FEATURES

- Guaranteed Offset Voltage: $150 \mu \mathrm{~V}$ Max $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$: $500 \mu \mathrm{~V}$ Max
- Guaranteed Drift: $4 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Max
- Guaranteed Bias Current
$70^{\circ} \mathrm{C}$: 150 pA Max
$125^{\circ} \mathrm{C}: 2.5 \mathrm{nA}$ Max
- Guaranteed Slew Rate: $12 \mathrm{~V} /$ / s Min
- Available in 8-Pin PDIP and SO Packages

APPLICATIONS

- Precision, High Speed Instrumentation
- Logarithmic Amplifiers
- D/A Output Amplifiers
- Photodiode Amplifiers
- Voltage-to-Frequency Converters
- Frequency-to-Voltage Converters
- Fast, Precision Sample-and-Hold

DESCRIPTIOn

The LT®1055/LT1056 JFET input operational amplifiers combine precision specifications with high speed performance.

For the first time, $16 \mathrm{~V} /$ us slew rate and 6.5 MHz gain bandwidth productare simultaneously achieved with offset voltage of typically $50 \mu \mathrm{~V}, 1.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ drift, bias currents of 40 pA at $70^{\circ} \mathrm{C}$ and 500 pA at $125^{\circ} \mathrm{C}$.
The $150 \mu \mathrm{~V}$ maximum offset voltage specification is the best available on any JFET input operational amplifier.

The LT1055 and LT1056 are differentiated by their operating currents. The lower power dissipation LT1055 achieves lower bias and offset currents and offset voltage. The additional power dissipation of the LT1056 permits higher slew rate, bandwidth and faster settling time with a slight sacrifice in DC performance.
The voltage-to-frequency converter shown below is one of the many applications which utilize both the precision and high speed of the LT1055/LT1056.
For a JFET input op amp with $23 \mathrm{~V} /$ /us guaranteed slew rate, refer to the LT1022 data sheet.

TYPICAL APPLICATION

1Hz to 10kHz Voltage-to-Frequency Converter

Distribution of Input Offset Voltage
(H Package)

LT1055/56 TA02

ABSOLUTG MAXIMUUM RATINGS (Noie 1)

Supply Voltage\qquad
Differential Input Voltage $\pm 40 \mathrm{~V}$
Input Voltage $\pm 20 \mathrm{~V}$
Output Short-Circuit Duration Indefinite
Operating Temperature Range
LT1055AC/LT1055C/LT1056AC/ LT1056C

\qquad
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range
All Devices

\qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PIn CONFIGURATION

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LT1055CN8\#PBF	LT1055CN8\#TRPBF	LT1055CN8	8-Lead PDIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT1056CN8\#PBF	LT1056CN8\#TRPBF	LT1056CN8	8-Lead PDIP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT1055S8\#PBF	LT1055S8\#TRPBF	1055	8-Lead Plastic SO	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT1056S8\#PBF	LT1056S8\#TRPBF	1056	8-Lead Plastic SO	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
OBSOLETE PACKAGE				
LT1055ACH\#PBF	LT1055ACH\#TRPBF	LT1055ACH	8-Lead TO-5 Metal Can	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT1055CH\#PBF	LT1055CH\#TRPBF	LT1055CH	8-Lead TO-5 Metal Can	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT1055AMH\#PBF	LT1055AMH\#TRPBF	LT1055AMH	8-Lead TO-5 Metal Can	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1055MH\#PBF	LT1055MH\#TRPBF	LT1055MH	8-Lead T0-5 Metal Can	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1056ACH\#PBF	LT1056ACH\#TRPBF	LT1056ACH	8-Lead T0-5 Metal Can	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT1056CH\#PBF	LT1056CH\#TRPBF	LT1056CH	8-Lead TO-5 Metal Can	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT1056AMH\#PBF	LT1056AMH\#TRPBF	LT1056AMH	8-Lead TO-5 Metal Can	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1056MH\#PBF	LT1056MH\#TRPBF	LT1056MH	8-Lead T0-5 Metal Can	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges.
Consult LTC Marketing for information on nonstandard lead based finish parts.
For more information on lead free part markings, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS
$T_{A}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{OV}$ unless otherwise noted.

