

CMOS Rail-to-Rail General-Purpose Amplifiers

AD8541/AD8542/AD8544

FEATURES

Single-supply operation: 2.7 V to 5.5 V Low supply current: 45 µA/amplifier Wide bandwidth: 1 MHz No phase reversal Low input currents: 4 pA Unity gain stable Rail-to-rail input and output Qualified for automotive applications

APPLICATIONS

ASIC input or output amplifiers Sensor interfaces Piezoelectric transducer amplifiers Medical instrumentation Mobile communications Audio outputs Portable systems

GENERAL DESCRIPTION

The AD8541/AD8542/AD8544 are single, dual, and quad railto-rail input and output, single-supply amplifiers featuring very low supply current and 1 MHz bandwidth. All are guaranteed to operate from a 2.7 V single supply as well as a 5 V supply. These parts provide 1 MHz bandwidth at a low current consumption of 45 μ A per amplifier.

Very low input bias currents enable the AD8541/AD8542/AD8544 to be used for integrators, photodiode amplifiers, piezoelectric sensors, and other applications with high source impedance. The supply current is only 45 μ A per amplifier, ideal for battery operation.

Rail-to-rail inputs and outputs are useful to designers buffering ASICs in single-supply systems. The AD8541/AD8542/AD8544 are optimized to maintain high gains at lower supply voltages, making them useful for active filters and gain stages.

The AD8541/AD8542/AD8544 are specified over the extended industrial temperature range (-40°C to +125°C). The AD8541 is available in 5-lead SOT-23, 5-lead SC70, and 8-lead SOIC packages. The AD8542 is available in 8-lead SOIC, 8-lead MSOP, and 8-lead TSSOP surface-mount packages. The AD8544 is available in 14-lead narrow SOIC and 14-lead TSSOP surfacemount packages. All MSOP, SC70, and SOT versions are available in tape and reel only. See the Ordering Guide for automotive models.

Rev. G

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

PIN CONFIGURATIONS

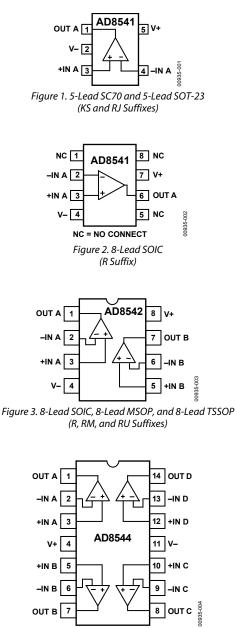


Figure 4. 14-Lead SOIC and 14-Lead TSSOP (R and RU Suffixes)

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel: 781.329.4700
 www.analog.com

 Fax: 781.461.3113
 ©2008-2011 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

Features
Applications1
General Description 1
Pin Configurations 1
Revision History 2
Specifications
Electrical Characteristics
Absolute Maximum Ratings
Thermal Resistance 6
ESD Caution
Typical Performance Characteristics7

Theory of Operation	13
Notes on the AD854x Amplifiers	
Applications	14
Notch Filter	14
Comparator Function	
Photodiode Application	15
Outline Dimensions	16
Ordering Guide	19
Automotive Products	19

REVISION HISTORY

6/11—Rev. F to Rev. G	
Changes to Features Section and General Description	
Section	1
Changes to Table 5	6
Updated Outline Dimensions	16
Changes to Ordering Guide	19
Added Automotive Products Section	19
1/08—Rev. E to Rev. F	
	0

Inserted Figure 21; Renumbered Sequentially	9
Changes to Figure 22 Caption	9
Changes to Notch Filter Section, Figure 35, Figure 36, and	
Figure 37	. 13
Updated Outline Dimensions	. 16

1/07—Rev. D to Rev. E

Updated FormatUniversal Changes to Photodiode Application Section14 Changes to Ordering Guide17
8/04—Rev. C to Rev. D Changes to Ordering Guide
1/03—Rev. B to Rev. C Updated FormatUniversal Changes to General Description

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

 V_{S} = 2.7 V, V_{CM} = 1.35 V, T_{A} = 25°C, unless otherwise noted.

Table 1.

