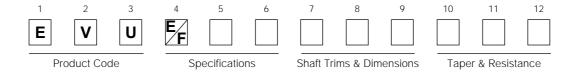
9 mm Square Rotary Potentiometers with Insulated Shaft

Type: **EVUE/EVUF**

Features


- Multi-gang block can be provided upon request
- DC voltage available
- Rigid rectangular shape suited for automatic insertion

■ Recommended Applications

- Audio Equipment
- Video Equipment
- Electronic Musical Instruments
- Audio Mixers

Malaysia

■ Explanation of Part Numbers

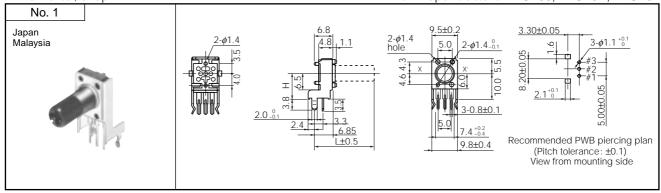
Japan

■ Product Chart

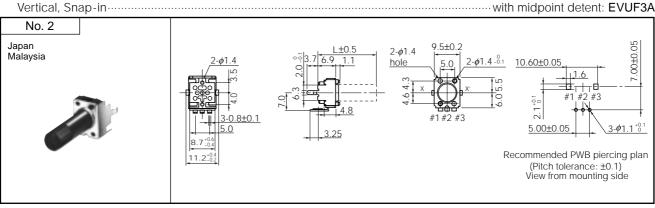
Construction	Style	Height (H=mm)	Detent	Туре
		/ [Without detent	EVUE20
		6.5	Midpoint	EVUE30
	Without bushing	10.0	Without detent	EVUE2A
	Without bushing	10.0	Midpoint	EVUE3A
		12.5	Without detent	EVUE21
		12.5	Midpoint	EVUE31
Horizontal		6.5	Without detent	EVUE25
ПОПZОПІЛІ	With bushing	0.5	Midpoint	EVUE35
	With bushing	10.0	Without detent	EVUE2J
		10.0	Midpoint	EVUE3J
		6.5	Without detent	EVUE27
	With sleeve	0.5	Midpoint	EVUE37
	With Sieeve	10.0	Without detent	EVUE2K
		10.0	Midpoint	EVUE3K
	Without bushing		Without detent	EVUF2A
	Without bushing	_	Midpoint	EVUF3A
		7.5	Without detent	EVUF2J
	With bushing	7.5	Midpoint	EVUF3J
Vertical	With bushing	8.5	Without detent	EVUF2M
vertical		8.5	Midpoint	EVUF3M
		7.5	Without detent	EVUF2K
	With sleeve	1.5	Midpoint	EVUF3K
	with Sieeve	8.5	Without detent	EVUF2L
		δ.5	Midpoint	EVUF3L

