FEATURES

Low wideband noise
$1 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$
$2.8 \mathrm{pA} / \sqrt{ } \mathrm{Hz}$
Low $1 / \mathrm{f}$ noise: $\mathbf{2 . 4 n V / \sqrt { } \mathrm { Hz } \text { at } 1 0 \mathrm { Hz } , ~}$

Low input offset voltage: $\mathbf{5 0 0} \boldsymbol{\mu \mathrm { V }}$ maximum
High speed
-3 dB bandwidth: $\mathbf{2 3 0 \mathrm { MHz } (\mathrm { G } = + 1) ~}$
Slew rate: $120 \mathrm{~V} / \mu \mathrm{s}$
Settling time to 0.1\%: $\mathbf{4 5} \mathbf{n s}$
Rail-to-rail output
Wide supply range: $\mathbf{3} \mathrm{V}$ to $\mathbf{1 0 ~ V}$
Disable feature
Known good die (KGD): these die are fully guaranteed to data sheet specifications

APPLICATIONS

Low noise preamplifiers
Ultrasound amplifiers
Phase-locked loop (PLL) filters
High performance ADC drivers
Digital-to-analog converter (DAC) buffers

GENERAL DESCRIPTION

The ADA4897-2-KGD ${ }^{1}$ is a unity-gain stable, low noise, rail-torail output, high speed voltage feedback amplifier that has a quiescent current of 3 mA . With a $1 / \mathrm{f}$ noise of $2.4 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ at 10 Hz and a spurious-free dynamic range of -80 dBc at 2 MHz , the ADA4897-2-KGD is an ideal solution in a variety of applications, including ultrasound, low noise preamplifiers, and drivers of high performance analog-to-digital converters (ADCs). The Analog Devices, Inc., proprietary next generation silicon germanium (SiGe) bipolar process and innovative architecture enable such high performance amplifiers.
The ADA4897-2-KGD has a 230 MHz bandwidth, a $120 \mathrm{~V} / \mu \mathrm{s}$ slew rate, and settles to 0.1% in 45 ns . With a wide supply voltage range of 3 V to 10 V , the ADA4897-2-KGD is ideal for systems that require high dynamic range, precision, low power, and high speed.

The ADA4897-2-KGD is rated to work over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Additional application and technical information can be found in the ADA4897-2 data sheet.
${ }^{1}$ Protected by U.S. Patent Numbers 6,486,737B1 and 6,518,842B1.

Rev. C

TABLE OF CONTENTS

Features 1
Applications. 1
General Description 1
Revision History 2
Specifications 3
± 5 V Supply 3
+5 V Supply 4
+3 V Supply6
REVISION HISTORY
2/2019—Rev. B to Rev. C
Changes to Product Title, Features Section, ApplicationsSection, and General Description Section 1
3/2015-Rev. A to Rev. B
Changes to Figure 1 and Table 5 9
Changes to Table 6 10
Update Outline Dimensions 10
Changes to Ordering Guide 10
Absolute Maximum Ratings 8
ESD Caution. 8
Pin Configuration and Function Descriptions. 9
Outline Dimensions 10
Die Specifications and Assembly Recommendations 10
Ordering Guide 10
11/2014—Rev. 0 to Rev. A
Change to Thickness Parameter, Table 6 10

