LT1 192

Ultrahigh Speed Operational Amplifier

feATURES

- Gain Bandwidth Product, $A_{V}=5: 350 \mathrm{MHz}$
- Slew Rate: $450 \mathrm{~V} / \mu \mathrm{s}$
- Low Cost
- Output Current: $\pm 50 \mathrm{~mA}$
- Settling Time: 90ns to 0.1\%
- Differential Gain Error: $0.1 \% ~\left(R_{L}=1 \mathrm{k}\right)$
- Differential Phase Error: $0.01^{\circ}\left(R_{L}=1 k\right)$
- High Open-Loop Gain: 100V/mV Min
- Single Supply 5V Operation
- Output Shutdown

APPLICATIONS

- Video Cable Drivers
- Video Signal Processing
- Photo Diode Amplifier
- Pulse Amplifiers
- D/A Current to Voltage Conversion

DESCRIPTIOn

The LT1192 is a video operational amplifier optimized for operation on $\pm 5 \mathrm{~V}$ and a single 5 V supply. Unlike many high speed amplifiers, this amplifier features high openloop gain, over 100dB, and the ability to drive heavy loads to a full-power bandwidth of 20 MHz at $7 \mathrm{~V}_{\mathrm{P}-\text { p. }}$. In addition to its very fast slew rate, the LT1192 has a high gain bandwidth of 350 MHz and is compensated for a closedloop gain of 5 or greater.

Because the LT1192 is a true operational amplifier, it is an ideal choice for wideband signal conditioning, active filters, and applications requiring speed, accuracy and low cost.

The LT1192 is available in 8-pin PDIP and S0 packages with standard pinouts. The normally unused Pin 5 is used for a shutdown feature that shuts off the output and reduces power dissipation to a mere 15 mW .

[^0]
TYPICAL APPLICATION

Double Terminated Cable Driver

Inverter Pulse Response

$A_{V}=-5, C_{L}=10 p F$ SCOPE PROBE
ABSOLUTE MAXIMUM RATINGS
(Note 1)
Total Supply Voltage (V^{+}to V^{-}) 18 V
Differential Input Voltage $\pm 6 \mathrm{~V}$
Input Voltage \qquad $\pm V_{S}$
Output Short-Circuit Duration (Note 2) Continuous Operating Temperature Range

LT1192M (OBSOLETE) \qquad $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1192C \qquad
\qquad
\qquadMaximum Junction Temperature $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature Range

\qquad
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) \qquad $300^{\circ} \mathrm{C}$PACKAGE DESCRIPTION

PACKAGE DESCRIPTION

TOP VIEW		ORDER PART
$\begin{aligned} & \text { BAL } \sqrt{1} \\ & -\mathbb{I N} \sqrt{2} \\ & +\mathbb{I N} \sqrt{3} \\ & \mathrm{~V}^{-}=4 \end{aligned}$	8 BAL	NUMBER
	$7 \mathrm{v}^{+}$	LT1192CN8
	6 OUT	LT1192CS8
	5	S8 PART MARKING
N8 PACKAGE 8-LEAD PDIP	8-LEAPACKAGE	1192
$\begin{aligned} & T_{\text {JMAX }}=150^{\circ} \mathrm{C}, \theta_{J A}=100^{\circ} \mathrm{C} / \mathrm{N}(\mathrm{~N} 8) \\ & \mathrm{T}_{\mathrm{JMAX}}=150^{\circ} \mathrm{C}, \theta_{J A}=150^{\circ} \mathrm{C}(\mathrm{~S} 88) \end{aligned}$		LT1192MJ8
J8 PACKAGE 8-LEAD CERDIP $T_{J M A X}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=100^{\circ} \mathrm{CM}$		LT1192CJ8
OBSOLETE PACKAGE		

Consult LTC Marketing for parts specified with wider operating temperature ranges.
electrichl characteristics
$V_{S}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF}$, Pin 5 open circuit unless otherwise noted.

