

Precision JFET-Input Operational Amplifiers

OP-15/OP-16/OP-17

FEATURES (All Devices)

- Significant Performance Advantages over LF155, 156 and 157 Devices.
- Low Input Offset Voltage 500 μ V Max
- Low Input Offset Voltage Drift 2.0 µV/° C
- Minimum Slew Rate Guaranteed on All Models
- **Temperature-Compensated Input Bias Currents**
- Guaranteed Input Bias Current @ 125° C
- **Bias Current Specified WARMED UP Over Temperature**
- Internal Compensation
- Low Input Noise Current0.01pA/√Hz High Common-Mode Rejection Ratio 100dB
- Models With MIL-STD-883 Processing Available

125° C/Temperature Tested/DICE

	P-15/ / /	· /	$ \leftarrow $		\mathcal{L}		_
	156 Speed W						
•	Wide Bandw	idth)	٠٠.٠٠٠		(./ 61	мнλ
•	High Class D	250	/ /	1)	1 /	/ 42	3//

- Fast Settling to $\pm 0.1\%$. .
- Available in Die Form

OP-16

•	Higher Slew Rate	25V /μs
•	Faster Settling to ±0.1%	900ns

- Wider Bandwidth ... 8MHz
- Available in Die Form

U	F-1/	
•	Highest Slew Rate	60V /μs
•	Fastest Settling to ±0.1%	. 600ns

- Highest Gain Bandwidth Product (A_{VCL} = 5 Min)
- Available in Die Form

GENERAL DESCRIPTION

The PMI JFET-input series of devices offer clear advantages over industry-generic devices and are superior in both cost and performance to many dielectrically-isolated and hybrid op amps. All devices offer offset voltages as low as 0.5mV with TCV_{OS} guaranteed to 5 µV/°C. A unique input bias cancellation circuit reduces the IB by a factor of 10 over conventional designs. In addition, PMI specifies IB and IOS with the devices warmed up and operating at 25°C ambient.


These devices were designed to provide real precision performance along with high speed. Although they can be nulled, the design objective was to provide low offset-voltage without nulling. Systems generally become more cost effective as the number of trim circuits is decreased. PMI achieves this performance by use of an improved Bipolar compatible JF/ET-process coupled with on-chip, zener-zap offset trimming.

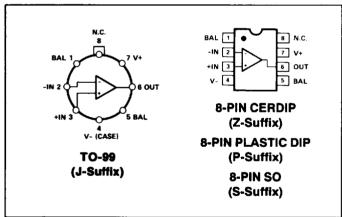
The DP-15 provides an excellent combination of high speed and low input offset voltage. In addition, the OP-15 offers the speed of the 156A op amp with the power dissipation of a 155A. The combination of a low input offset voltage of 500 µV, slew rate of 13 1/4 and settling time of 1200ns to 0.1% makes the OP-15 an op amp of both precision and speed. The additional features of low supply current coupled with an input bias current of 9nA at 125° C ambient (not junction) temperature makes the OP-15 ideal for a wide range of applications.

The OP-16 features a slew rate of 25 V/us and a settling time of 900ns to 0.1% which represents a significant improvement in speed over the 156. Also, the OP-16 has all the DC features of the OP-15.

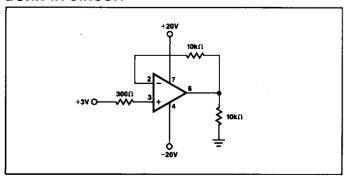
The OP-17 has a slew rate of 60V/µs and is the best choice for applications requiring high closed-loop gain with high speed. See the OP-42 data sheet for unity gain applications and the OP-215 data sheet for a dual configuration of the OP-15.

SIMPLIFIED SCHEMATIC

..13V/us


1200ns

ORDERING INFORMATION †


T _A = +25°C V _{OS} MAX (mV)	TO-99	CERDIP 8-PIN	PLASTIC 8-PIN	SO 8-PIN	OPERATING TEMPERATUR RANGE
	OP15AJ*	OP15AZ*	_	_	
0.5	OP16AJ*	_	_	_	MIL
	OP17AJ*	OP17AZ*	-	-	
	OP15EJ	OP15EZ	-	_	
0.5	OP16EJ	OP16EZ	_	_	COM
	QP17EJ	OP17EZ	-	-	
	OP15BJ/883	OP15BZ/883	_	_	
1.0	OP16BJ/883	OP16BZ/883	-	-	MIL
	OP17BJ*	OP17BZ		-	
	OP15FJ	OP15FZ	OP15FP	-	
1.0	OP16FJ	OP16FZ	OP16FP	_	COM
	_	_	OP17FP	-	
		OP17CZ/883	-	_	A 119
3.0	OP17C3/883C	-	-	-	MIL
77	OP156U	OP15GZ	OP15GP	OP15GS	
/3.0/	OP16G.)	OP16GZ	OR16GP	OP16GS	XIND
1 1	OP17GJ	ØP17/GZ	\OP\7GP	OPT768	
unmpe	r_Consult facto	ry for 883 data	Sheet.	\ 1	add 883 after pa

