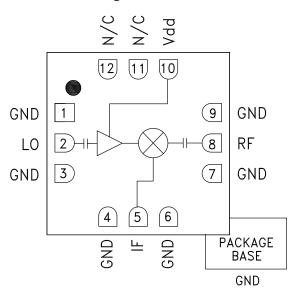


GaAs MMIC SUB-HARMONIC SMT MIXER, 24 - 34 GHz

Typical Applications

The HMC338LC3B is ideal for:

- Point-to-Point Radios
- Point-to-Multi-Point Radios & VSAT
- Test Equipment & Sensors
- Military End-Use
- SAT COM


Features

Integrated LO Amplifier: -5 dBm Input Sub-Harmonically Pumped (x2) LO

DC - 3 GHz Wideband IF

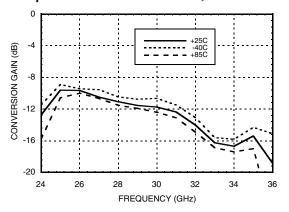
Single Positive Supply: +4V @ 31mA 12 Lead 3x3mm SMT Package: 9mm²

Functional Diagram

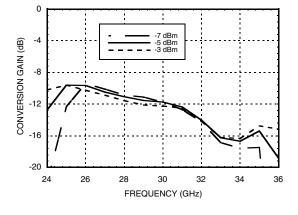
General Description

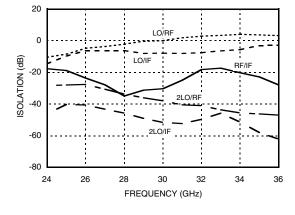
The HMC338LC3B is a 24 - 34 GHz Sub-harmonically Pumped (x2) MMIC Mixer with an integrated LO amplifier in a leadless RoHS compliant SMT package. The 2LO to RF isolation is excellent at 30 dB, eliminating the need for additional filtering. The LO amplifier is a single bias (+3V to +4V) design with a nominal -5 dBm drive requirement. The RF and LO ports are DC blocked and matched to 50 Ohms for ease of use while the IF covers DC to 3 GHz. The HMC338LC3B eliminates the need for wire bonding, allowing use of surface mount manufacturing techniques.

Electrical Specifications, $T_A = +25$ °C, As a Function of Vdd


Parameter	IF = 1 GHz LO = -5 dBm & Vdd = +4V		IF = 1 GHz LO = -5 dBm & Vdd = +4V		IF = 1 GHz LO = -5 dBm & Vdd = +3V		Units				
	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.		
Frequency Range, RF	24 - 27		25 - 31		31 - 34		GHz				
Frequency Range, LO		11.5 - 13			12 - 15			15 - 16.5		GHz	
Frequency Range, IF		DC - 3			DC - 3			DC - 3		GHz	
Conversion Loss		11	15		11	15		15	18	dB	
2LO to RF Isolation	25	30		25	33		30	40		dB	
2LO to IF Isolation	37	45		37	50		40	50		dB	
IP3 (Input)		9			13			14.5		dBm	
1 dB Compression (Input)		3			5			6.5		dBm	
Supply Current (Idd)		31	40		31	40		29	40	mA	

^{*}Unless otherwise noted, all measurements performed as downconverter, IF= 1 GHz.

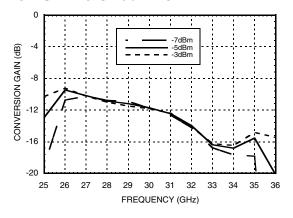



Conversion Gain vs. Temperature @ LO = -4 dBm, Vdd= +4V

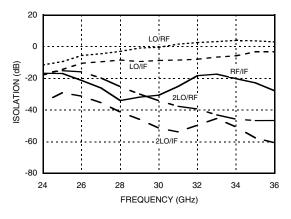
Conversion Gain vs. LO Drive @ Vdd = +4V



Isolation @ Vdd = +4V

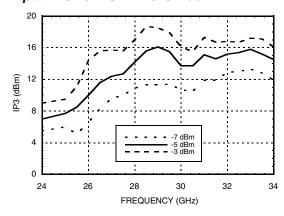


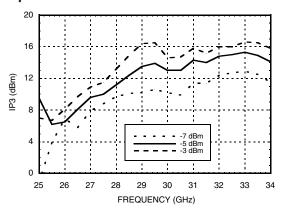
GaAs MMIC SUB-HARMONIC SMT MIXER, 24 - 34 GHz