SPECIFICATIONS

± 5 V SUPPLY

$T_{A}=25^{\circ} \mathrm{C}, \mathrm{G}=+1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to ground, unless otherwise noted.
Table 1.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE -3 dB Bandwidth Bandwidth for 0.1 dB Flatness Slew Rate Settling Time to 0.1% Settling Time to 0.01%	$\begin{aligned} & \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=0.02 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=0.02 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p, } \mathrm{RL}=100 \Omega \\ & \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=6 \mathrm{~V} \text { step } \\ & \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { step } \\ & \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { step } \end{aligned}$		$\begin{aligned} & 230 \\ & 30 \\ & 90 \\ & 7 \\ & 120 \\ & 45 \\ & 90 \end{aligned}$		MHz MHz MHz MHz V/ $\mu \mathrm{s}$ ns ns
NOISE/HARMONIC PERFORMANCE Harmonic Distortion (SFDR) Input Voltage Noise Input Current Noise 0.1 Hz to 10 Hz Noise	$\begin{aligned} & \text { Vout }=2 \mathrm{~V} \mathrm{p}-\mathrm{p} \\ & \mathrm{f}_{\mathrm{C}}=100 \mathrm{kHz} \\ & \mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{C}}=2 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz} \\ & \mathrm{f}=10 \mathrm{~Hz} \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{f}=10 \mathrm{~Hz} \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{G}=+101, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{G}}=10 \Omega \\ & \hline \end{aligned}$		-115 -93 -80 -61 2.4 1 11 2.8 99		dBc dBc dBc dBc $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mathrm{pA} / \sqrt{ } \mathrm{Hz}$ $\mathrm{pA} / \sqrt{ } \mathrm{Hz}$ $\mathrm{n} V \mathrm{p}-\mathrm{p}$
DC PERFORMANCE Input Offset Voltage Input Offset Voltage Drift Input Bias Current Input Bias Current Drift Input Bias Offset Current Open-Loop Gain	Vout $=-4 \mathrm{~V}$ to +4 V	$\begin{aligned} & -500 \\ & -17 \\ & -0.6 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & -28 \\ & 0.2 \\ & -11 \\ & 3 \\ & -0.02 \\ & 110 \end{aligned}$	$\begin{aligned} & +500 \\ & -4 \\ & +0.6 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{A}$ $n A /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{A}$ dB
INPUT CHARACTERISTICS Input Resistance Common-Mode Differential Input Capacitance Common-Mode Differential Input Common-Mode Voltage Range Common-Mode Rejection Ratio (CMRR)	$\mathrm{V}_{\text {cm }}=-2 \mathrm{~V}$ to +2 V	-92	$\begin{aligned} & 10 \\ & 10 \\ & 3 \\ & 11 \\ & -4.9 \text { to }+4.1 \\ & -120 \end{aligned}$		$M \Omega$ $\mathrm{k} \Omega$ pF pF V dB
OUTPUT CHARACTERISTICS Output Overdrive Recovery Time Output Voltage Swing Positive Negative Output Current Short-Circuit Current Capacitive Load Drive	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}= \pm 5 \mathrm{~V}, \mathrm{G}=+2 \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$ SFDR $=-45 \mathrm{dBc}$ Sinking/sourcing 30% overshoot, G = +2	$\begin{aligned} & 4.85 \\ & 4.5 \\ & -4.85 \\ & -4.5 \end{aligned}$	81 4.96 4.73 -4.97 -4.84 80 135 39		ns V V V V mA mA pF

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
POWER SUPPLY					
Operating Range			3 to 10		V
Quiescent Current per Amplifier		2.8	3.0	3.2	mA
	$\overline{\text { DISABLEx }}=-5 \mathrm{~V}$		0.13	0.25	mA
Power Supply Rejection Ratio (PSRR)					
Positive	$+\mathrm{V}_{\mathrm{s}}=4 \mathrm{~V}$ to $6 \mathrm{~V},-\mathrm{V}_{\mathrm{s}}=-5 \mathrm{~V}$	-96	-125		dB
Negative	$+\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V},-\mathrm{V}_{\mathrm{s}}=-4 \mathrm{~V}$ to -6 V	-96	-121		dB
$\overline{\text { DISABLEx PIN }}$					
$\overline{\text { DISABLEx }}$ Voltage	Enabled		$>+\mathrm{V}_{\text {S }}-0.5$		V
	Disabled		$<+V_{s}-2$		V
Input Current					
Enabled	$\overline{\text { DISABLEx }}=+5 \mathrm{~V}$		-1.2		$\mu \mathrm{A}$
Disabled	$\overline{\text { DISABLEx }}=-5 \mathrm{~V}$		-40		$\mu \mathrm{A}$
Switching Speed					
Enabled			0.25		$\mu \mathrm{s}$
Disabled			12		$\mu \mathrm{s}$