PIN CONNECTIONS

CerDIP, plastic DIP/and TO-can package

BURN-IN CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage	
All Devices Except C, G (Packaged) & GR Grades ±22V	
C, G (Packaged) & GR Grades ±18V	
Operating Temperature	
A, B, & C Grades55°C to +125°C	
E & F Grades 0°C to +70°C	
G Grade40°C to +85°C	
Maximum Junction Temperature+150°C	
DICE Junction Temperature (T _i)65°C to +150°C	
Differential Input Voltage	
All Devices Except C, G (Packaged) & GR Grades ±40V	
C, G (Packaged) & GR Grades ±30V	
Input Voltage (Note 2)	
All Devices Except C, G (Packaged) & GR Grades ±20V	
C, G (Packaged) & GR Grades±16V	
Input Voltage	
OP-15A, OP-15B, OP-15E, OP-15F ±20V	
OP-15G ±16V	
OP-16A, OP-16B, OP-16E, OP-16F ±20V	
OP-16C, OP-16G ±16V	
OP-17A, OP-17B, OP-17E, OP-17F ±20V	
OP-17C, OP-17G ±16V	
\ Output/Short-Circuit Duration Indefinite	
Storage Temperature/Range	
Lead/Temperature Range (Soldering, 60 sec) +300°C	
PACKAGE TYPE PIA (Note 3) PIC UNITS	
TO/99 (J) 150 18 °C/W	
8-Pin Hermetic DIF (Z) 148 16 C/W	√
8-Pin Plastic DIP (P) 103 43 °C/W	,
8-Pin SO (S) 158 43 00/W	
NOTES:	
1 Absolute maximum ratings apply to both DICE and applyaged both unless other	

- 1. Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.
- 2. Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power-supply voltage.
- Θ_{jA} is specified for worst case mounting conditions, i.e., Θ_{jA} is specified for device in socket for TO, CerDIP and P-DIP packages; Θ_{jA} is specified for device soldered to printed circuit board for SO package.

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $T_A = 25^{\circ}C$, unless otherwise noted.

					P-15A P-16A P-17A	/E /E	Ċ	P-15B P-16B P-17B	/F /F	C	OP-15 P-16C P-17C	;/G ;/G	
PARAMETER		CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	Vos	$R_S = 50\Omega$			0.2	0.5		0.4	1.0		0.5	3.0	mV
		T _j = 25°C (Note 1)	OP-15	_	3	10	_	6	20	_	12	50	
Input Offset Current	Ios	Device Operating		_	5 3	22 10	_	10 6	40 20	_	20 12	100 50	pΑ
		T _j = 25°C (Note 1) Device Operating	OP-16/OP-17	_	5	25	_	10	50	_	20	125	
		T ₁ = 25°C (Note 1)		_	± 15	±50	_	±30	±100	_	±60	±200	
		Device Operating	OP-15	_	± 18	±110		±40	±200	_	±80	±400	- 4
Input Bias Current	I _B	T _i = 25°C (Note 1)	OP-16/OP-17	_	±15	±50		±30	±100	_	±60	±200	pA
		Device Operating	OP-16/OP-17		±20	±130		±40	±250		±80	±500	
In put Res istance	R _{IN}			_	10 ¹²			10 ¹²			10 ¹²	_	Ω
Large Signal	AVO	$R_L \ge 2k\Omega$		100	240	_	75	220	_	50	200	_	V/mV
Voltage Gain		$V_0 = \pm 10V$							-	1.40			
Output Voltage / Swing /	(v_0)	$P_L = 10k\Omega$		±12 +11	±13 ±12.7	_	±12 ±11	±13 ± 12.7	_	±12 ±11	±13 ±12.7	_	٧
	$\overline{}$		OP-15		2.7	4.0		2.7	4.0	_	2.8	5.0	-
Supply Current /	lsy)		OP-16/OP-17	+	4.6	7.0	_	4.6	7.0		4.8	8.0	mA
		1 1 1 2 2 3	QP-15	10	/13	<i>T</i> –	7.5	11	_	5	9	_	
Slew Rate	SR	Av _{CL} = +1 (Note 3)	φP-1 6	J 18	25	/ –	/ 12	24	<u>_</u> .	9	17	_	V/μs
		A _{VCL} = +5 (Note 3/	QP-1	/ 45	60/		/ 35/	-50	J-[25	40	_	
Gain Bandwidth			OP 15	A. 0	/ 6.d	_	/ 3.5	5.7	`	3.0 ₽.0	7.4	_	
Product	GBW	(Note 3)	OP-16 OP-17	6.0 20 L	/ 8 <u>.b</u> _ 30	_	5-5	7.6	/ _	/ /5.0	7/2 26	/_	MHz
			OP-15		14					/// _	/12	$ \leftarrow$	
Closed-Loop	CLBW	A _{VCL} = +1	OP-16	_	19	_		18/	_	/ / _	/17	<u>~-</u>	7MHz
Bandwidth		A _{VCL} = +5	OP-17	_	11			10			/ 9/		<u> </u>
		to 0.01%		_	4.5	_	_	4.5	_	_	4.7	_	
		to 0.05% (Note 2)	OP-15	_	1.5	_	_	1.5	_	_	1.6	<u> </u>	\supset
		to 0.10%			1.2		_ _	1.2			1.3		_
		to 0.01%		_	3.8	_	-	3.8	_	_	4.0	_	_
Settling Time	ts	to 0.05% (Note 2) to 0.10%	OP-16	_	1.2 0.9	_	_	1.2 0.9	_	_	1.3 1.0	_	μS
		to 0.01%			1.5			1.5			1.6		-
		to 0.05% (Note 4)	OP-17		0.7	_	_	0.7	_	_	0.8	_	
		to 0.10%			0.6		_	0.6	_	_	0.7	_	
Input Voltage Range	IVR			± 10.5	-		±10.5	_		±10.3	_	_	V
Common-Mode	CMRR	V _{CM} = ± 10.5V		86	100	_	86	100	_	.—	_	_	dB
Rejection Ratio		$V_{CM} = \pm 10.3V$				_			_	82	96		
Power Supply	PSRR	$V_S = \pm 10V \text{ to } \pm 18V$			10	51	_	10 —	51 —	_	_ 10	- 80	μV/V
Rejection Ratio		$V_S = \pm 10V \text{ to } \pm 15V$			- 20								
Input Noise Voltage Density	en	$f_O = 100Hz$ $f_O = 1000Hz$		_	20 15	_	_	20 15	_		20 15	_	nV/√Hz
Input Noise	,	f _O = 100Hz		_	0.01	_	_	0.01	_		0.01	_	pA/√ Hz
Current Density	in	f _O = 1000Hz		_	0.01		_	0.01		_	0.01	_	pA/VHZ
Input Capacitance	CiN				3			3			3		pF