Conversion Gain vs.
Temperature @ LO = -4 dBm, Vdd= +3V

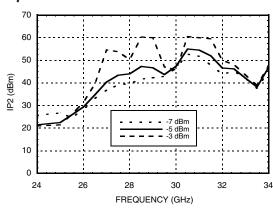
Conversion Gain vs. LO Drive @ Vdd = +3V

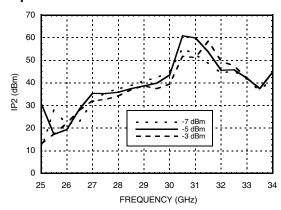
Isolation @ Vdd = +3V

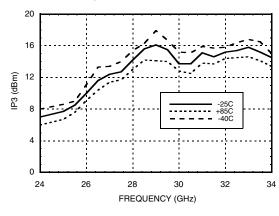


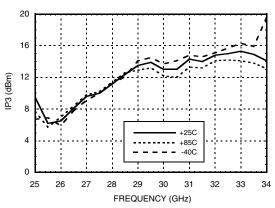


GaAs MMIC SUB-HARMONIC SMT MIXER, 24 - 34 GHz


Input IP3 vs. LO Drive @ Vdd = +4V *


Input IP3 vs. LO Drive @ Vdd = +3V *


Input IP2 vs. LO Drive @ Vdd = +4V *

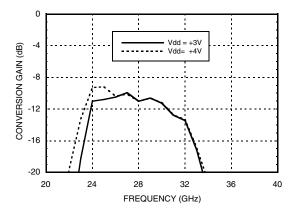

Input IP2 vs. LO Drive @ Vdd = +3V *

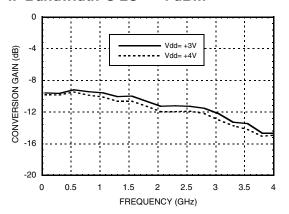
Input P1dB vs. Temperature @ LO = -4 dBm, Vdd = +4V

Input P1dB vs. Temperature @ LO = -4 dBm, Vdd = +3V

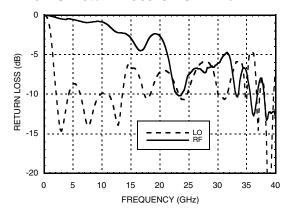
^{*} Two-tone input power = -10 dBm each tone, 1 MHz spacing.

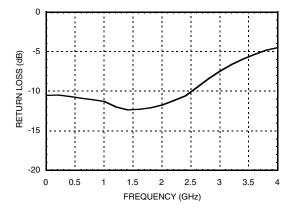
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D



GaAs MMIC SUB-HARMONIC SMT MIXER, 24 - 34 GHz


Upconverter Performance Conversion Gain @ LO = -4 dBm


IF Bandwidth @ LO = -4 dBm

RF & LO Return Loss @ LO = -4 dBm

IF Return Loss @ LO = -4 dBm

MxN Spurious Outputs @ IF Port. Vdd = 4V

	nLO					
mRF	±5	±4	±3	±2	±1	0
-3						
-2	62					
-1	75	42	67			
0			12	34	-8	
1				0	55	13
2		65	51		68	
3	95					

RF = 31 GHz @ -10 dBm

LO = 15 GHz @ -5 dBm

All values in dBc below IF power level (1RF - 2LO)

Measured as downconverter

MxN Spurious Outputs @ RF Port, Vdd = 4V

mIF	±3	±2	±1	0
-3		42		
-2	25	60	40	
-1	45	0	41	
0	-3	23	-17	
1	49	0	38	13
2	32	63	30	67
3		46		57

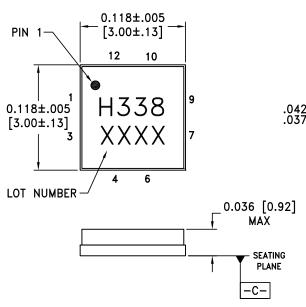
IF = 1 GHz @ -10 dBm

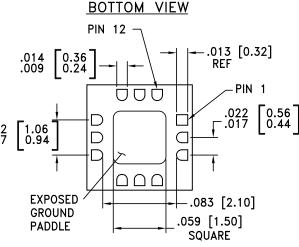
LO = 15 GHz @ -5 dBm

All values in dBc below IF power level (1IF - 2LO)

