DESCRIPTIOn

Demonstration Circuit 1394A is a $38 \mathrm{~V}, 2 \mathrm{~A}, 2.4 \mathrm{MHz}$ Step-Down Switching Regulator with $70 \mu \mathrm{~A}$ Quiescent Current. The LT3480EDD is available in a 10 -pin $(3 \mathrm{~mm} \times 3 \mathrm{~mm})$ DFN surface mount package.

LT, LTC, LTM, LT, Burst Mode, OPTI-LOOP, Over-The-Top and PolyPhase are registered trademarks of Linear Technology Corporation. Adaptive Power, C-Load, DirectSense, Easy Drive, FilterCAD, Hot Swap, LinearView, μ Module, Micropower SwitcherCAD, Multimode Dimming, No Latency $\Delta \Sigma$, No Latency Delta-Sigma, No $\mathrm{R}_{\text {sense, }}$, Operational Filter, PanelProtect, PowerPath, PowerSOT, SmartStart, SoftSpan, Stage Shedding, SwitcherCAD, ThinSOT, UltraFast and VLDO are trademarks of Linear Technology Corporation. Other product names may be trademarks of the companies that manufacture the products.

PGRFORMA

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP MAX	UNITS
HVIN	High Voltage Input Voltage Range	Input disabled from 38-60V	8	60	V
5V ADAPTOR	5V Adaptor Input Voltage Range		4.5	5.5	V
HVBUCK	Output Voltage Range	Range is mode and load dependant	3.5	5.5	V
$\underline{\underline{\text { IVVBUCK }}}$	Output Current			2	A

QUICK START PROCEDURE

Using short twisted pair leads for any power connections, with all loads and power supplies off, refer to Figures $1 \& 2$ for the proper measurement and equipment setup.
A companion PMIC demo board is required for this check out procedure. The DC1303A (LTC4098EPDC) board is recommended, and will be used for the following procedure. Please refer to the DC1303A Quick Start Guide for further information.
Follow the procedure below:

1. Set PS1 to 8 V , PS 2 to 0 V , and PS 3 to 3.6V. Set Load1 to 0A. Ensure that jumpers are configured as per Figure 1, except the "D2" jumper (JP3) on the DC1303A should be set to "1".
2. Observe that $4.60 \mathrm{~V}<\mathrm{VOUT}(\mathrm{VM} 3)<$ 4.80 V . The LT3480 HV Buck regulator is running with its control loop closed locally. The nominal HVBUCK voltage is 4.75 V , and the LTC4098EPDC on the DC1303A board has connected HVBUCK to VOUT.
3. Set Load1 to 2A. Observe that 4.60 V < VOUT (VM3) 4.80V. Set Load1 to 0A. The 2A load on VOUT loads HVBUCK, so the LT3480EDD is supplying 2A.
4. Set PS1 to 38 V . Observe that $4.60 \mathrm{~V}<$ VOUT (VM3) < 4.80V. The LT3480 is designed to operate from $\mathrm{HVIN}=8 \mathrm{~V}$ to 38 V .
5. Set Load1 to 2A. Observe that $4.60 \mathrm{~V}<$ VOUT (VM3) < 4.80V. Set Load1 to 0A. The LT3480 is now supplying 2A, while operating from 38 V .
6. Set "COMP" jumper (JP2) to "REMOTE". Observe that 3.80V < VOUT (VM3) < 4.10 V . The LTC4098EPDC is now controlling the LT3480 output voltage to approximately $\mathrm{V}(\mathrm{BAT})+0.3 \mathrm{~V}$.
7. Set Load1 to 2 A . Observe that $3.80 \mathrm{~V}<$ VOUT (VM3) < 4.10V. Set Load1 to OA. LT3480 is supplying 2A, while under LTC4098 control.
8. Set PS1 to 8 V . Observe that 3.80 V < VOUT (VM3) < 4.10V.
9. Set Load1 to 2A. Observe that $3.80 \mathrm{~V}<$ (VM3) < 4.10V. Set Load1 to 0A.
10. Set PS2 to 4.5V, and "WALL" jumper (JP3) to "5V ADAPTOR". Observe that 4.40 < VOUT (VM3) < 4.50V. The LT3480 is not supplying power to VOUT. This verifies that the LTC4098 recognizes the 5V Adapator input, and connects it to VOUT.
11. Set Load1 to 1A. Observe that $4.40 \mathrm{~V}<$ VOUT (VM3) <4.50V. Set Load1 to 0A.
12. Set PS2 to 5.5 V . Observe that $5.40 \mathrm{~V}<$ VOUT (VM3) < 5.50V.
13. Set Load1 to 1A. Observe that $5.40 \mathrm{~V}<$ VOUT (VM3) < 5.50 V .