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			1	6	mV
		$-40^{\circ}C \leq T_{A} \leq +125^{\circ}C$			7	mV
Input Bias Current	IB			4	60	pА
		$-40^{\circ}C \le T_{A} \le +85^{\circ}C$			100	рА
		$-40^\circ C \leq T_A \leq +125^\circ C$			1000	pА
Input Offset Current	los			0.1	30	рΑ
		$-40^\circ C \leq T_A \leq +85^\circ C$			50	pА
		$-40^\circ C \le T_A \le +125^\circ C$			500	рΑ
Input Voltage Range			0		2.7	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0 V \text{ to } 2.7 V$	40	45		dB
		$-40^\circ C \le T_A \le +125^\circ C$	38			dB
Large Signal Voltage Gain	Avo	$R_L = 100 \ k\Omega, V_O = 0.5 \ V$ to $2.2 \ V$	100	500		V/mV
		$-40^\circ C \le T_A \le +85^\circ C$	50			V/mV
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	2			V/mV
Offset Voltage Drift	$\Delta V_{os}/\Delta T$	$-40^{\circ}C \le T_A \le +125^{\circ}C$		4		μV/°C
Bias Current Drift	ΔΙ _Β /ΔΤ	$-40^{\circ}C \le T_{A} \le +85^{\circ}C$		100		fA/°C
		$-40^{\circ}C \leq T_{A} \leq +125^{\circ}C$		2000		fA/°C
Offset Current Drift	$\Delta I_{OS} / \Delta T$	$-40^{\circ}C \le T_{A} \le +125^{\circ}C$		25		fA/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$I_L = 1 \text{ mA}$	2.575	2.65		V
1 5 5		$-40^{\circ}C \le T_A \le +125^{\circ}C$	2.550			v
Output Voltage Low	Vol	$I_L = 1 \text{ mA}$		35	100	mV
1 5		$-40^{\circ}C \le T_A \le +125^{\circ}C$			125	mV
Output Current	Іоит	$V_{OUT} = V_S - 1 V$		15		mA
	Isc			±20		mA
Closed-Loop Output Impedance	ZOUT	$f = 200 \text{ kHz}, A_V = 1$		50		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{s} = 2.5 V \text{ to } 6 V$	65	76		dB
· oner supply nejection hatto	1.5111	$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	60	, 0		dB
Supply Current/Amplifier	Isy	$V_0 = 0$ V		38	55	μA
Supply current/mpiner	121	$-40^{\circ}C \le T_{A} \le +125^{\circ}C$		50	75	μA
DYNAMIC PERFORMANCE						Pr' 1
Slew Rate	CD	$B_{\rm r} = 100 k_{\rm O}$	0.4	0.75		Mure
	SR +	$R_{L} = 100 \text{ k}\Omega$ $T_{D} = 0.10\% (1)\% \text{ stop}$	0.4	0.75 F		V/µs
Settling Time	ts	To 0.1% (1 V step)		5		µs ku≂
Gain Bandwidth Product	GBP			980 62		kHz
Phase Margin	Фм			63		Degrees
NOISE PERFORMANCE	ΨM					
				40		
Voltage Noise Density	e _n	f = 1 kHz		40 29		nV/√Hz
	e _n	f = 10 kHz		38		nV/√Hz
Current Noise Density	İn			<0.1		pA/√Hz

 V_{S} = 3.0 V, V_{CM} = 1.5 V, T_{A} = 25°C, unless otherwise noted.

Table 2.