LT1055/LT1056

ELECTRICAL CHARACTERISTICS $T_{A}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$ unless otherwise noted.t

SYMBOL	PARAMETER	CONDITIONS		LT1055AM/LT1056AM LT1055AC/LT1056AC			LT1055M/LT1056M LT1055CH/LT1056CH LT1055CN8/LT1056CN8			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
SR	Slew Rate		LT1055	10	13		7.5	12		V/us
			LT1056	12	16		9.0	14		V/us
GBW	Gain Bandwidth Product	$f=1 \mathrm{MHz}$	LT1055		5.0			4.5		MHz
			LT1056		6.5			5.5		MHz
Is	Supply Current		LT1055		2.8	4.0		2.8	4.0	mA
			LT1056		5.0	6.5		5.0	7.0	mA
	Offset Voltage Adjustment Range	$\mathrm{R}_{\text {POT }}=10$			± 5			± 5		mV

The \bullet denotes the specifications which apply over the temperature range $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} . \mathrm{V}_{S}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS			$\begin{aligned} & \text { LT1055AC } \\ & \text { LT1056AC } \end{aligned}$			LT1055CH/LT1056CH LT1055CN8/LT1056CN8			UNITS
					MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{0 S}$	Input Offset Voltage (Note 2)	LT1055 H Pa LT1056 H Pa LT1055 N8 P LT1056 N8 P				$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 330 \\ & 360 \end{aligned}$		$\begin{aligned} & 140 \\ & 140 \\ & 250 \\ & 280 \end{aligned}$	$\begin{gathered} \hline 750 \\ 800 \\ 1250 \\ 1350 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
	Average Temperature Coefficient of Input Offset Voltage	H Package (N8 Package		\bullet		1.2	4.0		$\begin{aligned} & 1.6 \\ & 3.0 \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 12.0 \end{gathered}$	$\begin{aligned} & \mu \mathrm{V} /{ }^{\circ} \mathrm{C} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \end{aligned}$
IOS	Input Offset Current	$\begin{aligned} & \text { Warmed Up } \\ & \mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { LT1055 } \\ & \text { LT1056 } \end{aligned}$	\bullet		$\begin{aligned} & \hline 10 \\ & 14 \end{aligned}$	$\begin{aligned} & 50 \\ & 70 \end{aligned}$		$\begin{aligned} & \hline 16 \\ & 18 \end{aligned}$	$\begin{gathered} 80 \\ 100 \end{gathered}$	pA pA
I_{B}	Input Bias Current	$\begin{aligned} & \text { Warmed Up } \\ & \mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { LT1055 } \\ & \text { LT1056 } \end{aligned}$	\bullet		$\begin{aligned} & \pm 30 \\ & \pm 40 \end{aligned}$	$\begin{gathered} \pm 150 \\ \pm 80 \end{gathered}$		$\begin{aligned} & \pm 40 \\ & \pm 50 \end{aligned}$	$\begin{aligned} & \pm 200 \\ & \pm 240 \end{aligned}$	pA pA
AVOL	Large-Signal Voltage Gain	$\mathrm{V}_{0}= \pm 10 \mathrm{~V}, \mathrm{R}$		\bullet	80	250		60	250		V / mV
CMRR	Common Mode Rejection Ratio	$V_{C M}= \pm 10.5 \mathrm{~V}$		\bullet	85	100		82	98		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 10 \mathrm{~V}$ to		\bullet	89	105		87	103		dB
V OUT	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$		\bullet	± 12	± 13.1		± 12	± 13.1		V