NOTES

- Input bias current is specified for two different conditions. The T_j = 25°C specification is with the junction at ambient temperature; the Device Operating specification is with the device operating in a warmed-up condition at 25°C ambient. The warmed-up bias current value is correlated to the junction temperature value via the curves of I_Bvs T_j and I_Bvs T_A. PMI has a bias current compensation circuit which gives improved bias current over the standard JFET input op amps. I_B and I_{OS} are measured at V_{CM}=0.
- 2. Settling time is defined here for a unity gain inverter connection using $2k\Omega$ resistors. It is the time required for the error voltage (the voltage at the

inverting input pin on the amplifier) to settle to within a specified percent of its final value from the time a 10V step input is applied to the inverter. See settling time test circuit.

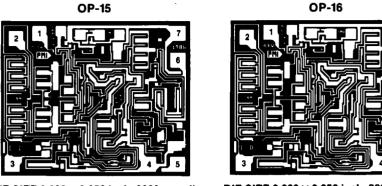
- 3. Sample tested.
- 4. Settling time is defined here for a $A_V=-5$ connection with $R_F=2k\Omega$. It is the time required for the error voltage (the voltage at the inverting input pin on the amplifier) to settle to within 0.01% of its final value from the time a 2V step input is applied to the inverter. See settling time test circuit.

ELECTRICAL CHARACTERISTICS at $V_S = \pm\,15V$, $-55^{\circ}C \le T_A \le 125^{\circ}C$, unless otherwise noted.

		ā			OP-15A OP-16A OP-17A			OP-15B OP-16B OP-17B			OP-16C OP-17C		
PARAMETER	SYMBOL	CONDITIONS				TYP MAX		MIN TYP		MIN	TYP	MAX	UNITS
Input Offset Voltage	Vos	$R_S = 50\Omega$			0.4	0.9		0.7	2.0		0.9	4.5	mV
Average Input Offset Voltage Drift Without External	TCVos	(Note 2)		_	2	5	_	3	10	_	4	15	
Trim With External Trim	TCV _{OSn}	$R_p = 100k\Omega$		_	2	_	_	3	_		4	_	μV/°C
		T _j = 125°C		_	0.6	4.0	_	0.8	6.0	_	1.0	9.0	
Input Offset		T _A = 125°C Device Operating	OP-15	-	0.8	7.0	_	1.2	11	_	1.5	17	
Current (Note 1)	los	T _j = 125°C		_	0.6	4.0	_	0.8	6.0	_	1.0	9.0	- nA
		T _A = 125°C Device Operating	OP-16/OP-17	_	1.0	8.5	_	1.3	14.5	_	1.7	22	
	B	129°C		_	±1.2	±5.0	_	±1.5	±7.5	_	± 1.8	±10	
Input Bigs		T _A ≠ 125°C Device Operating	OP-16		± 1.7	±9.0	_	±2.2	± 14	_	±2.7	± 19	
Corrent (Note 1)		T)= 125°C Tx = 125°6	OP-16/OP-17/		± 1/2	±5,0	,	± 1.5	± 7.5	_	±1.8	±10	nA
		Device Operating) - 10/-1//		±2.d	<u>#</u> 11 /	_	±2.5	±18	_	±3.0	±25	
Input Voltage Range	IVR		- <i>/</i>	±10.4	<u> </u>]-/	±10.4	<u> </u>	<u> </u>	7± 10.2 5		_	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 10.4V$ $V_{CM} = \pm 10.25V$			/97 -	/	85 — /	/ % =		84	/93	77	dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 10V \text{ to } \pm 18V$ $V_S = \pm 10V \text{ to } \pm 15V$		_	15 L	57]	15	57	<i></i>	/ _ 23	1/00	μV/V
Large-Signal Voltage Gain	A _{vo}	$R_L \ge 2k\Omega$ $V_O = \pm 10V$		35	120	_	30	110		25/	100	/-/	V/mV
Output Voltage Swing	v _o	$R_L \ge 10k\Omega$		± 12	±13	_	± 12	±13	_	±12	± 13		$\boxed{\hspace{1cm}}$

