## HMC276QS24 / 276QS24E



GaAs MMIC 4x2 SWITCH
MATRIX, 0.7-3.0 GHz

## Typical Applications

4x2 Switch Matrix for 0.7-3.0 GHz Applications:

- Cable Modem
- CATV
- Cellular Systems
- DBS


## Functional Diagram



## Features <br> Available as Lead Free <br> $4 \times 2$ Switch Matrix Using One IC <br> $4 \times 4$ Switch Matrix Using Two ICs <br> Integrated 4 Bit Decoder <br> Single Positive Supply: Vdd $=+5 \mathrm{~V}$ <br> General Description

The HMC276QS24 \& HMC276QS24E are low-cost $4 \times 2$ switch matrix in a 24-lead QSOP package for use in RF multiplexing applications from 700 to 3000 MHz . A positive voltage controlled 4 bit decoder is integrated on the switch. The switch may be used in either 75 ohm or 50 ohm systems.

Both switch outputs (OP1 \& OP2) can independently select any of the four inputs (HH, HL, VH, VL) or simultaneously select the same inputs. Note that the switch is bi-directional and input/output functionality may be interchanged. The recommended loading impedance is 62.5 ohms on each input ( $\mathrm{HH}, \mathrm{HL}, \mathrm{VH}, \mathrm{VL}$ ) and 75 ohms on each output (OP1 \& OP2). All data presented was measured in a 50 ohm (input/output) system.

Electrical Specifications, $T_{A}=+25^{\circ} \mathrm{C}$, Vdd $=+5 \mathrm{~V}$, 50 Ohm System

| Parameter | Frequency | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Insertion Loss | $700-3000 \mathrm{MHz}$ |  | 6.0 | 7.0 | dB |
| Isolation | $\begin{gathered} 700-950 \mathrm{MHz} \\ 950-1450 \mathrm{MHz} \\ 1450-2150 \mathrm{MHz} \\ 2150-3000 \mathrm{MHz} \end{gathered}$ | $\begin{aligned} & 36 \\ & \text { See } \\ & 32 \\ & 26 \end{aligned}$ | 40 2 Isola 36 31 | ables | $\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$ |
| Return Loss (Input; VL, HL, VH, HH) | $700-3000 \mathrm{MHz}$ | 12 | 16 |  | dB |
| Return Loss (Output; OP1, OP2) | $700-3000 \mathrm{MHz}$ | 11 | 15 |  | dB |
| Output IP3 | $700-3000 \mathrm{MHz}$ | 31 | 37 |  | dBm |
| Input Power for 1 dB Compression | $700-3000 \mathrm{MHz}$ | 22 | 26 |  | dBm |
| Switching Speed <br> tRISE / tFALL (10/90\% RF) tON / tOFF ( $50 \%$ CTL to $10 / 90 \%$ RF) | $700-3000 \mathrm{MHz}$ |  | $\begin{aligned} & 140 \\ & 350 \end{aligned}$ |  | $\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$ |

OP1 Isolation 950-1450 MHz

| Input to <br> Output State | Interfering <br> Signal | State | Min. <br> $(\mathrm{dB})$ | Typ. <br> (dB) |
| :---: | :---: | :---: | :---: | :---: |
| HL to OP1 | VL to OP1 <br> All Other States | 9 <br> All Other States | 36 <br> 40 | 38 <br> $>43$ |
| VL to OP1 | All Other States | All States | 40 | $>43$ |
| VH to OP1 | All Other States | All States | 40 | $>43$ |
|  | VL to OP1 | 13 | 39 | 41 |
| HH to OP1 | VL to OP1 | 16 | 40 | 42 |
|  | HL to OP1 | 15 | 39 | 41 |
|  | All Other States | All Other States | 40 | $>43$ |

## Insertion Loss on OP1



Return Loss


OP2 Isolation 950-1450 MHz

| Input to <br> Output State | Interfering <br> Signal | State | Min. <br> (dB) | Typ. <br> (dB) |
| :---: | :---: | :---: | :---: | :---: |
| HL to OP2 | All States | All States | 40 | $>43$ |
|  | HL to OP2 | 10 | 38 | 40 |
| VH to OP2 | HL to OP2 | 6 | 39 | 41 |
|  | VL to OP2 | 2 <br> All Other States | All Other States | 39 |
| 40 | 41 |  |  |  |
| VL to OP2 | HL to OP2 <br> All Other States | 9 <br> All Other States | 36 <br> 40 | 38 |
|  | All States | All States | 40 | $>43$ |