The \bullet denotes the specifications which apply over the temperature range $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{OV}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS			LT1055AM LT1056AM			LT1055M LT1056M			UNITS
					MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage (Note 2)		$\begin{aligned} & \text { LT1055 } \\ & \text { LT1056 } \end{aligned}$	\bullet		$\begin{aligned} & 180 \\ & 180 \end{aligned}$	$\begin{aligned} & 500 \\ & 550 \end{aligned}$		$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 1200 \\ & 1250 \end{aligned}$	$\overline{\mu \mathrm{V}}$
	Average Temperature Coefficient of Input Offset Voltage	(Note 6)		\bullet		1.3	4.0		1.8	8.0	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\begin{aligned} & \text { Warmed Up } \\ & \mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { LT1055 } \\ & \text { LT1056 } \end{aligned}$			$\begin{aligned} & 0.20 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.5 \end{aligned}$		$\begin{aligned} & 0.25 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 1.8 \\ & 2.4 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
I_{B}	Input Bias Current	Warmed Up $T_{A}=125^{\circ} \mathrm{C}$	$\begin{aligned} & \text { LT1055 } \\ & \text { LT1056 } \end{aligned}$			$\begin{aligned} & \pm 0.4 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & \pm 2.5 \\ & \pm 3.0 \end{aligned}$		$\begin{aligned} & \pm 0.5 \\ & \pm 0.6 \end{aligned}$	$\begin{aligned} & \pm 4.0 \\ & \pm 5.0 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \hline \end{aligned}$
$\mathrm{A}_{\text {VOL }}$	Large-Signal Voltage Gain	$\mathrm{V}_{0}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$		\bullet	40	120		35	120		V / mV
CMRR	Common Mode Rejection Ratio	$V_{C M}= \pm 10.5 \mathrm{~V}$		\bullet	85	100		82	98		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 10 \mathrm{~V}$ to $\pm 17 \mathrm{~V}$		\bullet	88	104		86	102		dB
$V_{\text {OUT }}$	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$		\bullet	± 12	± 12.9		± 12	± 12.9		10556fd
4			ore inform		ar.com						IEAR

LT 1055/LT1056

ELECTRICAL CHARACTGRISTICS $T_{A}=25^{\circ} \mathrm{C} . V_{S}= \pm 15 V, V_{c m}=0$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		LT1055CS8/LT1056CS8			UNITS
				MIN	TYP	MAX	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage (Note 2)				500	1500	$\mu \mathrm{V}$
Ios	Input Offset Current	Fully Warmed			5	30	pA
I_{B}	Input Bias Current	Fully Warmed $V_{C M}=10 \mathrm{~V}$			$\begin{gathered} \pm 30 \\ 30 \end{gathered}$	$\begin{gathered} \pm 100 \\ 150 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{pA} \end{aligned}$
	Input Resistance Differential Common Mode	$\begin{aligned} & V_{C M}=-11 \mathrm{~V} t \\ & V_{C M}=8 \mathrm{~V} \text { to } \end{aligned}$			$\begin{gathered} 0.4 \\ 0.4 \\ 0.05 \end{gathered}$		$\begin{aligned} & \mathrm{T} \Omega \\ & \mathrm{~T} \Omega \\ & \mathrm{~T} \Omega \end{aligned}$
	Input Capacitance				4		pF
e_{n}	Input Noise Voltage	0.1 Hz to 10 Hz	$\begin{aligned} & \text { LT1055 } \\ & \text { LT1056 } \end{aligned}$		$\begin{aligned} & 2.5 \\ & 3.5 \end{aligned}$		$\mu V_{\text {P-p }}$ $\mu \mathrm{V}_{\mathrm{P}-\mathrm{P}}$
	Input Noise Voltage Density	$\begin{aligned} & \mathrm{f}_{0}=10 \mathrm{~Hz}(\mathrm{No} \\ & \mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz}(\mathrm{No} \end{aligned}$			$\begin{aligned} & 35 \\ & 15 \end{aligned}$	$\begin{aligned} & 70 \\ & 22 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$
i_{n}	Input Noise Current Density	$\mathrm{f}_{0}=10 \mathrm{~Hz}, 1 \mathrm{k}$	5)		2.5	10	$\mathrm{fA} / \sqrt{\mathrm{Hz}}$
AVOL	Large-Signal Voltage Gain	$\mathrm{V}_{0}= \pm 10 \mathrm{~V}$	$\begin{aligned} & R_{L}=2 k \\ & R_{L}=1 k \end{aligned}$	$\begin{aligned} & 120 \\ & 100 \end{aligned}$	$\begin{aligned} & 400 \\ & 300 \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
	Input Voltage Range			± 11	± 12		V
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 11 \mathrm{~V}$		83	98		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 10 \mathrm{~V}$ to		88	104		dB
V OUT	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K}$		± 12	± 13.2		V
SR	Slew Rate		$\begin{aligned} & \text { LT1055 } \\ & \text { LT1056 } \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & \hline 12 \\ & 14 \end{aligned}$		$\mathrm{V} / \mu \mathrm{s}$ V/ $\mu \mathrm{s}$
GBW	Gain Bandwidth Product	$\mathrm{f}=1 \mathrm{MHz}$	$\begin{aligned} & \text { LT1055 } \\ & \text { LT1056 } \end{aligned}$		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
I_{S}	Supply Current		$\begin{aligned} & \text { LT1055 } \\ & \text { LT1056 } \end{aligned}$		$\begin{aligned} & 2.8 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
	Offset Voltage Adjustment Range	$\mathrm{R}_{\text {POT }}=100 \mathrm{k}$			± 5		mV