^{1.} Input bias current is specified for two different conditions. The $T_j = 25^{\circ}C$ specification is with the junction at ambient temperature; the Device Operating specification is with the device operating in a warmed-up condition at 25°C ambient. The warmed-up bias current value is correlated to the junction temperature value via the curves of I_B vs T_i and I_B vs T_A. PMI has a bias current compensation circuit which gives improved bias current over the standard JFET input op amps. IB and IOS are measured at V_{CM} = 0. 2. Sample tested.

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $0^{\circ}C \le T_A \le 70^{\circ}C$ for E and F, $-40 \le T_A \le +85^{\circ}C$ for G grade, unless otherwise noted.


				OP-15E OP-16E OP-17E				OP-156 OP-166 OP-17	F	OP-15G OP-16G OP-17G			
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	Min	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	Vos	$R_S = 50\Omega$			0.3	0.75		0.55	1.5		0.7	3.8	mV
Average Input Offset Voltage Drift											(No	ote 2)	
Without External Trim	TCVos			_	2	5	_	3	10	_	4	30	V/0.0
With External Trim	TCV _{OSn}	$R_p = 100k\Omega$			2		_	3		_	4	_	μV/° C
		T _j = 70° C		_	0.04	0.30	_	0.06	0.45	_	0.08	0.65	
Input Offset		T _A = 70° C Device Operating	OP-15	_	0.06	0.55	-	0.08	0.80	_	0.10	1.2	· nA
Current (Note 1)	Tos	T _i = 70°C		_	0.04	0.30	_	0.06	0.45	-	0.08	0.65	IIA
)) /		T _A = 70° C Device Operating	OP-16/OP-17	_	0.07	0.70	_	0.10	1.1	_	0.15	1.7	
	<u> </u>	T _j = 70° &			±0.10	±0.40	_	±0.12	±0.60	_	±0.14	±0.80	
Input Bias))	T _A = 70° C Device Operating	OP-15	1	±0/13	‡0.75	_	±0.16	±1.1	_	±0.19	±1.5	
Current (Note 1)	^l B ∕	T = 70°C	7.7) 	±/0.10/	±0.40	/-	±0.12	±0.60		±0.14	±0.80	- nA
		T _A = 70° C Device Operating	OP-16/OP-17	<i>/ </i>	0.15	±0.90	$\int f$		 ₹1Æ		±0.25	±2.0	
Input Voltage Range	IVR			≠ 10.4	<u> </u>		/±10.4			7 ± 10:26	J£		v
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 10.4V$ $V_{CM} = \pm 10.25V$		85	98		85	98/	_	$\left/ \right. \left/ \right. \left. \left. \right \right. \left. \left. \right \right. \left. \left. \right \right. \left. \left. \left \right \right. \left \right \right. \left. \left \right \right. \left \left \left \right \right \right. \left \left \left \left \right \right \right. \left \left \left \left \left \right \right \right \right. \left \left \left \left \left \left \left \right \right \right \right \right. \left $	94		JdB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 10V \text{ to } \pm 18V$ $V_S = \pm 10V \text{ to } \pm 15V$		_	13	57 —		13	57 —	/ -	/	100] μν/ν
Large-Signal Voltage Gain	Avo	$R_L \ge 2k\Omega$ $V_O = \pm 10V$		65	200	_	50	180	_	35	160	<u></u>	7 V/mV
Output Voltage Swing	v _o	R _L ≥ 10kΩ		±12	±13	_	± 12	± 13		± 12	±13	_	V

NOTES

Input bias current is specified for two different conditions. The T_j = 25°C specification is with the junction at ambient temperature; the Device Operating specification is with the device operating in a warmed-up condition at 25°C ambient. The warmed-up bias current value is correlated to the junction temperature value via the curves of I_B vs T_j and I_B vs T_A. PMI has a bias current compensation circuit which gives improved bias current over the standard JFET input op amps. I_B and I_{OS} are measured at V_{CM} = 0.

^{2.} Sample tested.