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			1	6	mV
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			7	mV
Input Bias Current	IB			4	60	pА
		$-40^{\circ}C \le T_A \le +85^{\circ}C$			100	pА
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			1000	pA
Input Offset Current	los			0.1	30	pA
		$-40^{\circ}C \le T_A \le +85^{\circ}C$			50	pA
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			500	pA
Input Voltage Range			0		3	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0 V$ to 3 V	40	45		dB
-		$-40^{\circ}C \le T_A \le +125^{\circ}C$	38			dB
Large Signal Voltage Gain	A _{VO}	$R_L = 100 \text{ k}\Omega$, $V_O = 0.5 \text{ V}$ to 2.2 V	100	500		V/mV
		$-40^{\circ}C \le T_{A} \le +85^{\circ}C$	50			V/mV
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	2			V/mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ}C \le T_A \le +125^{\circ}C$		4		μV/°C
Bias Current Drift	ΔΙ _β /ΔΤ	$-40^{\circ}C \le T_A \le +85^{\circ}C$		100		fA/°C
		$-40^{\circ}C \le T_A \le +125^{\circ}C$		2000		fA/°C
Offset Current Drift	$\Delta I_{OS}/\Delta T$	$-40^{\circ}C \le T_A \le +125^{\circ}C$		25		fA/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	Vон	$I_{L} = 1 \text{ mA}$	2.875	2.955		v
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	2.850			V
Output Voltage Low	Vol	$I_L = 1 \text{ mA}$		32	100	mV
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			125	mV
Output Current	Ι _{ουτ}	$V_{OUT} = V_s - 1 V$		18		mA
	lsc			±25		mA
Closed-Loop Output Impedance	Zout	$f = 200 \text{ kHz}, A_V = 1$		50		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{s} = 2.5 V \text{ to } 6 V$	65	76		dB
	1 Shirt	$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	60	,,,		dB
Supply Current/Amplifier	lsy	$V_0 = 0 V$	00	40	60	μA
Supply currents in planet	131	$-40^{\circ}C \le T_A \le +125^{\circ}C$		10	75	μΑ
DYNAMIC PERFORMANCE					,,,	
Slew Rate	SR	$R_L = 100 \ k\Omega$	0.4	0.8		V/µs
Settling Time	ts	To 0.01% (1 V step)	U.T	0.8 5		μs
Gain Bandwidth Product	GBP			980		μs kHz
Phase Margin	Φ _M			980 64		Degrees
NOISE PERFORMANCE	ΨM			04		Degrees
		f = 1 kHz		40		n)////L/-
Voltage Noise Density	en			42		nV/√Hz
	en :	f = 10 kHz		38		nV/√Hz
Current Noise Density	İn			<0.1		pA/√Hz

 V_{S} = 5.0 V, V_{CM} = 2.5 V, T_{A} = 25°C, unless otherwise noted.

Table 3.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			1	6	mV
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			7	mV
Input Bias Current	IB			4	60	рΑ
		$-40^{\circ}C \le T_A \le +85^{\circ}C$			100	рА
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			1000	рА
Input Offset Current	los			0.1	30	рА
		$-40^{\circ}C \le T_A \le +85^{\circ}C$			50	рА
		$-40^{\circ}C \leq T_{A} \leq +125^{\circ}C$			500	рА
Input Voltage Range			0		5	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0 V$ to 5 V	40	48		dB
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	38			dB
Large Signal Voltage Gain	Avo	R_L = 100 kΩ, $V_{\rm O}$ = 0.5 V to 2.2 V	20	40		V/mV
		$-40^{\circ}C \le T_A \le +85^{\circ}C$	10			V/mV
		$-40^{\circ}C \leq T_{A} \leq +125^{\circ}C$	2			V/mV
Offset Voltage Drift	$\Delta V_{os}/\Delta T$	$-40^{\circ}C \le T_A \le +125^{\circ}C$		4		μV/°C
Bias Current Drift	ΔΙ _Β /ΔΤ	$-40^{\circ}C \le T_A \le +85^{\circ}C$		100		fA/°C
		$-40^{\circ}C \le T_A \le +125^{\circ}C$		2000		fA/°C
Offset Current Drift	$\Delta I_{OS}/\Delta T$	$-40^{\circ}C \le T_A \le +125^{\circ}C$		25		fA/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	Vон	$I_L = 1 \text{ mA}$	4.9	4.965		V
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	4.875			V
Output Voltage Low	Vol	$I_L = 1 \text{ mA}$		25	100	mV
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			125	mV
Output Current	lout	$V_{OUT} = V_S - 1 V$		30		mA
	lsc			±60		mA
Closed-Loop Output Impedance	ZOUT	$f = 200 \text{ kHz}, A_V = 1$		45		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{s} = 2.5 V \text{ to } 6 V$	65	76		dB
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	60			dB
Supply Current/Amplifier	I _{SY}	$V_{\rm O} = 0 V$		45	65	μA
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			85	μΑ
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 100 \text{ k}\Omega, C_L = 200 \text{ pF}$	0.45	0.92		V/µs
Full Power Bandwidth	BW₽	1% distortion		70		kHz
Settling Time	ts	To 0.1% (1 V step)		6		μs
Gain Bandwidth Product	GBP			1000		kHz
Phase Margin	Фм			67		Degree
NOISE PERFORMANCE						
Voltage Noise Density	en	f = 1 kHz		42		nV/√Hz
tonage noise bensity	e _n	f = 10 kHz		38		nV/√Hz
Current Noise Density	i _n			<0.1		pA/√Hz
current noise bensity	"			~0.1		P' V V 12