SYMBOL	PARAMETER			LT1192M/C			UNITS
			CONDITIONS	MIN	TYP	MAX	
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		N8 Package S0-8 Package		0.2	$\begin{gathered} 2.5 \\ 3 \end{gathered}$	mV mV
Ios	Input Offset Current				0.2	1.7	$\mu \mathrm{A}$
I_{B}	Input Bias Current				± 0.5	± 2.5	$\mu \mathrm{A}$
e_{n}	Input Noise Voltage		$\mathrm{f}_{0}=10 \mathrm{kHz}$		9		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
in_{n}	Input Noise Current		$\mathrm{f}_{0}=10 \mathrm{kHz}$		4		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	Differential Mode			16		$\mathrm{k} \Omega$
		Common Mode			5		$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance		$A_{V}=10$		1.8		pF
	Input Voltage Range		(Note 3)	-2.5		3.5	V
CMRR	Common Mode Rejection Ratio		$\mathrm{V}_{\text {CM }}=-2.5 \mathrm{~V}$ to 3.5 V	70	85		dB
PSRR	Power Supply Rejection Ratio		$\mathrm{V}_{\mathrm{S}}= \pm 2.375 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$	70	85		dB
AVOL	Large-Signal Voltage Gain		$\begin{aligned} & R_{L}=1 \mathrm{k}, \mathrm{~V}_{0}= \pm 3 \mathrm{~V} \\ & R_{L}=100 \Omega, V_{0}= \pm 3 \mathrm{~V} \\ & V_{S}= \pm 8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{0}= \pm 5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 100 \\ 16 \\ 20 \\ \hline \end{gathered}$	$\begin{gathered} \hline 180 \\ 35 \\ 60 \\ \hline \end{gathered}$		V / mV V / mV V / mV
V OUT	Output Voltage Swing		$\begin{aligned} & V_{S}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & V_{S}= \pm 8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \end{aligned}$	$\begin{aligned} & \pm 3.7 \\ & \pm 6.7 \end{aligned}$	$\begin{aligned} & \pm 4 \\ & \pm 7 \end{aligned}$		V
SR	Slew Rate		$A_{V}=-10, R_{L}=1 \mathrm{k}$ (Notes 4, 9)	325	450		$\mathrm{V} / \mathrm{\mu s}$
FPBW	Full-Power Bandwidth		$\mathrm{V}_{0}=6 \mathrm{~V}_{\text {P-P }}$ (Note 5)	17.2	23.9		MHz
GBW	Gain Bandwidth Product				350		MHz
$\mathrm{t}_{\mathrm{r} 1}, \mathrm{t}_{\mathrm{f} 1}$	Rise Time, Fall Time		$A_{V}=50, V_{0}= \pm 1.5 \mathrm{~V}, 20 \%$ to 80\% (Note 9)	23	35	50	ns
$\mathrm{t}_{\mathrm{r} 2}, \mathrm{t}_{\mathrm{f} 2}$	Rise Time, Fall Time		$A_{V}=5, V_{0}= \pm 125 \mathrm{mV}, 10 \%$ to 90%		2.7		ns
tPD	Propagation Delay		$A_{V}=5, V_{0}= \pm 125 \mathrm{mV}, 50 \%$ to 50%		3.5		ns
	Overshoot		$A_{V}=5, V_{0}= \pm 125 \mathrm{mV}$		50		\%
$\mathrm{t}_{\text {s }}$	Settling Time		3V Step, 0.1\% (Note 6)		90		ns

eLECTRICAL CHARACTERISTICS
$V_{S}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF}$, Pin 5 open circuit unless otherwise noted.

| SYMBOL | PARAMETER | CONDITIONS | MINLT1192M/C
 TYP | MAX |
| :--- | :--- | :--- | ---: | ---: | UNITS

$\mathrm{V}_{\mathrm{S}^{+}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}{ }^{-}=\mathrm{OV}, \mathrm{V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF}$, Pin 5 open circuit unless otherwise noted.

| SYMBOL | PARAMETER | CONDITIONS | LT1192M/C
 TYP | | MAX |
| :--- | :--- | :--- | :--- | :--- | :---: | UNITS

The \bullet denotes the specifications which apply over the full operating temperature range of $-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$.
$V_{S}= \pm 5 \mathrm{~V}$, Pin 5 open circuit unless otherwise noted.

| SYMBOL | PARAMETER | CONDITIONS | LT1192M
 TYP | | MAX |
| :--- | :--- | :--- | :--- | :--- | :--- | UNITS

ELECTRICAL CHARACTERISTICS
The denotes the specifications which apply over the full operating temperature range of $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} . \mathrm{V}_{S}= \pm 5 \mathrm{~V}$, Pin 5 open circuit unless otherwise noted.

| SYMBOL | PARAMETER | CONDITIONS | LT1191C
 TYP | | MAX |
| :--- | :--- | :--- | :--- | :--- | :--- | UNITS

Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.
Note 2: A heat sink is required to keep the junction temperature below absolute maximum when the output is shorted.
Note 3: Exceeding the input common mode range may cause the output to invert.
Note 4: Slew rate is measured between $\pm 1 \mathrm{~V}$ on the output, with a $\pm 0.3 \mathrm{~V}$ input step.
Note 5: Full-power bandwidth is calculated from the slew rate measurement:
$F P B W=S R / 2 \pi V_{p}$.