The \bullet denotes the specifications which apply over the temperature range $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		LT1055CS8/LT1056CS8			UNITS
				MIN	TYP	MAX	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage (Note 2)		\bullet		800	2200	$\mu \mathrm{V}$
	Average Temperature Coefficient of Input Offset Voltage		\bullet		4	15	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ios	Input Offset Current	Warmed Up, $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	\bullet		18	150	pA
IB	Input Bias Current	Warmed Up, $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$	\bullet		± 60	± 400	pA
AVOL	Large-Signal Voltage Gain	$\mathrm{V}_{0}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	\bullet	60	250		V / mV
CMRR	Common Mode Rejection Ratio	$V_{\text {CM }}= \pm 10.5 \mathrm{~V}$	\bullet	82	98		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 10 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	\bullet	87	103		dB
V OUT	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K}$	\bullet	± 12	± 13.1		V

LT1055/LT1056

ELECTRICAL CHARACTERISTICS

For MIL-STD components, please refer to LTC883 data sheet for test listing and parameters.
Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: Offset voltage is measured under two different conditions: (a) approximately 0.5 seconds after application of power; (b) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ only, with the chip heated to approximately $38^{\circ} \mathrm{C}$ for the LT1055 and to $45^{\circ} \mathrm{C}$ for the LT1056, to account for chip temperature rise when the device is fully warmed up.

Note 3: 10 Hz noise voltage density is sample tested on every lot of A grades. Devices 100% tested at 10 Hz are available on request.
Note 4: This parameter is tested on a sample basis only.
Note 5: Current noise is calculated from the formula: $i_{n}=\left(2 q I_{B}\right)^{1 / 2}$, where $\mathrm{q}=1.6 \cdot 10^{-19}$ coulomb. The noise of source resistors up to $1 \mathrm{G} \Omega$ swamps the contribution of current noise.
Note 6: Offset voltage drift with temperature is practically unchanged when the offset voltage is trimmed to zero with a 100k potentiometer between the balance terminals and the wiper tied to V^{+}. Devices tested to tighter drift specifications are available on request.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

$A_{V}=1, C_{L}=100 \mathrm{pf}, 0.5 \mu \mathrm{~s} / \mathrm{DIV}$
LT1055/56 G10

Undistorted Output Swing vs
Frequency

Noise vs Chip Temperature

LT1055/56 G08

Small-Signal Response

$A_{V}=1, C_{L}=100 \mathrm{pf}, 0.2 \mu \mathrm{~s} / \mathrm{DIV}$

LT1055/56 G11

Slew Rate, Gain Bandwidth vs
Temperature

Output Impedance vs Frequency

LT1055/LT1056

TYPICAL PERFORMANCE CHARACTERISTICS

LT1055 Settling Time

LT1055/56 G19
Common Mode and Power Supply Rejections vs Temperature

LT1056 Settling Time

Common Mode Rejection Ratio vs Frequency

LT1055/56 G23

Power Supply Rejection Ratio vs Frequency

TYPICAL PERFORMANCE CHARACTERISTICS

APPLICATIONS INFORMATION

The LT1055/LT1056 may be inserted directly into LF155A/ LT355A, LF156A/LT356A, OP-15 and OP-16 sockets. Offset nulling will be compatible with these devices with the wiper of the potentiometer tied to the positive supply.