DICE CHARACTERISTICS (125°C TESTED DICE AVAILABLE)

DIE SIZE 0.068×0.056 inch, 3808 sq. mils (1.73 × 1.42mm, 2.46 sq. mm)

DIE SIZE 0.068×0.056 inch, 3808 sq. mils (1.73 × 1.42mm, 2.46 sq. mm)

OP-17

DIE SIZE 0.068×0.056 inch, 3808 sq. mils $(1.73 \times 1.42 \text{mm}, 2.46 \text{ sq. mm})$

- 1. BALANCE
- 2. INVERTING INPUT

- 3. NONINVERTING INPUT

- 1. BALANCE
- 2. INVERTING INPUT
- 3. NONINVERTING INPUT
- 4. V-
- 5. BALANCE
- 6. OUTPUT

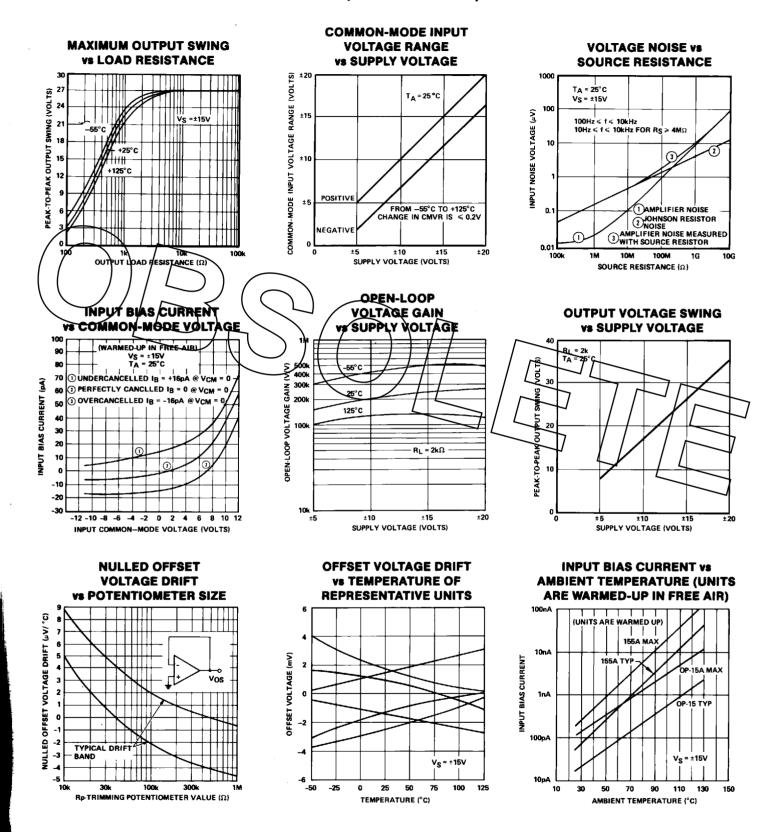
- 1. BALANCE
- 2. INVERTING INPUT
- 3. NONINVERTING INPUT
- 5. BALANCE
- 6. OUTPUT
- 7. V+

WAFER TEST LIMITS at $V_S = \pm 15V$, $T_A = 25^{\circ}$ C for OP-15/16/17N, ϕ P-45/16/17G and ϕ P-15/16/17GR devices; 125° C for OP-15/16/17NT and OP-15/16/17GT devices, unless otherwise noted:

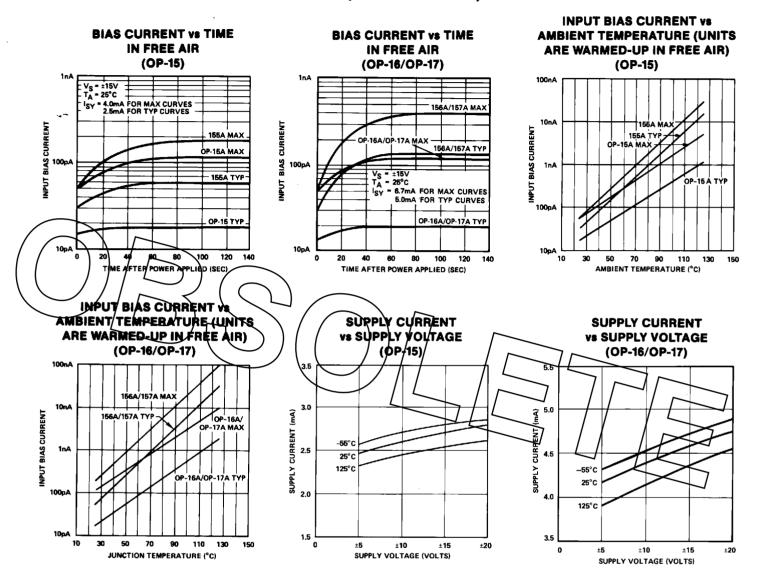
	_		OP-15NT OP-16NT OP-17NT	OP-15N OP-16N OP-17N	OP-15GT OP-16GT OP-17GT	OP-15G OP-16G OP-17G	OP-15GR OP-16GR OP-17GR	
PARAMETER	SYMBOL	CONDITIONS	LIMIT	LIMIT	LIMIT	LIMIT	LÍMIT	UNITS
Input Offset Voltage	Vos	$R_S = 50\Omega$	0.9	0.5	2.0	1.0	3.0	mV MAX
Large-Signal Voltage Gain	A _{vo}	$V_O = \pm 10V$ $R_L = 2k\Omega$	35	100	30	75	50	V/mV MIN
Input Voltage Range	IVR		± 10.4	± 10.5	± 10.4	±10.5	±10.3	V MIN
Common-Mode Rejection Ratio	CMRR	V _{CM} = ±IVR	85	86	85	86	82	dB MIN
Power Supply Rejection Ratio	PSRR	$V_S = \pm 10V \text{ to } \pm 20V$ $V_S = \pm 10V \text{ to } \pm 15V$	57 —	51 —	57 —	51 —	— 80	μV/V MAX
Output Voltage Swing	v _o	$R_L = 10k\Omega$ $R_L = 2k\Omega$	± 12 —	±12 ±11	±12 —	±12 ±11	± 12 ± 11	V MIN
Supply Current	I _{SY}	OP-15 OP-16, OP-17	<u>-</u>	4 7		4 7	5 8	mA MAX
Input Bias Current	IB	OP-15 OP-16, OP-17	±9 ±11		±14 ±18		_	n A MA X
Input Offset Current	Ios	OP-15 OP-16, OP-17	7.0 8.5		11.0 14.5	_	_	nA MAX