Note: All connections from equipment should be Kelvin connected directly to the Board PINS which they are connected to on this diagram and any input, or output, leads should be twisted pair

Figure 1. Proper Measurement Equipment Setup for DC1394A

Figure 2. Measuring Input or Output Ripple

Figure 3. DC1394A Schematic
$\angle 7$ UnER

	Qty	Reference	Part Description	Manufacture / Part \#
REQUIRED CIRCUIT COMPONENTS:				
1	1	C1	CAP, CHIP, X5R, 4.7 ${ }^{\text {F }}$, $\pm 10 \%, 50 \mathrm{~V}, 1206$	MURATA, GRM31CR71H475KA12L
2	1	C2	CAP, CHIP, X 5 R, $0.068 \mu \mathrm{~F}, \pm 10 \%, 50 \mathrm{~V}, 0603$	MURATA, GRM188R71H683K
3	1	C4	CAP, CHIP, BX, 330pF, 50V, 5\%, 0402	VISHAY, VJ0402X331JXAA
4	1	C7	CAP, CHIP, X5R, 22 FF, $\pm 20 \%$, 6.3V, 0805	TAIYO-YUDEN, JMK212BJ226MG
5	1	C8	CAP, CHIP, X7R, $0.47 \mu \mathrm{~F}, \pm 10 \%, 25 \mathrm{~V}, 0603$	MURATA, GRM188R71E474K
6	1	D1	DIODE, SCHOTTKY, 2A, 40V, SMB	DIODES INC., DFLS240L
7	1	L1	IND, SMT, $6.3 \mu \mathrm{H}, 38 \mathrm{~m} \Omega, \pm 30 \%, 2.8 \mathrm{~A}, 6.0 \mathrm{mmX6.0mm}$	TAIYO-YUDEN, NR6045T6R3
8	1	Q1	MOSFET, -12V, 35m Ω, -5.3A, SOT-23	VISHAY, Si2333DS
9	1	R1	RES, CHIP, 150k Ω, 1/16W, $\pm 1 \%$, 0402	VISHAY, CRCW0402150KFKED
10	1	R2	RES, CHIP, 40.2k Ω, 1/16W, $\pm 1 \%$, 0402	VISHAY, CRCW040240K2FKED
11	1	R4	RES, CHIP, 20k Ω, 1/16W, $\pm 1 \%, 0402$	VISHAY, CRCW040220K0FKED
12	1	R5	RES, CHIP, 100k Ω, 1/16W, $\pm 1 \%$, 0402	VISHAY, CRCW0402100KFKED
13	1	R6	RES, CHIP, 499k , 1/16W, $\pm 1 \%, 0402$	VISHAY, CRCW0402499KFKED
14	1	U1	LT3480EDD, PMIC 38V, 2A, 2.4MHz Step-Down Switching Regulator with $70 \mu \mathrm{~A}$ Quiescent Current	LINEAR TECH., LT3480EDD
ADDITIONAL DEMO BOARD CIRCUIT COMPONENTS:				
1	1	C3	CAP, CHIP, X5R, 10رF, $\pm 10 \%, 6.3 \mathrm{~V}, 0603$	TDK, C1608X5R0J106K
2	0	C5-OPT, C6-OPT	None	User determined
3	1	R3	RES, CHIP, 1.0^, 1/16W, 5\%, 0402	VISHAY, CRCW04021R00JNED
4	1	R7	RES,CHIP, 20 $2,1 / 16 \mathrm{~W}, \pm 5 \%, 0402$	VISHAY, CRCW040220ROJNED
5	1	R8	RES, CHIP, 10k Ω, 1/16W, 5\%, 0402	VISHAY, CRCW040210KOJNED
HARDWARE FOR DEMO BOARD ONLY:				
1	6	E1,E2,E3,E4,E5,E6	Turret, 0.09"	MILL-MAX, 2501-2
2	1	J1	CONN, HV interface	SAMTEC, TSH-108-01-T-RA
3	3	JP1,JP2,JP3	3 Pin Jumper, 2 mm	SAMTEC, TMM-103-02-L-S
4	3	JP1,JP2,JP3	2 mm SHUNT	SAMTEC, 2SN-BK-G
5	4		STAND-OFF, NYLON 0.375" tall (SNAP ON)	KEYSTONE, 8832 (SNAP ON)

Figure 4. DC1394A BOM

17 LINER