Panasonic

■ Specifications

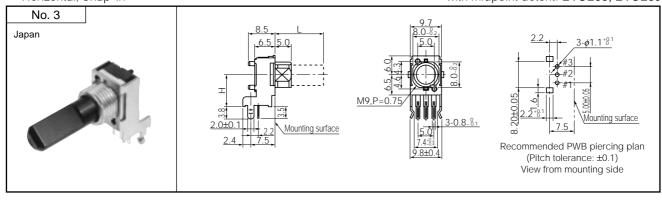

Classification	Item	Type without bushing	Type wit	h bushing	Type wi	th sleeve	
	Rotation Angle	300 °					
	Rotation Torque	1 mN·m to 8 mN·m (after rotation started	1 mN·m to 20 mN·m	(after rotation started)	1 mN·m to 20 mN·m	(after rotation started)	
	Shaft Stopper Strength		300	mN·m	1		
		● Shaft bend and shaft wobble shall b 0.8 × L/20 (mm) max. (for one side)	$0.5 \times \frac{L}{30} \text{ (mm)}$	max. (for one side)	$0.7 \times \frac{L}{30} \text{ (mm) } \text{ I}$	Shaft bend and shaft wobble shall be 0.7 $\times \frac{L}{30}$ (mm) max. (for one side)	
Mechanical Specifications	Shaft wobble	When moment of 25 mN·m is applied.	When mo	is applied.	When mo 50 mN·m	ment of is applied.	
		L=Distance between mounting surface and measuring point		etween mounting measuring point		etween mounting neasuring point	
	Shaft Pull/Push Strength	Push strength Pull strength 100 N min. 100 N min.	Push strength 100 N min.	Pull strength 100 N min.	Push strength 100 N min.	Pull strength 100 N min.	
	Nut Tightening Torque	_	1 N·r	n max.		_	
	Nominal Total Resistance	1 k Ω to 1 M Ω , 300 k Ω to	2 M Ω for tape	r B (Tolerance	±20 %)		
	Taper	A, B, C, D, G					
	Power Rating	0.05 W (0 °C to 50 °C) For potentiometers operating in ambient temperatures above 50 °C, Rating should be derated in accordance with the figure on the right.					
Electrical Specifications	l						
		Standard	50 kΩ < R 1 MΩ < R	2 < 2 MΩ	100 Ω 200 Ω	max.	
	Residual Resistance	Standard Semi-standard	50 kΩ < R	? < 1 MΩ	100 Ω	max.	
	Residual Resistance		50 kΩ < R 1 MΩ < R A, B, D, G T1 & T2	$R < 1 \text{ M}\Omega$ $R < 2 \text{ M}\Omega$ B, C, G	100 Ω 200 Ω A, D T2 & T3	max. C T1 & T2 max.	
	Residual Resistance		50 kΩ < R 1 MΩ < R A, B, D, G T1 & T2 2 Ω 2 Ω	R < 1 MΩ R < 2 MΩ B, C, G T2 & T3 max. max.	100 Ω 200 Ω A, D T2 & T3 20 Ω 25 Ω	max. C T1 & T2 max. max.	
	Residual Resistance	$\frac{\text{Semi-standard}}{\text{R} < 2 \text{ k}\Omega}$	50 kΩ < R 1 MΩ < R A, B, D, G T1 & T2 2 Ω 2 Ω	R < 1 MΩ R < 2 MΩ B, C, G T2 & T3 max. max.	100 Ω 200 Ω A, D T2 & T3 20 Ω 25 Ω	max. C T1 & T2 max. max. max. max.	
	Residual Resistance Insulation Resistance		$50 \text{ k}\Omega < \text{R}$ $1 \text{ M}\Omega < \text{R}$ A, B, D, G $T1 \& T2$ 2Ω 2Ω 25Ω	R < 1 MΩ R < 2 MΩ B, C, G T2 & T3 max. max.	100 Ω 200 Ω A, D T2 & T3 20 Ω 25 Ω 50 Ω	max. C T1 & T2 max. max. max. max.	
		$\begin{tabular}{c} Semi-standard \\ \hline \hline $R<2$ kΩ \\ \hline 2 k$\Omega < $R<50$ kΩ \\ \hline 50 k$\Omega < $R<250$ kΩ \\ \hline $R>250$ kΩ \\ \hline \end{tabular}$	$50 \text{ k}\Omega < \text{R}$ $1 \text{ M}\Omega < \text{R}$ A, B, D, G $T1 \& T2$ 2Ω 2Ω 25Ω	R < 1 MΩ R < 2 MΩ B, C, G T2 & T3 max. max.	100 Ω 200 Ω A, D T2 & T3 20 Ω 25 Ω 50 Ω	max. C T1 & T2 max. max. max.	
	Insulation Resistance	$Semi-standard$ $R < 2 \text{ k}\Omega$ $2 \text{ k}\Omega < R < 50 \text{ k}\Omega$ $50 \text{ k}\Omega < R < 250 \text{ k}\Omega$ $R > 250 \text{ k}\Omega$ $0.50 \text{ k}\Omega < R < 250 \text{ k}\Omega$	50 kΩ < R 1 MΩ < R A, B, D, G T1 & T2 2 Ω 25 Ω 100 Ω	R < 1 MΩ R < 2 MΩ B, C, G T2 & T3 max. max. max.	100 Ω 200 Ω A, D T2 & T3 20 Ω 25 Ω 50 Ω	max. C T1 & T2 max. max. max. max.	
	Insulation Resistance Dielectric Withstand Voltage	$Semi-standard$ $R < 2 k\Omega$ $2 k\Omega < R < 50 k\Omega$ $50 k\Omega < R < 250 k\Omega$ $R > 250 k\Omega$ $50 M\Omega min. at 250 Vdc$ $250 Vac for 1 minute$ $100 mV max.$ $Apply 20 V (When Voltage)$	50 kΩ < R 1 MΩ < R A, B, D, G T1 & T2 2 Ω 25 Ω 100 Ω	R < 1 MΩ R < 2 MΩ B, C, G T2 & T3 max. max. max.	100 Ω 200 Ω A, D T2 & T3 20 Ω 25 Ω 50 Ω	max. C T1 & T2 max. max. max. max.	
Specifications	Insulation Resistance Dielectric Withstand Voltage Noise Level Operating Life	$Semi-standard$ $R < 2 \text{ k}\Omega$ $2 \text{ k}\Omega < R < 50 \text{ k}\Omega$ $50 \text{ k}\Omega < R < 250 \text{ k}\Omega$ $R > 250 \text{ k}\Omega$ $50 \text{ M}\Omega \text{ min. at } 250 \text{ Vdc}$ $250 \text{ Vac for 1 minute}$ 100 mV max. $Apply 20 \text{ V (When Voltag)}$ $Rotate \text{ shaft at } 30 \text{ r/min.}$	50 kΩ < R 1 MΩ < R A, B, D, G T1 & T2 2 Ω 25 Ω 100 Ω	R < 1 MΩ R < 2 MΩ B, C, G T2 & T3 max. max. max. max. V, use the rate	100 Ω 200 Ω A, D T2 & T3 20 Ω 25 Ω 50 Ω	max. C T1 & T2 max. max. max. max.	