For 25°C characteristics of OP-15/16/17NT and OP-15/16/17GT, see OP-15/16/17N and OP-15/16/17G characteristics, respectively.

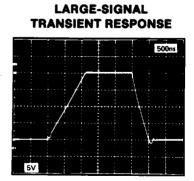
Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

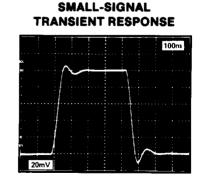

TYPICAL ELECTRICAL CHARACTERISTICS at $V_S = \pm\,15$ V, $T_A = +\,25$ °C, unless otherwise noted.

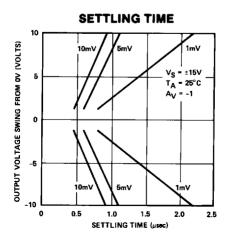
PARAMETER	SYMBOL	CONDITIO	v s	OP-15NT OP-16NT OP-17NT TYPICAL	OP-15N OP-16N OP-17N TYPICAL	OP-15GT OP-16GT OP-17GT TYPICAL	OP-15G OP-16G OP-17G TYPICAL	OP-15GR OP-16GR OP-17GR TYPICAL	UNITS
Average Input Offset Drift Unnulled	TCVos			2	2	3	3	4	μV/° C
Average Input Offset Drift Nulled	TCV _{OSn}	R _P = 100kΩ		2	2	3	3	4	μ V /° C
Input Offset Current	los		-	3	3	3	3	3	pA
Input Bias Current	l _B	<u>-</u>		±15	±15	± 15	±15	±15	p.A
Slew Rate	SR	A _{VCL} = +1 A _{VCL} = +5	OP-15 OP-16 OP-17	13 25 60	13 25 60	11 21 50	11 21 50	9 17	V/μs
		to 0.01% to 0.05% to 0.10%	OP-15	4.5 1.5 1.2	4.5 1.5 1.2	4.5 1.5 1.2	4.5 1.5 1.2	4.7 1.6 1.3	
Settling Time (see settling time test circuits)		to 0.01% to 0.05% to 0.10%	OP-16	3.8 1.2 0.9	3.8 1.2 0.9	3.8 1.2 0.9	3.8 1.2 0.9	4.0 1.3 1.0	μs
		to 0.01% to 0 .05 % to 0.10%	OP-17	0.7 0.6	0,fr 9,6	1.5 0.7 0.6	1.5 0.7 0.6	1.6 0.8 0.7	_
Gain Bandwidth Product	GBW		OP-15 OP-16 OP-17	6.0 8.0 30	6.0 8.0 30	5.7	5.7 7.6 28	5.4 7.2 26	MHz
Closed-Loop Bandwidth	CLBW	A _{VCL} = +1 A _{VCL} = +5	OP-15 OP-16 OP-17	14 19 11	14	13 18 10	13 18 7 10	12	MHz
Input Noise Voltage Density	A-	f = 100Hz f = 1000Hz		20 15	20 15	20 15	20	20	nV√Hz
Input Noise Current Density	1.	f = 100Hz f = 1000Hz		0.01 0.01	0.01 0.01	0.01 0.01	0.01 0.01	0.01	pA√√Hz
Input Capacitance	CIN			3	3	3	3	3	pF