## Insertion Loss on OP2



Typical Insertion Loss vs. Temperature


Isolation When HL is Connected to OP1*


Isolation When VL is Connected to OP1*


Isolation When HL is Connected to OP2*


Isolation When VH is Connected to OP1*


Isolation When HH is Connected to OP1*


Isolation When VL is Connected to OP2*


* Isolation is recorded above insertion loss \& measured at output of switch.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

[^0]Isolation When VH is Connected to OP2*


Isolation When HH is Connected to OP2*


Output Third Order Intercept Point


* Isolation is recorded above insertion loss \& measured at output of switch.

Truth Table

|  | Control Input |  |  |  | Output to Input State |  | RF Path State |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| State | HV 1 | Tone 1 | HV 2 | Tone 2 | OP1 | OP2 | VL to OP1 | HL to OP1 | VH to OP1 | HH to OP1 | VL to OP2 | HL to OP2 | VH to OP2 | HH to OP2 |
| 1 | 0 | 0 | 0 | 0 | VL | VL | LOSS | ISOL | ISOL | ISOL | LOSS | ISOL | ISOL | ISOL |
| 2 | 0 | 0 | 0 | 1 | VL | VH | LOSS | ISOL | ISOL | ISOL | ISOL | ISOL | LOSS | ISOL |
| 3 | 0 | 0 | 1 | 0 | VL | HL | LOSS | ISOL | ISOL | ISOL | ISOL | LOSS | ISOL | ISOL |
| 4 | 0 | 0 | 1 | 1 | VL | HH | LOSS | ISOL | ISOL | ISOL | ISOL | ISOL | ISOL | LOSS |
| 5 | 0 | 1 | 0 | 0 | VH | VL | ISOL | ISOL | LOSS | ISOL | LOSS | ISOL | ISOL | ISOL |
| 6 | 0 | 1 | 0 | 1 | VH | VH | ISOL | ISOL | LOSS | ISOL | ISOL | ISOL | LOSS | ISOL |
| 7 | 0 | 1 | 1 | 0 | VH | HL | ISOL | ISOL | LOSS | ISOL | ISOL | LOSS | ISOL | ISOL |
| 8 | 0 | 1 | 1 | 1 | VH | HH | ISOL | ISOL | LOSS | ISOL | ISOL | ISOL | ISOL | LOSS |
| 9 | 1 | 0 | 0 | 0 | HL | VL | ISOL | LOSS | ISOL | ISOL | LOSS | ISOL | ISOL | ISOL |
| 10 | 1 | 0 | 0 | 1 | HL | VH | ISOL | LOSS | ISOL | ISOL | ISOL | ISOL | LOSS | ISOL |
| 11 | 1 | 0 | 1 | 0 | HL | HL | ISOL | LOSS | ISOL | ISOL | ISOL | LOSS | ISOL | ISOL |
| 12 | 1 | 0 | 1 | 1 | HL | HH | ISOL | LOSS | ISOL | ISOL | ISOL | ISOL | ISOL | LOSS |
| 13 | 1 | 1 | 0 | 0 | HH | VL | ISOL | ISOL | ISOL | LOSS | LOSS | ISOL | ISOL | ISOL |
| 14 | 1 | 1 | 0 | 1 | HH | VH | ISOL | ISOL | ISOL | LOSS | ISOL | ISOL | LOSS | ISOL |
| 15 | 1 | 1 | 1 | 0 | HH | HL | ISOL | ISOL | ISOL | LOSS | ISOL | LOSS | ISOL | ISOL |
| 16 | 1 | 1 | 1 | 1 | HH | HH | ISOL | ISOL | ISOL | LOSS | ISOL | ISOL | ISOL | LOSS |

Control Voltages
HV1, Tone1, HV2, Tone2

| State | Bias Condition |
| :--- | :--- |
| Low (0) | 0 to $0.8 \mathrm{Vdc} @ 5 \mu \mathrm{~A}$ Typical |
| High (1) | +2.0 to $+5.0 \mathrm{Vdc} @ 25 \mu \mathrm{~A}$ Typical |

Bias Voltage

| Vdd Range $=+5.0 \mathrm{Vdc} \pm 10 \%$ |  |  |
| :---: | :---: | :---: |
| Vdd <br> $($ Vdc $)$ | Idd (Typ.) <br> $(\mathrm{mA})$ | Idd (Max.) <br> $(\mathrm{mA})$ |
| +5.0 | 1 | 1.5 |

## DC Blocking And Decoupling Capacitors

The HMC276QS24(E) requires DC blocks on all 6 RF ports (OP1, OP2, VL, HL, VH, HH). Characterization on the HMC276QS24(E) was done using 0603 size 330pF capacitors on all RF ports. A $0.01 \mu \mathrm{~F}$ DC decoupling capacitor (0603 size) is recommended for the Vdd pin.

