increase the gain error by 0.02% but will lower the CMRR to 80dB.

Output Offset Trimming

The LT1789-1/LT1789-10 is laser trimmed for low offset voltage so that no external offset trimming is required for most applications. In the event that the offset needs to be adjusted, the circuitin Figure 2 is an example of an optional offset adjust circuit. The op amp buffer provides a low impedance to the REF pin where resistance must be kept to a minimum for best CMRR and lowest gain error.

Input Bias Current Return Path

The low input bias current of the LT1789-1/LT1789-10 ($19 n \mathrm{~A}$) and the high input impedance ($1.6 \mathrm{G} \Omega$) allow the use of high impedance sources without introducing significant offset voltage errors, even when the full common mode range is required. However, a path must be provided for the input bias currents of both inputs when a purely differential signal is being amplified. Without this path the inputs will float high and exceed the input common mode range of the LT1789-1/LT1789-10, resulting in a saturated inputstage. Figure 3 shows three examples of an input bias current path. The first example is of a purely differential signal source with a $10 \mathrm{k} \Omega$ input current path to ground. Since the impedance of the signal source is low, only one resistor is needed. Two matching resistors are needed for higher impedance signal sources as shown in the second example. Balancing the input impedance improves both common mode rejection and DC offset. The need for input resistors is eliminated if a center tap is present as shown in the third example.

Figure 2. Optional Trimming of Output Offset Voltage

CENTER-TAP PROVIDES BIAS CURRENT RETURN

Figure 3. Providing an Input Common Mode Current Path

APPLICATIONS INFORMATION

Output Voltage vs Input Common Mode Voltage

All instrumentation amplifiers have limiting factors that can cause an output to be invalid (the output is not equal to the input differential voltage multiplied by the gain) even though the output appears to be operating in a linear region. Limiting factors such as input voltage range and output swing can be easily measured, however, there are also internal nodes that can limit. These internal nodes cannot be measured externally and can lead to erroneous output readings.
To ensure a valid output for a given input common mode voltage and input differential voltage, the following four limiting factors must be taken into consideration (refer to the block diagram):

1) The input voltage ranges of the input amplifiers A1 and A2.
2) The output swings of the input amplifiers A1 and A2 (internal nodes).
3) The input voltage range of the output amplifier A3 (internal node).
4) The output swing of the output amplifier A3.

These limits can be determined using the relationships below.

1) The input voltage range limits can be found in the electrical tables.
2) The output voltages of the input amplifiers A1 and A2 can be found by the following formulas:

$$
\begin{aligned}
& V_{\text {OUT }} A 1=\left(V_{D} / 2\right)(G)(R 1 / R 2)+V_{C M}+0.6 V \\
& V_{\text {OUT }} A 2=\left(-V_{D} / 2\right)(G)(R 1 / R 2)+V_{C M}+0.6 V
\end{aligned}
$$

Where V_{D} is the input differential voltage and $V_{C M}$ is the input common mode voltage.

The typical output swing limits for A1 and A2 can be found in the Output Swing vs Load Current typical performance curve, using R1 + R2 as the load resistance.

This limitation usually becomes dominant when gain is taken in the input stage and the common mode input voltage is close to either supply rail.

The LT1789-10 is less susceptible to this limiting factor because the gain is taken in the output stage.
3) The voltage on the inputs to the output amplifier A3 can be determined by the following formula:

$$
\mathrm{V}_{\text {IN }} \mathrm{A} 3=\left(\mathrm{V}_{\text {OUT }} \mathrm{A} 1-\mathrm{V}_{\text {REF }}\right)(\mathrm{R} 2 /(\mathrm{R} 1+\mathrm{R} 2))
$$

The input voltage range of A 3 has the same input limits as the LT1789-1. This limiting factor is more prevalent with single supplies, where both the reference voltage and input common mode voltage are near V^{+}. This is also more of a concern with the LT1789-10 because the ratio of R1:R2 is $1: 10$ instead of $1: 1$.
4) The output voltage swing limits are also found in the electrical tables.

The OutputVoltage vs InputCommon Mode Voltage typical performance curves show the regions of operation for the three supply voltages specified.

Single Supply Operation

There are usually two types of input signals that need to be processed; differential signals, like the output of a bridge or single ended signals, such as the output from a thermistor. Both signals require special consideration when operating with a single supply.

When processing differential signals, REF (Pin 5) must be brought above the negative supply ($\operatorname{Pin} 4$) to allow the outputto process both the positive and negative going input signal. The maximum output operating range is obtained by setting the voltage on the REF pin to half supply. This must be done with a low impedance source to minimize CMRR and gain errors.

For single ended input signals, the REF pin can be at the same potential as the negative supply provided the output of the instrumentation amplifier remains inside the specified operating range. This maximizes the output range, however the smallest input signal that can be processed is limited by the output swing to the negative supply.
.

TYPICAL APPLICATIONS

Single Supply Positive Integrator

$V_{S}=2.7 \mathrm{~V}$ TO 32V
TIME CONSTANT $=(\mathrm{R} 1)(\mathrm{C} 1)=1$ SECOND AS SHOWN

Avalanche Photo Diode Module Bias Current Monitor

21

LT1789-1/LT1789-10

PACKAGE DESCRIPTION
S8 Package
8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

RECOMMENDED SOLDER PAD LAYOUT

REVISIO HISTORY (Revision history begins at Rev C)

REV	DATE	DESCRIPTION	PAGE NUMBER
C	$5 / 10$	Updated Input Noise Current Density Spec	6

Information furnished by Linear Technology Corporation is believed to be accurate and reliable However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

LT1789-1/LT1789-10

TYPICAL APPLICATION

Voltage Controlled Current Source

$10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ Thermometer

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1100	Precision Chopper-Stabilized Instrumentation Amplifier	Best DC Accuracy
LT1101	Precision, Micropower, Single Supply Instrumentation Amplifier	Fixed Gain of 10 or 100, IS $<105 \mu \mathrm{~A}$
LT1102	High Speed, JFET Instrumentation Amplifier	Fixed Gain of 10 or 100, 30V/us Slew Rate
LT1167	Single Resistor Gain Programmable, Precision Instrumentation Amplifier	Gain Error: 0.08\% Max, Gain Nonlinearity: 10ppm Max, $60 \mu \mathrm{~V}$ Max Input Offset Voltage, 90dB Min CMRR
LT1168	Low Power, Single Resistor Programmable Instrumentation Amplifier	$\mathrm{I}_{\text {SUPPLY }}=530 \mu \mathrm{~A}$ Max
LTC ${ }^{\text {1 }} 1418$	14-Bit, Low Power, 200ksps ADC with Serial and Parallel I/0	Single Supply 5 V or $\pm 5 \mathrm{~V}$ Operation, $\pm 1.5 \mathrm{LSB}$ INL and ± 1 LSB DNL Max
LT1460	Precision Series Reference	Micropower; 2.5V, 5V, 10V Versions; High Precision
LT1468	16-Bit Accurate Op Amp, Low Noise Fast Settling	16-Bit Accuracy at Low and High Frequencies, 90MHz GBW, 22V/us, 900ns Settling
LTC1562	Active RC Filter	Lowpass, Bandpass, Highpass Responses; Low Noise, Low Distortion, Four 2nd Order Filter Sections
LTC1605	16-Bit, 100ksps, Sampling ADC	Single 5V Supply, Bipolar Input Range: $\pm 10 \mathrm{~V}$, Power Dissipation: 55mW Typ