No appreciable change in offset voltage drift with temperature will occur when the device is nulled with a potentiometer, R_{P}, ranging from 10k to 200k.
The LT1055/LT1056 can also be used in LF351, LF411, AD547, AD611, OPA-111, and TL081 sockets, provided thatthe nulling cicuitry is removed. Because of the LT1055/ LT1056's low offset voltage, nulling will not be necessary in most applications.

Achieving Picoampere/Microvolt Performance

In order to realize the picoampere-microvolt level accuracy of the LT1055/LT1056 proper care must be exercised. For
example, leakage currents in circuitry external to the op amp can significantly degrade performance. High quality insulation should be used (e.g. Teflon, Kel-F); cleaning of all insulating surfaces to remove fluxes and other residues will probably be required. Surface coating may be necessary to provide a moisture barrier in high humidity environments.

Board leakage can be minimized by encircling the input circuitry with a guard ring operated at a potential close to that of the inputs: in inverting configurations the guard ring should be tied to ground, in noninverting connnections to the inverting input at pin 2 . Guarding both sides of the

APPLICATIONS InFORMATION

printed circuit board is required. Bulk leakage reduction depends on the guard ring width.

The LT1055/LT1056 has the lowest offset voltage of any JFET input op amp available today. However, the offset voltage and its drift with time and temperature are still not as good as on the best bipolar amplifiers because the transconductance of FETs is considerably lower than that of bipolar transistors. Conversely, this lower transconductance is the main cause of the significantly faster speed performance of FET input op amps.

Offset voltage also changes somewhat with temperature cycling. The AM grades show a typical $20 \mu \mathrm{~V}$ hysteresis $\left(30 \mu \mathrm{~V}\right.$ on the M grades) when cycled over the $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ temperature range. Temperature cycling from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ has a negligible (less than $10 \mu \mathrm{~V}$) hysteresis effect.

The offset voltage and drift performance are also affected by packaging. In the plastic N8 package the molding compound is in direct contact with the chip, exerting pressure on the surface. While NPN input transistors are largely unaffected by this pressure, JFET device matching and drift are degraded. Consequently, for best DC performance, as shown in the typical performance distribution plots, the TO-5 H package is recommended.

Noise Performance

The current noise of the LT1055/LT1056 is practically immeasurable at $1.8 \mathrm{fA} / \sqrt{\mathrm{Hz}}$. At $25^{\circ} \mathrm{C}$ it is negligible up to 1G of source resistance, R_{S} (compound to the noise of R_{S}). Even at $125^{\circ} \mathrm{C}$ it is negligible to 100 M of R_{S}.

The voltage noise spectrum is characterized by a low 1/f corner in the 20 Hz to 30 Hz range, significantly lower than on other competitive JFET input op amps. Of particular interest is the fact that with any JFET IC amplifier, the frequency location of the $1 / f$ corner is proportional to the square root of the internal gate leakage currents and, therefore, noise doubles every $20^{\circ} \mathrm{C}$. Furthermore, as illustrated in the noise versus chip temperature curves, the 0.1 Hz to 10 Hz peak-to-peak noise is a strong function of temperature, while wideband noise ($\mathrm{f}_{0}=1 \mathrm{kHz}$) is practically unaffected by temperature.
Consequently, for optimum low frequency noise, chip temperature should be minimized. For example, operat-
ing an LT1056 at $\pm 5 \mathrm{~V}$ supplies or with a $20^{\circ} \mathrm{C} / \mathrm{W}$ case-to-ambient heat sink reduces 0.1 Hz to 10 Hz noise from typically $2.5 \mu \mathrm{~V}_{\mathrm{P}-\mathrm{P}}(\pm 15 \mathrm{~V}$, free-air) to $1.5 \mu \mathrm{~V}$ P-p. Similiarly, the noise of an LT1055 will be $1.8 \mu \mathrm{~V}$ p-p typically because of its lower power dissipation and chip temperature.