+5 V SUPPLY

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{G}=+1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to midsupply, unless otherwise noted.
Table 2.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE					
-3 dB Bandwidth	$\mathrm{G}=+1, \mathrm{~V}_{\text {OUt }}=0.02 \mathrm{Vp}-\mathrm{p}$	230			MHz
	$\mathrm{G}=+1, \mathrm{~V}$ Out $=2 \mathrm{Vp}-\mathrm{p}$	30			MHz
	$\mathrm{G}=+2, \mathrm{~V}_{\text {out }}=0.02 \mathrm{Vp}-\mathrm{p}$	90			MHz
Bandwidth for 0.1 dB Flatness	$\mathrm{G}=+2, \mathrm{~V}_{\text {OUT }}=2 \mathrm{~V} p-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	7			MHz
Slew Rate	$\mathrm{G}=+2, \mathrm{~V}_{\text {OUT }}=3 \mathrm{~V}$ step	100			V/ $/ \mathrm{s}$
Settling Time to 0.1\%	$\mathrm{G}=+2, \mathrm{~V}_{\text {out }}=2 \mathrm{~V}$ step	45			ns
Settling Time to 0.01\%	$\mathrm{G}=+2, \mathrm{~V}_{\text {out }}=2 \mathrm{~V}$ step	95			ns
NOISE/HARMONIC PERFORMANCE Harmonic Distortion (SFDR)					
	$\mathrm{V}_{\text {OUT }}=2 \mathrm{Vp-p}$				
	$\mathrm{fc}_{\mathrm{c}}=100 \mathrm{kHz}$	-115			dBc
	$\mathrm{fc}_{\mathrm{c}}=1 \mathrm{MHz}$	-93			dBC
	$\mathrm{f}_{\mathrm{c}}=2 \mathrm{MHz}$	-80			dBC
	$\mathrm{f}_{\mathrm{c}}=5 \mathrm{MHz}$	-61			dBc
Input Voltage Noise	$\mathrm{f}=10 \mathrm{~Hz}$	2.4			$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
	$\mathrm{f}=100 \mathrm{kHz}$	1			$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
Input Current Noise	$\mathrm{f}=10 \mathrm{~Hz}$	11			$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
	$\mathrm{f}=100 \mathrm{kHz}$	2.8			$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
0.1 Hz to 10 Hz Noise	$\mathrm{G}=+101, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{G}}=10 \Omega$	99			$\mathrm{n} V \mathrm{p}-\mathrm{p}$
DC PERFORMANCE					
Input Offset Voltage		-500	-30	+500	$\mu \mathrm{V}$
Input Offset Voltage Drift			0.2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current		-17	-11	-4	$\mu \mathrm{A}$
Input Bias Current Drift			3		$\mathrm{nA} /{ }^{\circ} \mathrm{C}$
Input Bias Offset Current		-0.6	-0.02	+0.6	$\mu \mathrm{A}$
Open-Loop Gain	$\mathrm{V}_{\text {Out }}=0.5 \mathrm{~V}$ to 4.5 V	97	110		dB

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
INPUT CHARACTERISTICS Input Resistance Common-Mode Differential Input Capacitance Common-Mode Differential Input Common-Mode Voltage Range Common-Mode Rejection Ratio (CMRR)	$\mathrm{V}_{\text {cm }}=1 \mathrm{~V}$ to 4V	-91	$\begin{aligned} & 10 \\ & 10 \\ & \\ & 3 \\ & 11 \\ & 0.1 \text { to } 4.1 \\ & -118 \end{aligned}$		$\mathrm{M} \Omega$ k Ω pF pF V dB
OUTPUT CHARACTERISTICS Output Overdrive Recovery Time Output Voltage Swing Positive Negative Output Current Short-Circuit Current Capacitive Load Drive	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \text { to } 5 \mathrm{~V}, \mathrm{G}=+2 \\ & \mathrm{R}=1 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{RL}_{\mathrm{L}}=100 \Omega \\ & \mathrm{SFDR}=-45 \mathrm{dBc} \\ & \text { Sinking/sourcing } \\ & 30 \% \text { overshoot, } G=+2 \end{aligned}$	$\begin{aligned} & 4.85 \\ & 4.8 \\ & 0.15 \\ & 0.2 \end{aligned}$	96 4.98 4.88 0.014 0.08 70 125 39		ns V V V V mA mA pF
POWER SUPPLY Operating Range Quiescent Current per Amplifier Power Supply Rejection Ratio (PSRR) Positive Negative	$\begin{aligned} & \overline{\text { DISABLEx }}=0 \mathrm{~V} \\ & +\mathrm{V}_{\mathrm{s}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V},-\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V} \\ & +\mathrm{V}_{\mathrm{s}}=5 \mathrm{~V},-\mathrm{V}_{\mathrm{s}}=-0.5 \mathrm{~V} \text { to }+0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.6 \\ & \\ & -96 \\ & -96 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \text { to } 10 \\ & 2.8 \\ & 0.05 \\ & \\ & -123 \\ & -121 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 0.18 \end{aligned}$	V mA mA dB dB
$\overline{\text { DISABLEX }}$ PIN $\overline{\text { DISABLEx }}$ Voltage Input Current Enabled Disabled Switching Speed Enabled Disabled	Enabled Disabled $\begin{aligned} & \overline{\text { DISABLEx }}=5 \mathrm{~V} \\ & \overline{\mathrm{DISABLEx}}=0 \mathrm{~V} \end{aligned}$		$\begin{aligned} & >+V_{s}-0.5 \\ & <+V_{s}-2 \\ & \\ & -1.2 \\ & -20 \\ & 0.25 \\ & 12 \end{aligned}$		V V $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{s}$ $\mu \mathrm{s}$