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
Supply Voltage (Vs)	6 V
Input Voltage	GND to Vs
Differential Input Voltage ¹	±6 V
Storage Temperature Range	–65°C to +150°C
Operating Temperature Range	–40°C to +125°C
Junction Temperature Range	–65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C

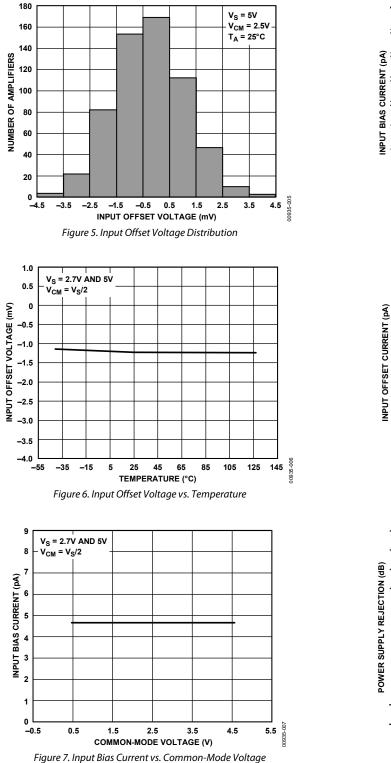
 1 For supplies less than 6 V, the differential input voltage is equal to $\pm V_{\text{S}}.$

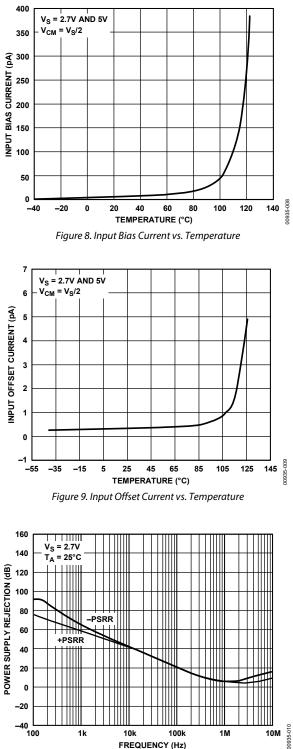
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

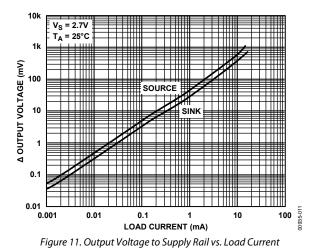
 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages and measured using a standard 4-layer board, unless otherwise specified.

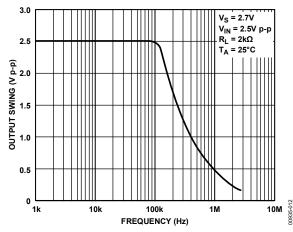
Table 5.

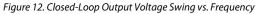

Package Type	θ」Α	οıc	Unit
5-Lead SC70 (KS)	376	126	°C/W
5-Lead SOT-23 (RJ)	190	92	°C/W
8-Lead SOIC (R)	120	45	°C/W
8-Lead MSOP (RM)	142	45	°C/W
8-Lead TSSOP (RU)	240	43	°C/W
14-Lead SOIC (R)	115	36	°C/W
14-Lead TSSOP (RU)	112	35	°C/W


ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.


TYPICAL PERFORMANCE CHARACTERISTICS





FREQUENCY (Hz)

Figure 10. Power Supply Rejection vs. Frequency

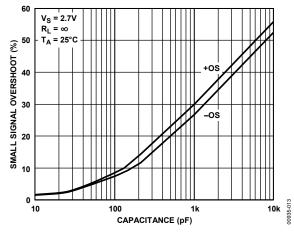
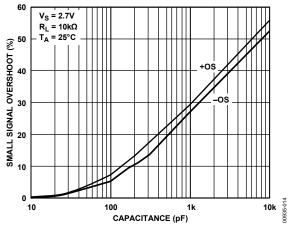
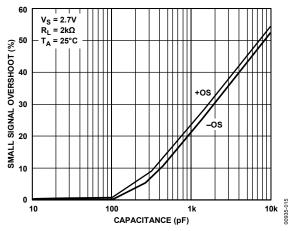
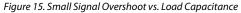