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately.


■ Dimensions in mm (not to scale)

Single Type without Bushing

without midpoint detent: EVUE20, EVUE2A, EVUE21

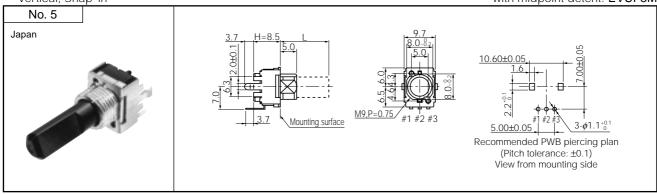


without midpoint detent: EVUF2A


 Single Type with Bushing Horizontal, Snap-in

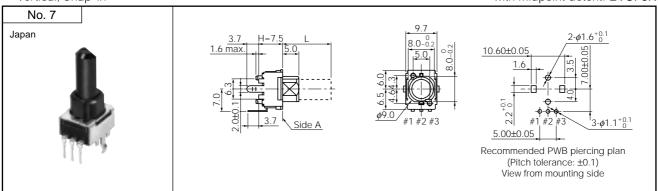
without midpoint detent: EVUE25, EVUE2J with midpoint detent: EVUE35, EVUE3J

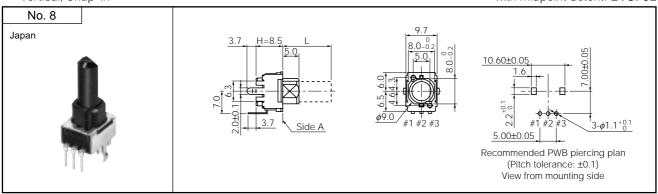
without midpoint detent: EVUF2J


Vertical, Snap-in with midpoint detent: EVUF3J

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately.

without midpoint detent: EVUF2M


Vertical, Snap-in with midpoint detent: EVUF3M


 Single Type with Sleeve Horizontal, Snap-in, Mounting Height H=10.0 mm without midpoint detent: EVUE27, EVUE2K
..... with midpoint detent: EVUE37, EVUE3K

without midpoint detent: EVUF2K Vertical, Snap-inwith midpoint detent: EVUF3K

without midpoint detent: EVUF2L Vertical, Snap-in with midpoint detent: EVUF3L

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately.

• Shaft Trims and Dimensions in mm for Type without Bushing (Drawings are at full CCW position.)

Type F (Flat)

Product No. 7.8.9 th	F15	F20	F25	F30	L±0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L	15.0	20.0	25.0	30.0	\$\text{\$\langle \text{\$\frac{1}{2}\cdot \frac{1}{2}\cdot
l	6.0	7.0	12.0	12.0	

Type E (40 teeth serrations)

Product No. 7-8-9 th	E15	E17	E20	E25	E30	E35	<u>L±0.5</u> 9 9 9
L	15.0	(17.0)	20.0	25.0	30.0	35.0	\$\frac{\lambda + 0.2}{\sigma} \text{8} \\ \frac{\lambda}{\sigma} \text{7} \\ \frac{\lambda}{\simp} \text{7} \\ \frac{\lambda}{\sigma} \text{7} \\ \frac{\lambda}{\sigma} \q
l	6.0	7.0	7.0	7.0	7.0	7.0	

Type M (24 teeth serrations)

Product No. 7-8-9 th	M20	M25	M30	M35	L±0.5 SO (30)
L	20.0	25.0	30.0	35.0	\$\frac{\psi_{\psi_{0}}}{\psi_{\psi_{0}}}\frac{\psi_{\psi_{0}}}{\psi_{\psi_{0}}}
l	7.0	7.0	7.0	7.0	c

Type S (with screw slot)

71			
Proc	duct No. 8-9 th	S01	1 - 0 E+U E O 35.44
	L	9.5	L=9.5±0.5
	l	_	

Type H (40 teeth serrations, with screw slot)

				· · · · · · · · · · · · · · · · · · ·
Product No. 7.8.9 th	H15	H20	H25	L±0.5 \$50 A 0±0.5
L	15.0	20.0	25.0	ℓ±0.2 †e
l	6.0	7.0	7.0	C 25 7 10 0

• Shaft Trims and Dimensions in mm for Types with Bushing or Sleeve (Drawings are at full CCW position.) Type F (Flat)

Type I (Hat)							
Product No. 7.8.9 th	FK1	FK3	FK4	FK5	FL3	FK6	5.0
L	12.5	15.0	17.5	20.0	21.5	22.5	
l	7.0	7.0	12.0	12.0	12.0	12.0	Mounting surface M9 P=0.75 or ϕ 9 C1

Note: When you have special requirements other than the above, consult our salesmen.