ADA4897-2-KGD

+3 V SUPPLY

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{G}=+1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to midsupply, unless otherwise noted.
Table 3.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
DYNAMIC PERFORMANCE -3 dB Bandwidth Bandwidth for 0.1 dB Flatness Slew Rate Settling Time to 0.1\% Settling Time to 0.01\%	$\begin{aligned} & \mathrm{G}=+1, \mathrm{~V}_{\text {out }}=0.02 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=-1, \mathrm{~V}_{\text {out }}=1 \mathrm{Vp-p} \\ & \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=0.02 \mathrm{~V} \text { p-p } \\ & \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p, } \mathrm{R}=100 \Omega \\ & \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=1 \mathrm{~V} \text { step } \\ & \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { step } \\ & \mathrm{G}=+2, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { step } \end{aligned}$		230 45 90 7 85 45 96		MHz MHz MHz MHz V/ $\mu \mathrm{s}$ ns ns
NOISE/HARMONIC PERFORMANCE Harmonic Distortion (SFDR) Input Voltage Noise Input Current Noise 0.1 Hz to 10 Hz Noise	$\begin{aligned} & \mathrm{f}_{\mathrm{c}}=100 \mathrm{kHz}, \mathrm{~V}_{\text {out }}=2 \mathrm{~V} \text { p-p, } \mathrm{G}=+2 \\ & \mathrm{f}_{\mathrm{C}}=1 \mathrm{MHz}, \mathrm{~V}_{\text {out }}=1 \mathrm{Vp}-\mathrm{p}, \mathrm{G}=-1 \\ & \mathrm{f}_{\mathrm{C}}=2 \mathrm{MHz}, \mathrm{~V}_{\text {out }}=1 \mathrm{Vp}-\mathrm{p}, \mathrm{G}=-1 \\ & \mathrm{f}_{\mathrm{c}}=5 \mathrm{MHz}, \mathrm{~V}_{\text {out }}=1 \mathrm{Vp}-\mathrm{p}, \mathrm{G}=-1 \\ & \mathrm{f}=10 \mathrm{~Hz} \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{f}=10 \mathrm{~Hz} \\ & \mathrm{f}=100 \mathrm{kHz} \\ & \mathrm{G}=+101, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{G}}=10 \Omega \end{aligned}$		-105 -84 -77 -60 2.3 1 11 2.8 99		dBc dBc dBC dBc $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mathrm{pA} / \sqrt{ } \mathrm{Hz}$ $\mathrm{pA} / \sqrt{ } \mathrm{Hz}$ nV p-p
DC PERFORMANCE Input Offset Voltage Input Offset Voltage Drift Input Bias Current Input Bias Current Drift Input Bias Offset Current Open-Loop Gain	Vout $=0.5 \mathrm{~V}$ to 2.5 V	$\begin{aligned} & -500 \\ & -17 \\ & -0.6 \\ & 95 \end{aligned}$	$\begin{aligned} & -30 \\ & 0.2 \\ & -11 \\ & 3 \\ & -0.02 \\ & 108 \\ & \hline \end{aligned}$	$\begin{aligned} & +500 \\ & -4 \\ & +0.6 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{A}$ $n A /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{A}$ dB
INPUT CHARACTERISTICS Input Resistance Common-Mode Differential Input Capacitance Common-Mode Differential Input Common-Mode Voltage Range Common-Mode Rejection Ratio (CMRR)	$\mathrm{V}_{\mathrm{CM}}=1.1 \mathrm{~V}$ to 1.9 V	-90	$\begin{aligned} & 10 \\ & 10 \\ & 3 \\ & 11 \\ & 0.1 \text { to } 2.1 \\ & -124 \\ & \hline \end{aligned}$		$\mathrm{M} \Omega$ $\mathrm{k} \Omega$ pF pF V dB
OUTPUT CHARACTERISTICS Output Overdrive Recovery Time Output Voltage Swing Positive Negative Output Current Short-Circuit Current Capacitive Load Drive	$\mathrm{V}_{\mathbb{I N}}=0 \mathrm{~V} \text { to } 3 \mathrm{~V}, \mathrm{G}=+2$ $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\ & \mathrm{RL}=100 \Omega \\ & \mathrm{RL}=1 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$ SFDR $=-45 \mathrm{dBc}$ Sinking/sourcing 30% overshoot, G = +2	$\begin{aligned} & 2.85 \\ & 2.8 \\ & 0.15 \\ & 0.2 \end{aligned}$	83 2.97 2.92 0.01 0.05 60 120 39		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{pF} \end{aligned}$