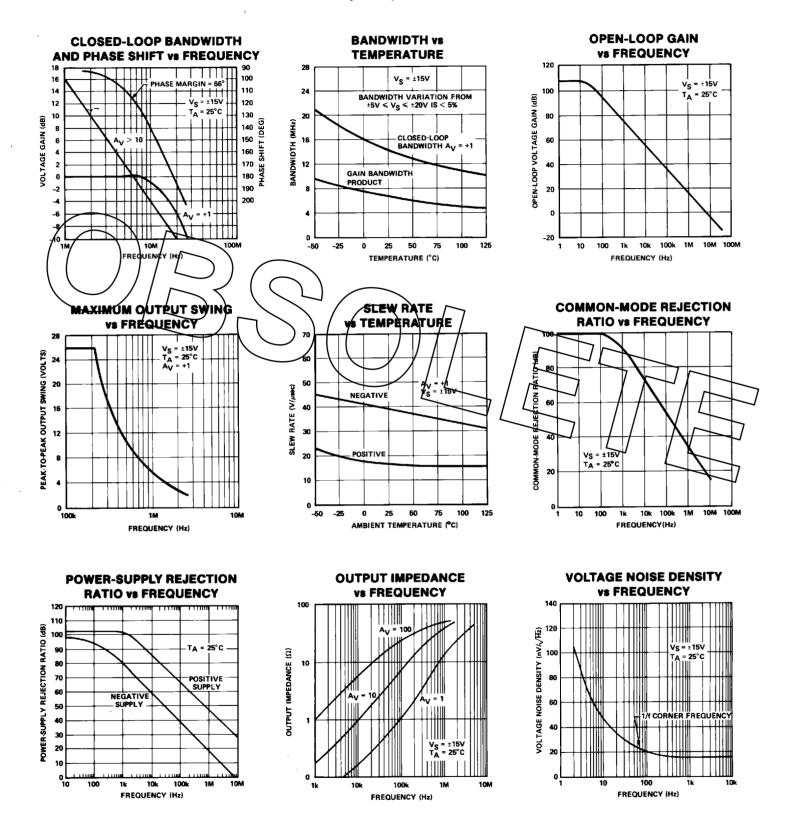

NOTES:

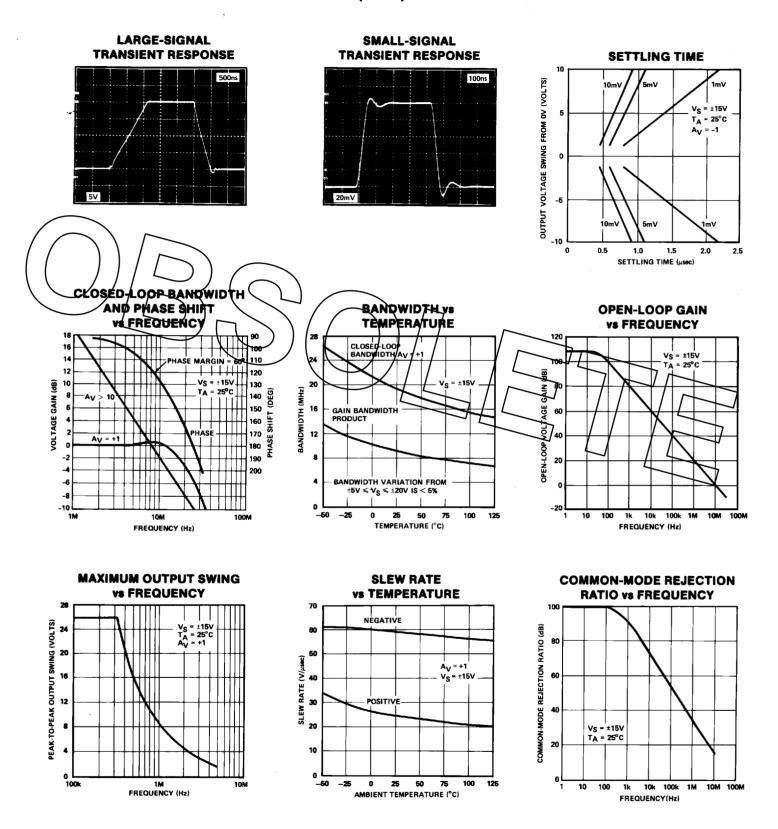
For 25°C characteristics of OP-15/16/17NT and OP-15/16/17GT, see OP-15/16/17N and OP-15/16/17G characteristics, respectively.

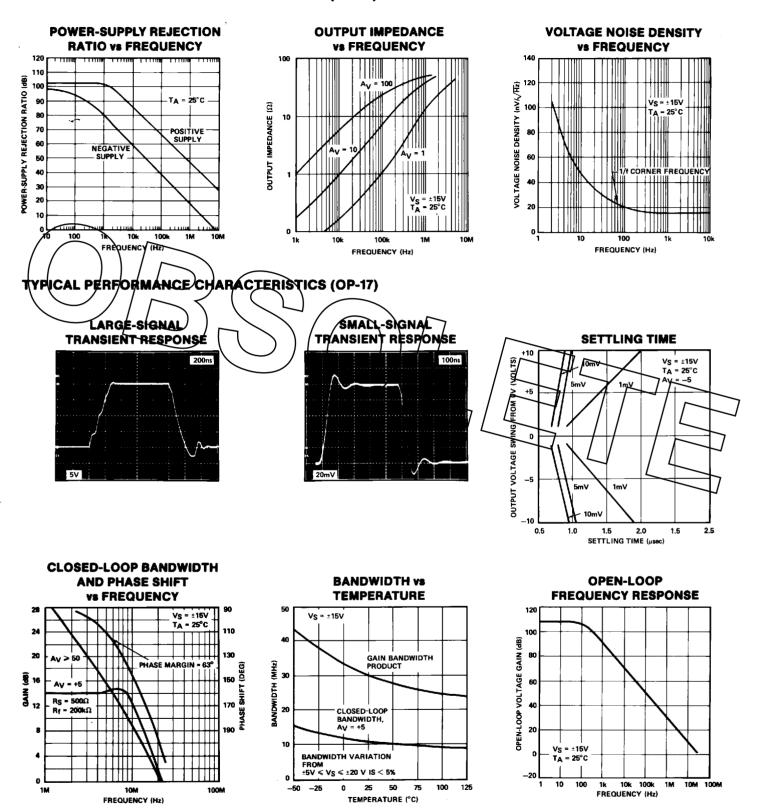

TYPICAL PERFORMANCE CHARACTERISTICS (OP-15/OP-16/OP-17)

