BOURNS®

- Designed for Complementary Use with TIP115, TIP116 and TIP117
- 50 W at 25°C Case Temperature
- 4 A Continuous Collector Current
- Minimum h_{FE} of 500 at 4V, 2 A

This series is obsolete and not recommended for new designs.

TO-220 PACKAGE

Pin 2 is in electrical contact with the mounting base.

MDTRACA

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING			VALUE	UNIT
	TIP110		60	
Collector-base voltage (I _E = 0)	TIP111	V _{CBO}	80	V
	TIP112		100	
	T/P110		60	
Collector-emitter voltage (I _B = 0)	TJP111	VCEO	80	V
	TIP112		100	
Emitter-base voltage		V _{EBO}	5	V
Continuous collector current		I _C	4	Α
Peak collector current (see Note 1)		I _{CM}	6	Α
Continuous base current	I _B	50	mA	
Continuous device dissipation at (or below) 25°C case temperature (see Note 2)			50	W
Continuous device dissipation at (or below) 25°C free air temperature (see Note 3)			2	W
Unclamped inductive load energy (see Note 4)			25	mJ
Operating junction temperature range			-65 to +150	°C
Storage temperature range			-65 to +150	°C
Lead temperature 3.2 mm from case for 10 seconds			260	°C

- NOTES: 1. This value applies for $t_p \le 0.3$ ms, duty cycle $\le 10\%$.
 - 2. Derate linearly to 150°C case temperature at the rate of 0.4 W/°C.
 - 3. Derate linearly to 150°C free air temperature at the rate of 16 mW/°C.
 - 4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, $I_{B(on)}$ = 5 mA, R_{BE} = 100 Ω , $V_{BE(off)}$ = 0, R_S = 0.1 Ω , V_{CC} = 20 V.

TIP110, TIP111, TIP112 NPN SILICON POWER DARLINGTONS

electrical characteristics at 25°C case temperature

PARAMETER		TEST CONDITIONS			MIN	TYP	MAX	UNIT
V _{(BR)CEO}	Collector-emitter breakdown voltage			TIP110	60			
		$I_C = 30 \text{ mA}$	$I_B = 0$	TIP111	80			V
		(see Note 5)		TIP112	100			
I _{CEO}	Collector-emitter cut-off current	V _{CE} = 30 V	I _B = 0	TIP110			2	
		$V_{CE} = 40 \text{ V}$	$I_B = 0$	TIP111			2	mA
		$V_{CE} = 50 \text{ V}$	$I_B = 0$	TIP112			2	
I _{CBO}	Collector cut-off current	V _{CB} = 60 V	I _E = 0	TIP110			1	
		$V_{CB} = 80 \text{ V}$	$I_E = 0$	TIP111			1	mA
		V _{CB} = 100 V	$I_E = 0$	TIP112			1	
I _{EBO}	Emitter cut-off	V _{EB} = 5 V	I _C = 0				2	mA
	current	AEB - 2 A					2	111/4
h _{FE}	Forward current	V _{CE} = 4 V	$_{CE} = 4 \text{ V}$ $I_{C} = 1 \text{ A}$ (see Notes 5 and 6)	1000				
	transfer ratio	V _{CE} = 4 V	$I_C = 2 A$	(see Notes 5 and 6)	500			
V _{CE(sat)}	Collector-emitter	I _B = 8 mA	I _C = 2 A	(see Notes 5 and 6)			2.5	V
	saturation voltage	IB - OIIIV					2.0	•
V _{BE}	Base-emitter	V _{CF} = 4 V	I _C = 2 A	(see Notes 5 and 6)			2.8	V
	voltage	ACF - 4A					2.0	V
V _{EC}	Parallel diode	I _E = 4 A	A I _B = 0	(see Notes 5 and 6)			3.5	V
	forward voltage	I _E = 4 A			5		5.5	V

NOTES: 5. These parameters must be measured using pulse techniques, $t_p = 300 \mu s$, duty cycle $\leq 2\%$.

resistive-load-switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS †			MIN	TYP	MAX	UNIT
t _{on}	Turn-on time	I _C = 2 A	$I_{B(on)} = 8 \text{ mA}$	$I_{B(off)} = -8 \text{ mA}$		2.6		μs
t _{off}	Turn-off time	$V_{BE(off)} = -5 V$	$R_L = 15 \Omega$	$t_p = 20 \ \mu s, \ dc \le 2\%$		4.5		μs

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

^{6.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

TYPICAL CHARACTERISTICS

TYPICAL DC CURRENT GAIN COLLECTOR CURRENT TCS110AA 20000 $T_c = -40^{\circ}C$ 25°C 10000 T_C = 100°C h_{FE} - Typical DC Current Gain 1000 4 V = 300 μ s, duty cycle < 2% 100 1.0 5.0 0.5 I_c - Collector Current - A

Figure 1.

COLLECTOR-EMITTER SATURATION VOLTAGE

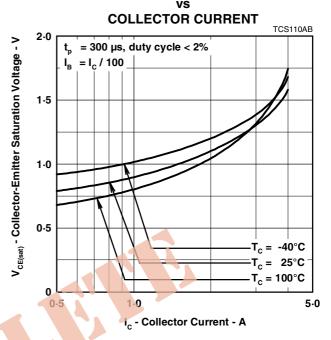


Figure 2.

BASE-EMITTER SATURATION VOLTAGE

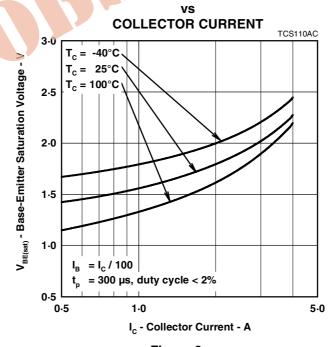
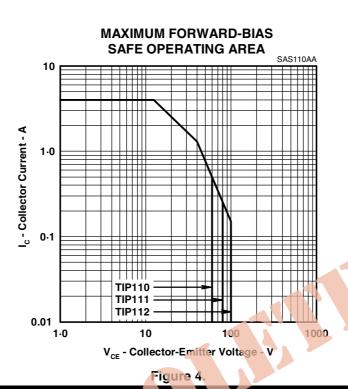
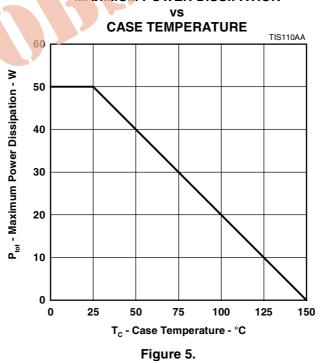



Figure 3.


PRODUCT INFORMATION

MAXIMUM SAFE OPERATING REGIONS

THERMAL INFORMATION

MAXIMUM POWER DISSIPATION

PRODUCT INFORMATION