Figure 13. Small Signal Overshoot vs. Load Capacitance

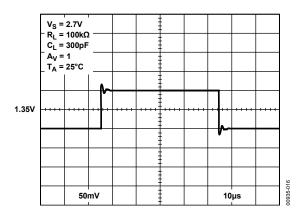
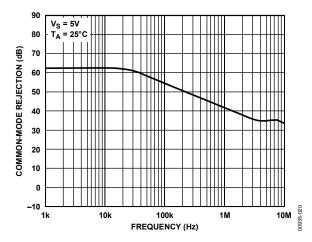
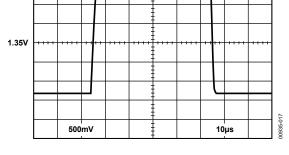
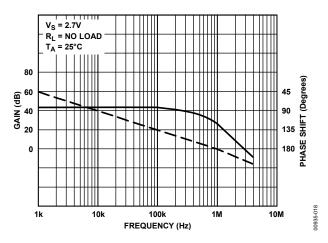
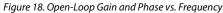




Figure 16. Small Signal Transient Response

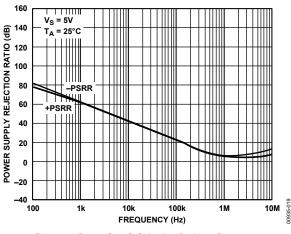
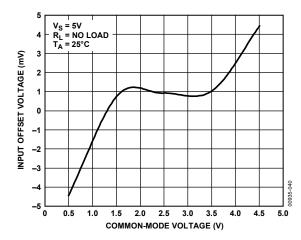
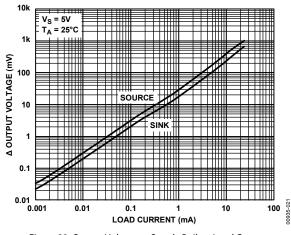



V_S = 2.7V

 $R_L = 2k\Omega$

A_V = 1 T_A = 25°C

Figure 17. Large Signal Transient Response

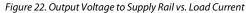
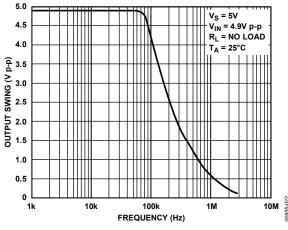
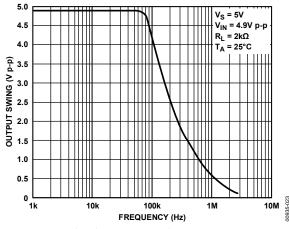
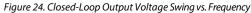
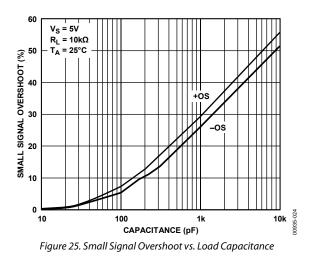
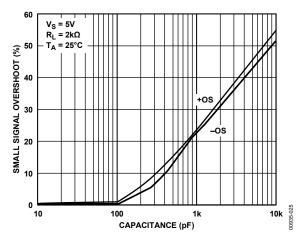
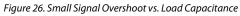
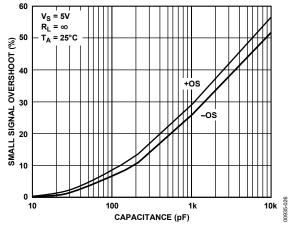
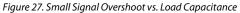