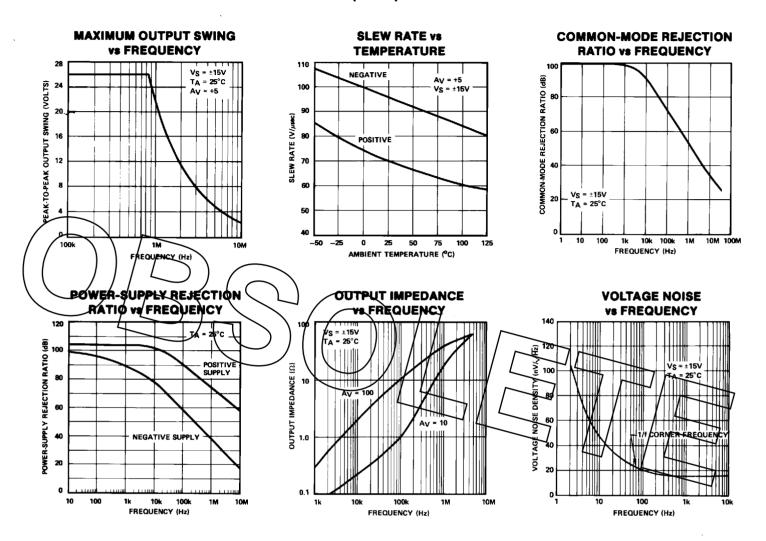



TYPICAL PERFORMANCE CHARACTERISTICS (OP-15/OP-16/OP-17)

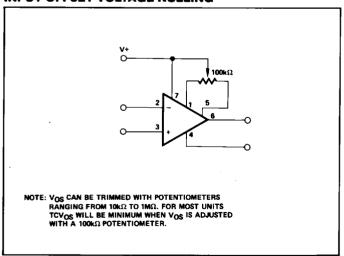

TYPICAL PERFORMANCE CHARACTERISTICS (OP-15)



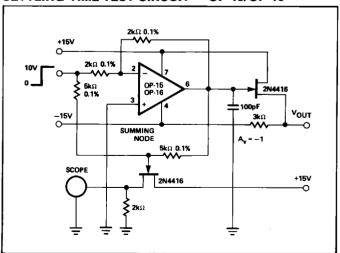

TYPICAL PERFORMANCE CHARACTERISTICS (OP-15)


TYPICAL PERFORMANCE CHARACTERISTICS (OP-16)

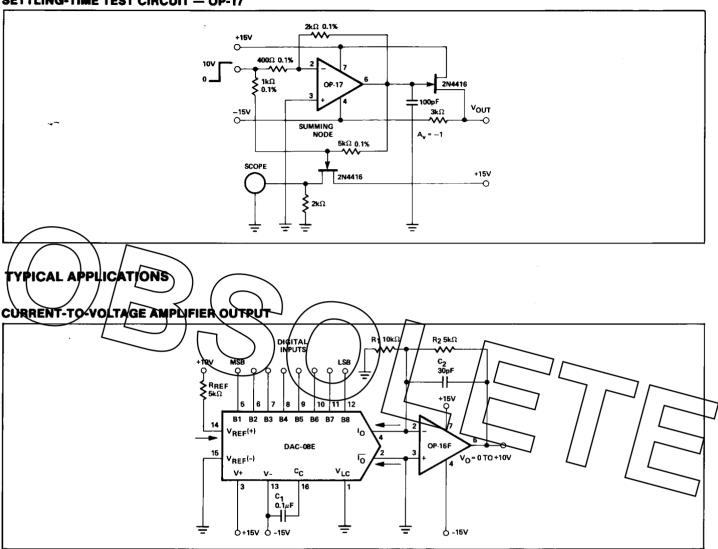
TYPICAL PERFORMANCE CHARACTERISTICS (OP-16)



TYPICAL PERFORMANCE CHARACTERISTICS (OP-17)



BASIC CONNECTIONS


INPUT OFFSET VOLTAGE NULLING

SETTLING-TIME TEST CIRCUIT — OP-15/OP-16

SETTLING-TIME TEST CIRCUIT — OP-17

APPLICATIONS INFORMATION

DYNAMIC OPERATING CONSIDERATIONS

As with most amplifiers, care should be taken with lead dress, component placement, and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize "pick-up" and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground.

A feedback pole is created when the feedback around any amplifier is resistive. The parallel resistance and capacitance from the input of the device (usually the inverting input) to AC ground set the frequency of the pole. In many instances the frequency of this pole is much greater than the expected 3dB frequency of the closed-loop gain and consequently there is negligible effect on stability margin. However, if the feedback pole is less than approximately six times the expected 3dB frequency, a lead capacitor should be placed from the output to the negative input of the op amp. The value of the added capacitor should be such that the RC timeconstant of this capacitor and the resistance it parallels is greater than, or equal to, the original feedback pole time constant.