## Absolute Maximum Ratings

| Bias Voltage Range (Vdd) | +8.0 Vdc |
| :--- | :--- |
| Control Voltage Range <br> (All Logic Lines) | $\mathrm{Vdd}+0.5$ to -0.2 V Vdc |
| Channel Temperature | $150^{\circ} \mathrm{C}$ |
| Thermal Resistance | $325^{\circ} \mathrm{C} / \mathrm{W}$ |
| Storage Temperature | -65 to $+150^{\circ} \mathrm{C}$ |
| Operating Temperature | -40 to $+85^{\circ} \mathrm{C}$ |
| Maximum Input Power | $+23 \mathrm{dBm}(700-2150 \mathrm{MHz})$ |

## Outline Drawing



Package Information

| Part Number | Package Body Material | Leadframe Plating | MSL Rating | Package Marking ${ }^{[3]}$ |
| :---: | :---: | :---: | :---: | :---: |
| HMC276QS24 | Low Stress Injection Molded Plastic Silica <br> and Silicon Impregnated | Sn/Pb Solder | MSL1 ${ }^{[1]}$ | HMC276 <br> XXXX |
| HMC276QS24E | RoHS-compliant Low Stress Injection Molded <br> Plastic Silica and Silicon Impregnated | $100 \%$ Matte Tin | MSL1 ${ }^{[2]}$ | $\frac{\text { HMC276 }}{\text { XXXX }}$ |

[^1]
## Switch Application Circuit for 4x4 Switch Matrix

The HMC276QS24E switch can operate as a $4 \times 4$ switch by connecting the 4 inputs of two switches directly together.

The VL, VH, HL, and HH inputs of the first switch should be connected to the second switch, as illustrated.
Mirror image switch performance can be realized by inverting the HV1 \& HV2 logic control signals of one of the HMC276QS24E switches.

The input loading impedance of two switches in parallel should be 31.25 ohms. The output loading impedance on each output should be 75 ohms. The interconnect RF line between the switch's inputs should be an RF trace with a characteristic impedance of 62.5 ohms. This will allow the switch to remain matched in all possible switch states.

The HMC276QS24E does not provide output to output
 (OP1 to OP2) isolation. For this reason, It is recommended that external amplifiers should be used at each output. The amplifier's reverse isolation will provide output to output isolation, if this is necessary.
Each HMC276QS24E requires DC blocking capacitors on ALL RF input and output ports.

## Evaluation PCB



The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 ohm impedance and the package ground leads should be connected directly to the ground plane similar to that shown above. A generous number of ground vias should be used to interconnect top/bottom ground planes. The evaluation circuit board shown above is available from Hittite Microwave Corporation upon request.

List of Materials for Evaluation PCB $102924{ }^{[1]}$

| Item | Description |
| :--- | :--- |
| $\mathrm{J} 2-\mathrm{J} 7$ | PC Mount SMA RF Connector |
| J 1 | DC Pin |
| $\mathrm{C} 1-\mathrm{C} 6$ | 100 pF Capacitor, 0402 Pkg. |
| U1 | HMC276QS24 / HMC276QS24E <br> $4 \times 2$ Switch Matrix |
| PCB [2] | 102945 Eval Board |

[1] Reference this number when ordering complete evaluation PCB
[2] Circuit Board Material: Rogers 4350

Multi Pin DC Interface (J1)

| Pin | Line |
| :---: | :---: |
| 1 | Vdd |
| 2 | HV1 |
| 3 | GND |
| 4 | HV2 |
| 5 | GND |
| 6 | Tone1 |
| 7 | N/C |
| 8 | N/C |
| 9 | Tone2 |


[^0]:    For price, delivery, and to place orders: Analog Devices, Inc One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

[^1]:    [1] Max peak reflow temperature of $235^{\circ} \mathrm{C}$
    [2] Max peak reflow temperature of $260^{\circ} \mathrm{C}$
    [3] 4-Digit lot number XXXX