Figure 19. Power Supply Rejection Ratio vs. Frequency

Figure 20. Common-Mode Rejection vs. Frequency


Figure 23. Closed-Loop Output Voltage Swing vs. Frequency,





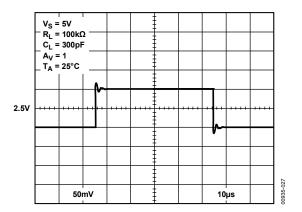


Figure 28. Small Signal Transient Response

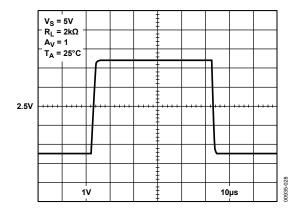


Figure 29. Large Signal Transient Response

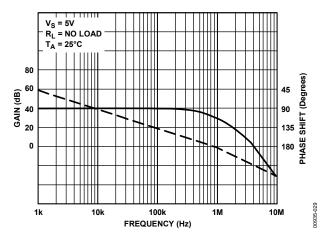


Figure 30. Open-Loop Gain and Phase vs. Frequency

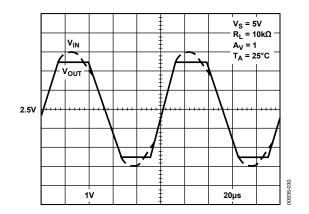


Figure 31. No Phase Reversal

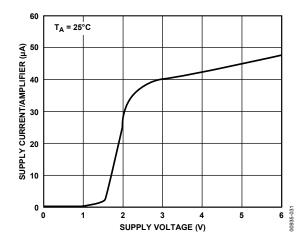
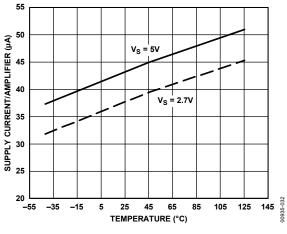
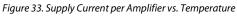
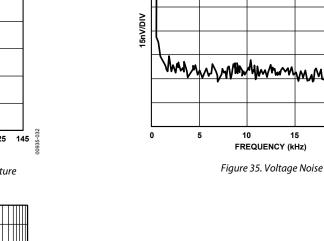





Figure 32. Supply Current per Amplifier vs. Supply Voltage

V_S = 5V

T_A = 25°C

MARKER SET @ 10kHz

MARKER READING: 37.6nV/√Hz

www

20

25 00032-034

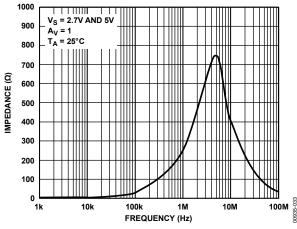


Figure 34. Closed-Loop Output Impedance vs. Frequency

THEORY OF OPERATION NOTES ON THE AD854X AMPLIFIERS

The AD8541/AD8542/AD8544 amplifiers are improved performance, general-purpose operational amplifiers. Performance has been improved over previous amplifiers in several ways, including lower supply current for 1 MHz gain bandwidth, higher output current, and better performance at lower voltages.

Lower Supply Current for 1 MHz Gain Bandwidth

The AD854x series typically uses 45 μ A of current per amplifier, which is much less than the 200 μ A to 700 μ A used in earlier generation parts with similar performance. This makes the AD854x series a good choice for upgrading portable designs for longer battery life. Alternatively, additional functions and performance can be added at the same current drain.

Higher Output Current

At 5 V single supply, the short-circuit current is typically 60 μ A. Even 1 V from the supply rail, the AD854x amplifiers can provide a 30 mA output current, sourcing, or sinking.

Sourcing and sinking are strong at lower voltages, with 15 mA available at 2.7 V and 18 mA at 3.0 V. For even higher output currents, see the AD8531/AD8532/AD8534 parts for output currents to 250 mA. Information on these parts is available from your Analog Devices, Inc. representative, and data sheets are available at www.analog.com.

Better Performance at Lower Voltages

The AD854x family of parts was designed to provide better ac performance at 3.0 V and 2.7 V than previously available parts. Typical gain bandwidth product is close to 1 MHz at 2.7 V. Voltage gain at 2.7 V and 3.0 V is typically 500,000. Phase margin is typically over 60°C, making the part easy to use.

APPLICATIONS NOTCH FILTER

The AD854x have very high open-loop gain (especially with a supply voltage below 4 V), which makes it useful for active filters of all types. For example, Figure 36 illustrates the AD8542 in the classic twin-T notch filter design. The twin-T notch is desired for simplicity, low output impedance, and minimal use of op amps. In fact, this notch filter can be designed with only one op amp if Q adjustment is not required. Simply remove U2 as illustrated in Figure 37. However, a major drawback to this circuit topology is ensuring that all the Rs and Cs closely match. The components must closely match or notch frequency offset and drift causes the circuit to no longer attenuate at the ideal notch frequency. To achieve desired performance, 1% or better component tolerances or special component screens are usually required. One method to desensitize the circuit-to-component mismatch is to increase R2 with respect to R1, which lowers Q. A lower Q increases attenuation over a wider frequency range but reduces attenuation at the peak notch frequency.