Measured as upconverter

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


GaAs MMIC SUB-HARMONIC SMT MIXER, 24 - 34 GHz


Absolute Maximum Ratings

RF / IF Input (Vdd = +5V)	+10 dBm
LO Drive (Vdd = +5V)	+13 dBm
Vdd	5.5V
Channel Temperature	175 °C
Continuous Pdiss (Ta = 85 °C) (derate 2.52 mW/°C above 85 °C)	227 mW
Thermal Resistance (junction to ground paddle)	397 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

Outline Drawing

NOTES:

- 1. PACKAGE BODY MATERIAL: ALUMINA.
- 2. LEAD AND GROUND PADDLE PLATING: GOLD FLASH OVER NICKEL.
- 3. DIMENSIONS ARE IN INCHES (MILLIMETERS).
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 5. CHARACTERS TO BE HELVETICA MEDIUM, .025 HIGH, BLACK INK, OR LASER MARK LOCATED APPROX. AS SHOWN.
- 6. PACKAGE WARP SHALL NOT EXCEED 0.05MM DATUM C -
- 7. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

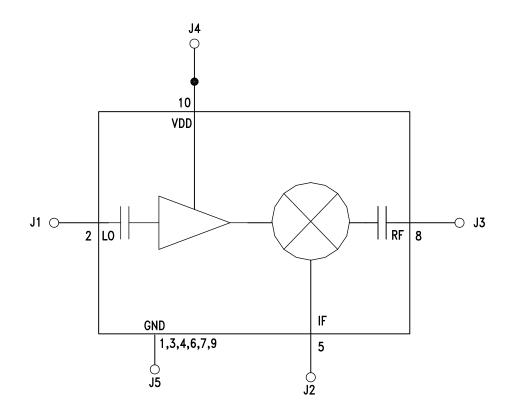
Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC338LC3B	Alumina, White	Gold over Nickel	MSL3 [1]	H338 XXXX

^[1] Max peak reflow temperature of 260 °C

^{[2] 4-}Digit lot number XXXX

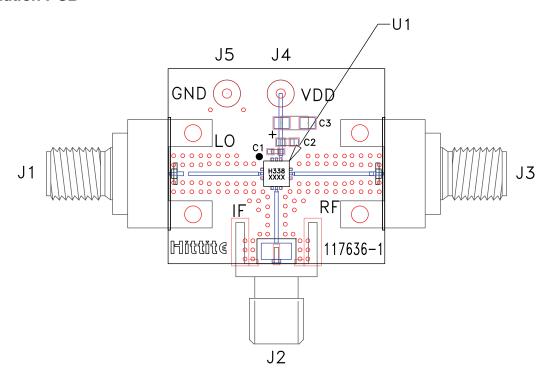
GaAs MMIC SUB-HARMONIC SMT MIXER, 24 - 34 GHz

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1, 3, 4, 6, 7, 9	GND	Package bottom must also be connected to RF/DC ground.	= O GND
2	LO	This pin is AC coupled and matched to 50 Ohms.	L0 0—
5	IF	This pin is DC coupled and should be DC blocked externally using a series capacitor whose value has been chosen to pass the necessary IF frequency range. Any applied DC voltage to this pin will result in die non-function and possible die failure.	IF O
8	RF	This pin is AC coupled and matched to 50 Ohms.	R F ○──
10	Vdd	Power supply for the LO Amplifier.	
11, 12	N/C	No connection required. These pins may be connected to RF/DC ground without affecting performance.	

GaAs MMIC SUB-HARMONIC SMT MIXER, 24 - 34 GHz

Application Circuit



GaAs MMIC SUB-HARMONIC SMT MIXER, 24 - 34 GHz

Evaluation PCB

List of Materials for Evaluation PCB 117638[1]

Item	Description	
J1 - J3	PCB Mount Connector	
J4, J5	DC Pin	
U1	HMC338LC3B Mixer	
PCB [2]	117636 Evaluation PCB	

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in this application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Arlon 25 FR