FEATURES

Low offset voltage: $\mathbf{1 0 0} \boldsymbol{\mu V}$ max Low offset voltage drift: $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max
Low input bias current: $\mathbf{7 0 0}$ pA max
Low noise: $\mathbf{8 n V / \sqrt { H z }}$
High common-mode rejection: 118 dB min
Wide operating temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
No phase reversal

CONNECTION DIAGRAMS

8-Lead SOIC
(R-8)

8-Lead MSOP
(RM-8)

Figure 1.

APPLICATIONS

Photodiode amplifier
Sensors and controls
Multipole filters
Integrator

GENERAL DESCRIPTION

The AD8698 is a high precision, rail-to-rail output, low noise, low input bias current operational amplifier. Offset voltage is a respectable $100 \mu \mathrm{~V}$ max and drift over temperature is below $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, eliminating the need for manual offset trimming. The AD8698 is ideal for high impedance sensors, minimizing offset errors due to input bias and offset currents.

The rail-to-rail output maximizes dynamic range in a variety of applications, such as photodiode amplifiers, DAC I/V amplifiers, filters, and ADC input amplifiers.

The AD8698 dual amplifiers are offered in 8-lead MSOP and narrow 8-lead SOIC packages. The MSOP version is available in tape and reel only.

Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable.

AD8698

TABLE OF CONTENTS

Specifications 3
Absolute Maximum Ratings 5
Thermal Resistance 5
ESD Caution. 5
Typical Performance Characteristics 6
Applications 14
Input Overvoltage Protection 14
Driving Capacitive Loads 14

REVISION HISTORY

4/04—Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}\left(@ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$
Table 1.

AD8698

$\mathrm{V}_{\mathrm{s}}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}\left(@ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$
Table 2.

ABSOLUTE MAXIMUM RATINGS

Table 3.

Parameter	Rating
Supply Voltage	$\pm 15 \mathrm{~V}$
Input Voltage	$\pm \mathrm{V}_{\mathrm{S}}$
Differential Input Voltage	$\pm \mathrm{V}_{\mathrm{S}}$
Output Short-Circuit Duration to Gnd	Indefinite
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
R, RM Packages	
Operating Temperature Range Junction Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
R, RM Packages	
Lead Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
(Soldering, 60 Sec)	$+300^{\circ} \mathrm{C}$
Stresses above those listed under Absolute Maximum Ratings	
may cause permanent damage to the device. This is a stress	
rating only; functional operation of the device at these or any	
other conditions above those indicated in the operational	
section of this specification is not implied. Exposure to absolute	
maximum rating conditions for extended periods may affect	
device reliability.	

THERMAL RESISTANCE

θ_{JA} is specified for the worst-case conditions, i.e., θ_{JA} is specified for devices soldered in circuit boards for surface-mount packages.

Table 4. Thermal Resistance

Package Type	θ_{JA}	$\theta_{\mathbf{\prime c}}$	Unit
MSOP-8 (RM)	210	45	${ }^{\circ} \mathrm{C} / \mathrm{W}$
SOIC-8 (R)	158	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 1000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

WARNING!
 Mrivilitl
 ESD SENSITIVE DEVICE

AD8698

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 2. Input Offset Voltage Drift Distribution

Figure 3. Offset Voltage Distribution

Figure 4. Input Bias Distribution

Figure 5. Open-Loop Gain and Phase vs. Frequency

Figure 6. Closed-Loop Gain vs. Frequency

Figure 7. Output Impedance vs. Frequency

TIME ($100 \mu \mathrm{~s} / \mathrm{DIV}$)
Figure 8. Large Signal Transient Response

TIME ($100 \mu \mathrm{~s} / \mathrm{DIV})$
Figure 9. Small Signal Transient Response

Figure 10. Overshoot vs. Load Capacitance

TIME ($10 \mu \mathrm{~s} / \mathrm{DIV}$)
Figure 11. Positive Overvoltage Recovery

TIME ($400 \mu \mathrm{~s} / \mathrm{DIV}$)
Figure 12. Negative Overvoltage Recovery

Figure 13. CMRR vs. Frequency

AD8698

Figure 14. PSRR vs. Frequency

TIME (1s/DIV)
Figure 15. Input Voltage Noise

Figure 16. Voltage Noise Density vs. Frequency

Figure 17. Current Noise Density vs. Frequency

Figure 18. Short-Circuit Current vs. Temperature

Figure 19. Output Swing vs. Temperature

Figure 20. Output Voltage Swing vs. Temperature

Figure 21. Δ Offset Voltage vs. Temperature

Figure 22. CMRR vs. Temperature

Figure 23. PSRR vs. Temperature

Figure 24. Δ Input Bias Current vs. Temperature

Figure 25. Δ Output Voltage Swing from Rails vs. Load Current

AD8698

Figure 26. Supply Current vs. Temperature

Figure 27. Channel Separation

Figure 28. Offset Voltage Distribution

Figure 29. Open-Loop Gain and Phase vs. Frequency

Figure 30. Output Impedance vs. Frequency

TIME ($100 \mu \mathrm{~s} / \mathrm{DIV})$

04807-0-038

Figure 31. Large Signal Transient Response

TIME (100 $\mathrm{us} / \mathrm{DIV})$
Figure 32. Small Signal Transient Response

Figure 33. Overshoot vs. Load Capacitance

Figure 34. Positive Overvoltage Recovery

TIME ($4 \mu \mathrm{~s} / \mathrm{DIV}$)
Figure 35. Negative Overvoltage Recovery

Figure 36. CMRR vs. Frequency

Figure 37. PSRR vs. Frequency

AD8698

Figure 38. Short-Circuit Current vs. Temperature

Figure 39. Output Swing vs. Temperature

Figure 40. Output Voltage Swing vs. Temperature

Figure 41. Δ Offset Voltage vs. Temperature

Figure 42. CMRR vs. Temperature

Figure 43. Δ Input Bias Current vs. Temperature

Figure 44. Δ Output Voltage Swing from Rails vs. Load Current

Figure 45. Supply Current vs. Temperature

Figure 46. No Phase Reversal

Figure 47. Supply Current vs. Supply Voltage

Figure 48. Channel Separation

AD8698

APPLICATIONS

INPUT OVERVOLTAGE PROTECTION

The AD8698 has internal protective circuitry which allows voltages at either input to exceed the supply voltage. However, if voltages applied at either input exceed the supply voltage by more than 2 V , it is recommended to use a resistor in series with the inputs to limit the input current and prevent damaging the device.