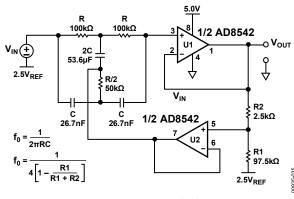


Figure 36. 60 Hz Twin-T Notch Filter, Q = 10

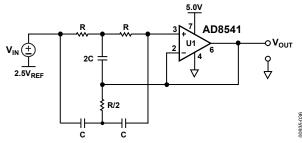


Figure 37. 60 Hz Twin-T Notch Filter, $Q = \infty$ (Ideal)

Figure 38 is an example of the AD8544 in a notch filter circuit. The frequency dependent negative resistance (FDNR) notch filter has fewer critical matching requirements than the twin-T notch, where as the Q of the FDNR is directly proportional to a single resistor R1. Although matching component values is still important, it is also much easier and/or less expensive to accomplish in the FDNR circuit. For example, the twin-T notch uses three capacitors with two unique values, whereas the FDNR circuit uses only two capacitors, which may be of the same value. U3 is simply a buffer that is added to lower the output impedance of the circuit.

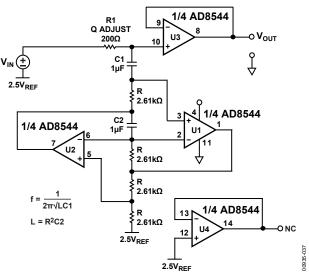


Figure 38. FDNR 60 Hz Notch Filter with Output Buffer

COMPARATOR FUNCTION

A comparator function is a common application for a spare op amp in a quad package. Figure 39 illustrates ¼ of the AD8544 as a comparator in a standard overload detection application. Unlike many op amps, the AD854x family can double as comparators because this op amp family has a rail-to-rail differential input range, rail-to-rail output, and a great speed vs. power ratio. R2 is used to introduce hysteresis. The AD854x, when used as comparators, have 5 µs propagation delay at 5 V and 5 µs overload recovery time.

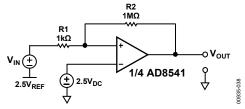


Figure 39. AD854x Comparator Application—Overload Detector

PHOTODIODE APPLICATION

The AD854x family has very high impedance with an input bias current typically around 4 pA. This characteristic allows the AD854x op amps to be used in photodiode applications and other applications that require high input impedance. Note that the AD854x has significant voltage offset that can be removed by capacitive coupling or software calibration.

Figure 40 illustrates a photodiode or current measurement application. The feedback resistor is limited to 10 M Ω to avoid excessive output offset. In addition, a resistor is not needed on the noninverting input to cancel bias current offset because the bias current-related output offset is not significant when compared to the voltage offset contribution. For best performance, follow the standard high impedance layout techniques, which include the following:

- Shielding the circuit.
- Cleaning the circuit board.
- Putting a trace connected to the noninverting input around the inverting input.
- Using separate analog and digital power supplies.

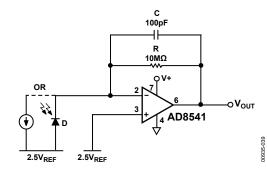
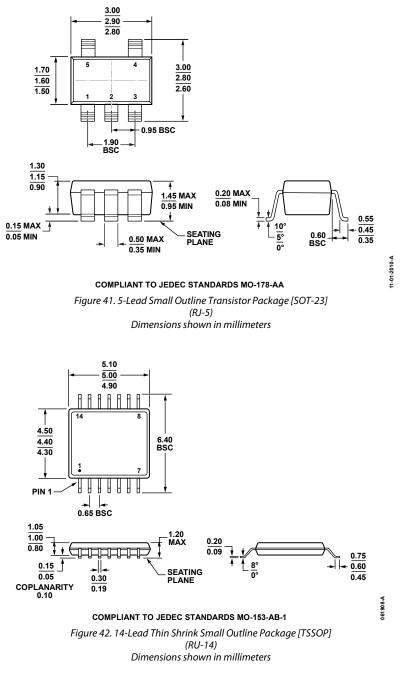
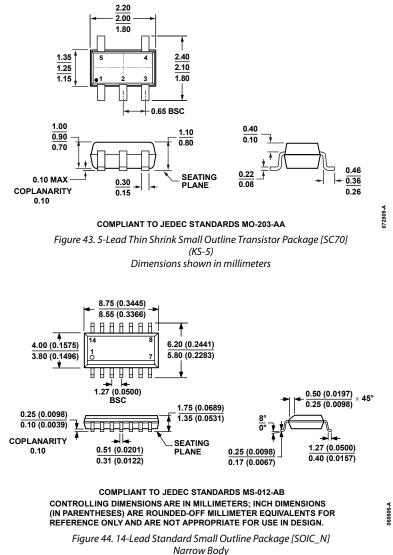
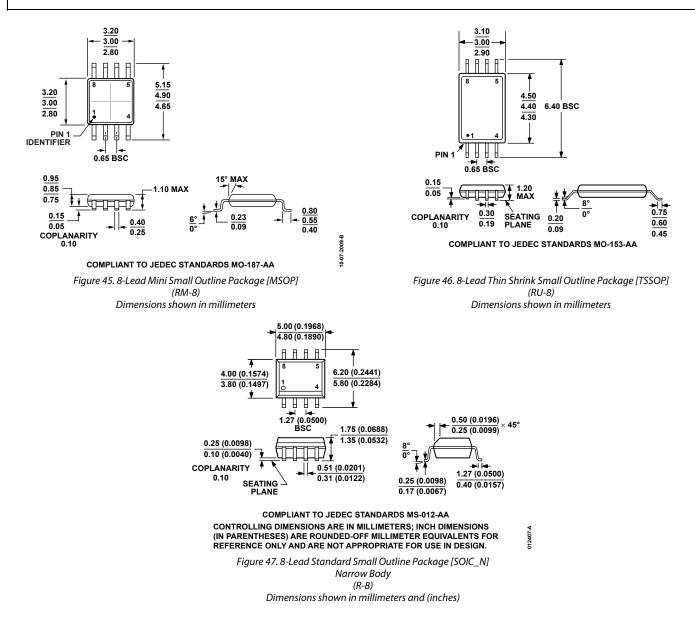