Note 6: Settling time measurement techniques are shown in "Take the Guesswork Out of Settling Time Measurements," EDN, September 19, 1985. $A_{V}=-5, R_{L}=1 \mathrm{k}$.

Note 7: NTSC (3.58MHz). For $R_{L}=1 k$, Diff $A_{V}=0.1 \%$, Diff $\mathrm{Ph}=0.01^{\circ}$. Diff A_{V} and Diff Ph can be reduced for $A_{V}<10$.
Note 8: See Applications section for shutdown at elevated temperatures. Do not operate the shutdown above $\mathrm{T}_{\mathrm{J}}>125^{\circ} \mathrm{C}$.
Note 9: AC parameters are 100% tested on the ceramic and plastic DIP packaged parts (J and N suffix) and are sample tested on every lot of the S0 packaged parts (S suffix).

Optional Offset Nulling Circuit

INPUT OFFSET VOLTAGE CAN BE ADJUSTED OVER A $\pm 20 \mathrm{mV}$
RANGE WITH A $1 \mathrm{k} \Omega$ TO $10 \mathrm{k} \Omega$ POTENTIOMETER
LT1192•TA03

TYPICAL PGRFORmANCE CHARACTERISTICS

LT1192•TPC01
Equivalent Input Noise Voltage
vs Frequency

LT1192•TPC04

Shutdown Supply Current vs Temperature

LT1192•TPC07

LT1192•TPC02
Equivalent Input Noise Current vs Frequency

LT1192•TPC05
Open-Loop Voltage Gain vs Temperature

LT1192•TPC08

LT1192•TPC03

LT1192•TPC06
Open-Loop Voltage Gain vs Load Resistance

LT1192•TPC09

TYPICAL PGRFORMANCE CHARACTERISTICS

TYPICAL PGRFORMANCE CHARACTERISTICS

APPLICATIONS InFORMATION

Power Supply Bypassing

The LT1192 is quite tolerant of power supply bypassing. In some applications a $0.1 \mu \mathrm{~F}$ ceramic disc capacitor placed $1 / 2$ inch from the amplifier is all that is required. A scope photo of the amplifier output with no supply bypassing is used to demonstrate this bypassing tolerance, $R_{L}=1 \mathrm{k}$.

In most applications, and those requiring good settling time, it is important to use multiple bypass capacitors. A $0.1 \mu \mathrm{~F}$ ceramic disc in parallel with a $4.7 \mu \mathrm{~F}$ tantalum is recommended. Two oscilloscope photos with different bypass conditions are used to illustrate the settling time characteristics of the amplifier. Note that although the output waveform looks acceptable at 1V/DIV, when

No Supply Bypass Capacitors

$A_{V}=-5$, IN DEMO BOARD, $R_{L}=1 k$

APPLICATIONS INFORMATION

amplified to $1 \mathrm{mV} /$ DIV the settling time to 1 mV is $4.132 \mu \mathrm{~s}$ for the 0.1μ F bypass; the time drops to 140 ns with multiple bypass capacitors.

Settling Time Poor Bypass

Settling Time Good Bypass

Cable Terminations

The LT1192 operational amplifier has been optimized as a low cost video cable driver. The $\pm 50 \mathrm{~mA}$ guaranteed output current enables the LT1192 to easily deliver 7.5Vp-p into 100Ω, while operating on $\pm 5 \mathrm{~V}$ supplies or 2.6 V p-p on a single 5 V supply.

When driving a cable it is important to terminate the cable to avoid unwanted reflections. This can be done in one of two ways: single termination or double termination. With single termination, the cable must be terminated at the receiving end (75Ω to ground) to absorb unwanted

Double Terminated Cable Driver

Cable Driver Voltage Gain vs Frequency

energy. The best performance can be obtained by double termination (75Ω in series with the output of the amplifier, and 75Ω to ground at the other end of the cable). This termination is preferred because reflected energy is absorbed at each end of the cable. When using the double termination technique it is important to note that the signal is attenuated by a factor of 2 , or 6 dB . For a cable driver with a gain of 5 (op amp gain of 10) the -3 dB bandwidth is 56 MHz with only 0.25 dB of peaking.