The value of the resistor can be calculated from the following formula:

$$
\frac{V_{I N}-V_{S}}{R_{S}+500} \leq 5 \mathrm{~mA}
$$

DRIVING CAPACITIVE LOADS

The AD8698 is stable even when driving heavy capacitive loads in any configuration. Although the AD8698 will safely drive capacitive loads well over 10 nF , it is recommended to use external compensation should the amplifier be subjected to driving a load exceeding 50 nF . This is particularly important in positive unity gain configurations, the worst case for stability. Figure 49 shows the output of the AD8698 with a 68 nF load in response to a 400 mV signal at its positive input; the overshoot is less than 25% without any external compensation. Using a simple "snubber" network reduces the overshoot to less than 10% as shown in Figure 50.

-

Figure 52. Unity Gain Bandwidth vs. Load Capacitance
Figure 52 shows the unity gain bandwidth as a function of load capacitance.

INSTRUMENTATION AMPLIFIER

Instrumentation amplifiers are used in applications requiring precision, accuracy, and high CMRR. One popular application is signal conditioning in process control, test automation, and measurement instrumentation, where the amplifier is used to amplify small signals.

The triple op amp implementation uses the AD8698 at the front end with the OP184 for optimum accuracy.

The circuit in Figure 53 enjoys a high overall gain, excellent dc performance, high CMRR, as well as the benefit of an output that swings to the supplies.

The CMRR of the in-amp will be limited by the choice of resistor tolerance. R5 is an optional potentiometer that can be used to calibrate the circuit for maximum gain. R7 can be trimmed for optimum CMRR.

The output voltage is given by:
$V_{O}=V_{I N}\left(1+\frac{2 R 3}{R 4}\right)\left(\frac{R 2}{R 1}\right)$

Figure 53. Three Op Amp In-Amp

COMPOSITE AMPLIFIER

The dc accuracy of the AD8698 and the ac performance of the OP184 are combined in the circuit shown in Figure 54. The composite amplifier provides a higher bandwidth, a lower offset voltage, and a higher loop, thereby reducing the gain error substantially.

The circuit shown exhibits a total output rms noise of less than $500 \mu \mathrm{~V}$, corresponding to less than 3 mV of peak-to-peak noise over approximately a 3 MHz bandwidth. Cf is used to minimize peaking.

The circuit has an inverting gain of 10. In applications with higher closed-loop gains, Cf is necessary to maintain a sufficient phase margin and ensure stability. This results in a narrower closed-loop bandwidth.

Figure 54. Composite Amplifier Circuit

AD8698

LOW NOISE APPLICATIONS

In some applications, it is critical to minimize the noise, and although the AD8698 has a low noise of typically $8 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ at 1 kHz , paralleling the two amplifiers within the same package reduces the total noise referred to the input to approximately $5.5 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$. This simple technique is depicted in Figure 55.

Figure 55. Paralleling Amplifiers

DRIVING ADCs

The AD8698 can drive extremely heavy capacitive loads without any compensation. Sometimes capacitors are placed at the output of the amplifier to absorb transient currents while the op amp is interfaced with the ADC. Most op amps need a small resistor with the output to isolate the load capacitance.

This results in a loss of bandwidth and slows the amplifier down substantially. However, the AD8698 maintains a unity gain bandwidth of 1 MHz with loads of up to 1 nF , as shown in Figure 52.

USING THE AD8698 IN ACTIVE FILTER DESIGNS

The AD8698 is recommended for unity gain filter designs with a corner frequency of up to 100 kHz , one tenth of the op amp's unity gain bandwidth.

If a higher gain is desired, the corner frequency should be chosen accordingly. For example, if the amplifier is configured with a gain of 10 , the corner frequency of the filter should not be more than 10 kHz .

An example of an active filter is the Sallen Key. This topology gives the user the flexibility of implementing a low-pass or a high-pass filter by simply interchanging the resistors and the capacitors.

In the high-pass filter of Figure 56, the damping factor Q is set to $1 / \sqrt{ } 2$ for a maximally flat response (Butterworth).

The gain is unity and the bandwidth is 10 kHz with the values shown.

Figure 56. Two Pole High-Pass Filter

Figure 57. Two Pole Low-Pass Filter
The circuit of Figure 57 has a bandwidth of 10 kHz and a maximally flat response. In this case, the damping factor is controlled by the ratio of the capacitors and the gain is unity.

OUTLINE DIMENSIONS

Figure 58. 8-Lead Small Outline IC [SOIC] (R-8)—Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-187AA
Figure 59. 8-Lead Small Outline IC [SOIC] (RM-8)—Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Package	Package Description	Package Option	Branding
AD8698ARM-R2	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MSOP	RM-8	A02
AD8698ARM-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MSOP	RM-8	A02
AD8698AR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOIC	R-8	
AD8698AR-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOIC	R-8	
AD8698AR-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SOIC	R-8	

AD8698

NOTES

AD8698

NOTES

AD8698

NOTES