Figure 40. High Input Impedance Application—Photodiode Amplifier


OUTLINE DIMENSIONS

(R-14)

Dimensions shown in millimeters and (inches)

Model ^{1, 2}	Temperature Range	Package Description	Package Option	Branding
AD8541AKSZ-R2	-40°C to +125°C	5-Lead SC70	KS-5	A12
AD8541AKSZ-REEL7	-40°C to +125°C	5-Lead SC70	KS-5	A12
AD8541ARTZ-R2	-40°C to +125°C	5-Lead SOT-23	RJ-5	A4A
AD8541ARTZ-REEL	-40°C to +125°C	5-Lead SOT-23	RJ-5	A4A
AD8541ARTZ-REEL7	-40°C to +125°C	5-Lead SOT-23	RJ-5	A4A
AD8541ARZ	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8541ARZ-REEL	–40°C to +125°C	8-Lead SOIC_N	R-8	
AD8541ARZ-REEL7	–40°C to +125°C	8-Lead SOIC_N	R-8	
AD8542ARZ	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8542ARZ-REEL	-40°C to +125°C	8-Lead SOIC_N	R-8	
AD8542ARZ-REEL7	–40°C to +125°C	8-Lead SOIC_N	R-8	
AD8542ARM-REEL	-40°C to +125°C	8-Lead MSOP	RM-8	AVA
AD8542ARMZ	–40°C to +125°C	8-Lead MSOP	RM-8	AVA
AD8542ARMZ-REEL	-40°C to +125°C	8-Lead MSOP	RM-8	AVA
AD8542ARU-REEL	-40°C to +125°C	8-Lead TSSOP	RU-8	
AD8542ARUZ	–40°C to +125°C	8-Lead TSSOP	RU-8	
AD8542ARUZ-REEL	–40°C to +125°C	8-Lead TSSOP	RU-8	
AD8544ARZ	-40°C to +125°C	14-Lead SOIC_N	R-14	
AD8544ARZ-REEL	–40°C to +125°C	14-Lead SOIC_N	R-14	
AD8544ARZ-REEL7	-40°C to +125°C	14-Lead SOIC_N	R-14	
AD8544ARUZ	-40°C to +125°C	14-Lead TSSOP	RU-14	
AD8544ARUZ-REEL	–40°C to +125°C	14-Lead TSSOP	RU-14	
AD8544WARZ-RL	–40°C to +125°C	14-Lead SOIC_N	R-14	
AD8544WARZ-R7	-40°C to +125°C	14-Lead SOIC_N	R-14	

 1 Z = RoHS Compliant Part.

 2 W = Qualified for Automotive Applications.

AUTOMOTIVE PRODUCTS

The AD8544W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

NOTES

©2008–2011 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D00935-0-6/11(G)

www.analog.com