High Speed Operation

Settling time is measured in the test circuit shown. This test configuration has two features which eliminate problems common to settling time measurments: (1) probe capacitance is isolated from the "false summing" node, and (2) it does not require a "flat top" input pulse since the input pulse is merely used to steer current through the diode bridges. For more details, please see Application Note 10.
As with mosthigh speed amplifiers, care should be taken with supply decoupling, lead dress and component placement.
When the feedback around the op amp is resistive (R_{F}), a pole will be created with R_{F}, the source resistance and capacitance ($\mathrm{R}_{\mathrm{S}}, \mathrm{C}_{\mathrm{S}}$), and the amplifier input capacitance ($\mathrm{C}_{\mathrm{IN}} \approx 4 \mathrm{pF}$). In low closed-loop gain configurations and with R_{S} and R_{F} in the kilohm range, this pole can create excess phase shift and even oscillation. A small capacitor $\left(C_{F}\right)$ in parallel with R_{F} eliminates this problem. With $R_{S}\left(C_{S}+C_{I N}\right)=R_{F} C_{F}$, the effect of the feedback pole is completely removed.

Phase Reversal Protection

Most industry standard JFET input op amps (e.g., LF155/ LF156, LF351, LF411, OP15/16) exhibit phase reversal at the output when the negative common mode limit at the input is exceeded (i.e., from -12 V to -15 V with $\pm 15 \mathrm{~V}$ supplies). This can cause lock-up in servo systems. As shown below, the LT1055/LT1056 does not have this problem due to unique phase reversal protection circuitry (Q1 on simplified schematic).

APPLICATIONS INFORMATION

Settling Time Test Circuit

Voltage Follower with Input Exceeding the Negative
Common Mode Range

LT1055/56 A105

Output
(LF155/LF56, LF441, OP-15/OP-16)

$0.5 \mathrm{~ms} /$ DIV
LT1055/56 A107

Output

LT1055/LT1056
$0.5 \mathrm{~ms} /$ DIV

LT1055/LT1056

TYPICAL APPLICATIONS ${ }^{\dagger}$

Exponential Voltage-to-Frequency Converter for Music Synthesizers

12-Bit Charge Balance A/D Converter

TYPICAL APPLICATIONS

Fast "No Trims" 12-Bit Multiplying CMOS DAC Amplifier

Fast, 16-Bit Current Comparator

Temperature-to-Frequency Converter

LT1055/LT1056

TYPICAL APPLICATIONS

12-Bit Voltage Output D/A Converter
12-BIT CURRENT OUTPUT D/A
CONVERTER (e.g., 6012,565

SImPLIFIED SCHEmATIC

LT1055/LT1056

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

OBSOLETE PACKAGE

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

N Package

8-Lead PDIP (Narrow . 300 Inch)
(Reference LTC DWG \# 05-08-1510 Rev I)

NOTE:

1. DIMENSIONS ARE $\frac{\text { INCHES }}{\text { MILLIMETERS }}$
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED . 010 INCH (0.254 mm)

LT1055/LT1056

PACKAGE DESCRIPTION
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

S8 Package

8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610 Rev G)

REVISION HISTORY (Revision history begins at Rev D)

| REV | DATE | DESCRIPTION | PAGE NUMBER |
| :---: | :---: | :--- | :---: | :---: |
| D | $08 / 15$ | Corrected application circuit. | 20 |

LT1055/LT1056

TYPICAL APPLICATION
$\pm 120 \mathrm{~V}$ Output Precision Op Amp

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1122	Fast Settling JFET Op Amp	340 ns Settling Time, GBW $=14 \mathrm{MHz}, \mathrm{SR}=60 \mathrm{~V} / \mu \mathrm{s}$
LT1792	Low Noise JFET Op Amp	$e_{n}=6 \mathrm{nV} / \sqrt{\mathrm{Hz}} \operatorname{Max}$ at $\mathrm{f}=1 \mathrm{kHz}$