Using the Shutdown Feature

The LT1192 has a unique feature that allows the amplifier to be shut down for conserving power or for multiplexing several amplifiers onto a common cable. The amplifier will shut down by taking Pin 5 to V^{-}. In shutdown, the amplifier dissipates 15 mW while maintaining a true high impedance output state of $15 \mathrm{k} \Omega$ in parallel with the feedback resistors. The amplifiers must be used in a noninverting configuration for MUX applications. In inverting configurations the input signal is fed to the output through the feedback components. When the output is loaded with as little as $1 \mathrm{k} \Omega$ from the amplifier's feedback resistors, the amplifier shuts off in 400 ns . This shutoff can be under the control of HC CMOS operating between 0 V and -5 V .

APPLICATIONS InFORMATION

The ability to maintain shutoff is shown on the curve Shutdown Supply Current vs Temperature in the Typical Performance Characteristics section. At very high elevated temperatures it is important to hold the SHDN pin close to the negative supply to keep the supply current from increasing.

Operating with Low Closed-Loop Gains

When using decompensated amplifiers it should be realized that peaking in the frequency domain, and overshoot and ringing in the time domain occur as closed-loop gain is lowered. The LT1192 is stable to a closed-loop gain of 5 , however, peaking and ringing can be minimized by increasing the closed-loop gain. For instance, the LT1192 peaks 5 dB when used in a gain of 5 , but peaks by less than 0.5 dB for a closed-loop gain of 10 . Likewise, the overshoot drops from 50% to 4% for gains of 10 .

Murphy Circuits

There are several precautions the user should take when using the LT1192 in order to realize its full capability. Although the LT1192 can drive a 50pF load, isolating the capacitance with 20Ω can be helpful. Precautions primarily have to do with driving large capacitive loads.

Small-Signal Transient Response

$A_{V}=10$, SMALL-SIGNAL RISE TIME, WITH FET PROBES

Closed-Loop Voltage Gain vs Frequency

LT1192•TA10

Other precautions include:

1. Use a ground plane (see Design Note 50, High Frequency Amplifier Evaluation Board).
2. Do not use high source impedances. The input capacitance of $2 p F$, and $R_{S}=10 k$ for instance, will give an $8 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth.
3. PC board socket may reduce stability.
4. A feedback resistor of 1 k or lower reduces the effects of stray capacitance at the inverting input.

APPLICATIONS InFORMATION

Driving Capacitive Load

An Unterminated Cable Is a Large Capacitive Load

A Scope Probe on the Inverting Input Reduces Phase Margin

Driving Capacitive Load

$A_{V}=-5$, IN DEMO BOARD, $C_{L}=50 \mathrm{pF}$ WITH 20Ω ISOLATING RESISTOR

Murphy Circuits

A 1X Scope Probe Is a Large Capacitive Load

LT1192 Is Stable for Gains $\geq 5 \mathrm{~V} / \mathrm{N}$

SImPLIFIGD SCHEmATIC

*SUBSTRATE DIODE, DO NOT FORWARD BIAS

PACKAGE DESCRIPTION

NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS

PACKAGE DESCRIPTION

N8 Package
8-Lead PDIP (Narrow . 300 Inch)
(Reference LTC DWG \# 05-08-1510)

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254 mm)

S8 Package 8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1221	High Speed Operational Amplifier	150 MHz Gain Bandwidth, 200V/ $/ \mu$ S Slew Rate, $e_{n}=6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
LT1222	High Speed Operational Amplifier	500 MHz Gain Bandwidth, 200V/ $/ \mathrm{S}$ Slew Rate, $\mathrm{e}_{\mathrm{n}}=3 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
LT1225	High Speed Operational Amplifier	150 MHz Gain Bandwidth, 400V/ $/ \mathrm{s}$ Slew Rate, $\mathrm{I}_{\mathrm{S}}=7 \mathrm{~mA}$

[^0]: $\mathbf{\Sigma \boldsymbol { Y }}$, LTC and LT are registered trademarks of Linear Technology Corporation.