Known Good Die

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
POWER SUPPLY					
Operating Range			3 to 10		V
Quiescent Current per Amplifier		2.5	2.7	2.9	mA
	$\overline{\text { DISABLEx }}=0 \mathrm{~V}$		0.035	0.15	mA
Power Supply Rejection Ratio (PSRR)					
Positive	$+\mathrm{V}_{\mathrm{s}}=2.7 \mathrm{~V}$ to 3.7V, $-\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$	-96	-121		dB
Negative	$+\mathrm{V}_{\mathrm{s}}=3 \mathrm{~V},-\mathrm{V}_{\mathrm{s}}=-0.3 \mathrm{~V}$ to +0.7 V	-96	-120		dB
$\overline{\text { DISABLEx PIN }}$					
$\overline{\text { DISABLEx }}$ Voltage	Enabled		$>+\mathrm{V}_{\text {s }}-0.5$		V
	Disabled		$<-\mathrm{V}_{\text {s }}+2$		V
Input Current					
Enabled	$\overline{\text { DISABLEx }}=3 \mathrm{~V}$		-1.2		$\mu \mathrm{A}$
Disabled	$\overline{\text { DISABLEx }}=0 \mathrm{~V}$		-15		$\mu \mathrm{A}$
Switching Speed					
Enabled			0.25		$\mu \mathrm{s}$
Disabled			12		$\mu \mathrm{s}$

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
Supply Voltage	12.6 V
Common-Mode Input Voltage	$\pm \mathrm{V}_{\mathrm{s}} \pm 0.5 \mathrm{~V}$
Differential Input Voltage	$\pm 1.8 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 1. Pad Configuration

Table 5. Pad Function Descriptions

Pad No.	X-Axis	Y-Axis	Mnemonic	Description
1	-402	+279	OUT1	Output 1
1 A	-402	+354	OUT1	Output 1, Double Bond Pad
2	-400	-41	- IN1	Inverting Input 1
3	-400	-197	+ IN1	Noninverting Input 1
4	-420	-303	$-V_{s}$	Negative Supply
$4 A$	-420	-378	$-V_{S}$	Negative Supply, Double Bond Pad
5	-395	-485	$\overline{\text { DISABLE1 }}$	Disable Control 1
6	+395	-485	$\overline{\text { DISABLE2 }}$	Disable Control 2
7	+402	-317	+ +IN2	Noninverting Input 2
8	+402	-161	- IN2	Inverting Input 2
9	+402	+275	OUT2	Output 2
$9 A$	+402	+203	OUT2	Output 2, Double Bond Pad
10	+364	+477	$+V_{s}$	Positive Supply
$10 A$	+364	+402	$+V_{s}$	Positive Supply, Double Bond Pad

ADA4897-2-KGD

OUTLINE DIMENSIONS

Figure 2. 10-Pad Bare Die [CHIP] (C-10-6)
Dimensions shown in millimeters

DIE SPECIFICATIONS AND ASSEMBLY RECOMMENDATIONS
Table 6. Die Specifications

Parameter	Value	Unit
Scribe Line Width	75	$\mu \mathrm{~m}$
Die Size (Maximum Size)	1095×1445	$\mu \mathrm{~m}$
Thickness	483	$\mu \mathrm{~m}$
Bond Pads (Minimum Size)	70×70	$\mu \mathrm{~m}$
Bond Pad Composition	1% AICu	$\%$
Backside	Si	Not applicable
Passivation	Doped oxide/SiN	Not applicable
ESD	HBM 2000	V

Table 7. Assembly Recommendations

Assembly Component	Recommendation
Die Attach	Ablestik 84-1LMIS R4
Bonding Method	1 mil gold

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADA4897-2-KGD	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$10-$ Pad Bare Die [CHIP]	$\mathrm{C}-10-6$

\qquad

