

Very Low-Noise Quad Operational Amplifier

OP470

1.0 **SCOPE**

This specification documents the detailed requirements for Analog Devices space qualified die including die qualification as described for Class K in MIL-PRF-38534, Appendix C, Table C-II except as modified herein.

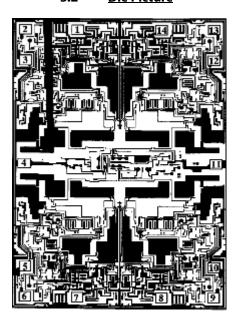
The manufacturing flow described in the STANDARD DIE PRODUCTS PROGRAM brochure at http://www.analog.com/marketSolutions/militaryAerospace/pdf/Die Broc.pdf is to be considered a part of this specification.

This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at www.analog.com/OP470

2.0 Part Number. The complete part number(s) of this specification follow:

> Part Number Description

OP470-000C Very Low-Noise Quad Operational Amplifier


OP470R000C Radiation Tested Very Low-Noise Quad Operational Amplifier

3.0 **Die Information**

3.1 **Die Dimensions**

Die Size	Die Thickness	Bond Pad Metalization			
106 mil x 163 mil	19 mil ± 2 mil	AI/Cu			

3.2 **Die Picture**

- 1. OUT A
- 2. -IN A
- 3. +IN A
- 4. $+V_{CC}$
- 5. +IN B
- 6. -IN B
- 7. OUT B
- 8. OUT C
- 9. -IN C
- 10. +IN C
- $11. -V_{CC}$
- 12. +IN D
- 13. -IN D

ASD0012819

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

0P470

3.3 Absolute Maximum Ratings 1/

Supply Voltage (V _{CC})	±18V dc
Differential Input Voltage 2/	±1V dc
Differential Input Current 2/	±25mA
Input Voltage	Supply Voltage
Output Short Circuit Duration	Continuous
Storage Temperature Range	-65°C to +150°C
Ambient Operating Temperature Range	-55°C to +125°C
Junction Temperature (T _J)	

Absolute Maximum Ratings Notes:

- Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.
- The inputs are protected by back-to-back diodes. Current limiting resistors are not used in order to achieve low noise performance. If the differential input voltage exceeds ±1V, the input current should be limited to ±25mA.

4.0 <u>Die Qualification</u>

In accordance with class-K version of MIL-PRF-38534, Appendix C, Table C-II, except as modified herein.

- (a) Qual Sample Size and Qual Acceptance Criteria 10/0
- (b) Qual Sample Package DIP
- (c) Pre-screen electrical test over temperature performed post-assembly prior to die qualification.

Table I - Dice Electrical Characteristics								
Parameter	Symbol	Conditions <u>1/</u>	Limit Max	Units				
Input Offset Voltage	V _{IO}			±0.4	mV			
Input Offset Current	lıo	$V_{\text{CM}} = 0V$		±10	nA			
Input Bias Current	I _{IB}	$V_{CM} = 0V$		±25	nA			
Larga Signal Voltaga Cain	Avs	$V_0 = \pm 10V, R_L = 10k\Omega$ 1000			V/mV			
Large-Signal Voltage Gain		$V_{\text{O}}=\pm 10 V, R_{\text{L}}=2k\Omega$	500		V/IIIV			
Output Voltage Swing	V _{OP}	$R_L=2k\Omega$	±12		٧			
Supply Current <u>2/</u>	ls	No Load		11	mA			
Input Voltage Range	IVR		±11		٧			
Common-Mode Rejection	CMR	$V_{CM} = IVR$	110		dB			
Power Supply Rejection Ratio	PSRR	$V_{CC} = \pm 4.5 \text{V to } \pm 18 \text{V}$		1.8	μV/V			

Table I Notes:

- $1/V_{CC} = \pm 15V$, $R_S = 50\Omega$, and $T_A = +25$ °C, unless otherwise specified.
- 2/ Is limit equals the total of all amplifiers.

Table II - Electrical Characteristics for Qual Samples							
Parameter	Symbol	Conditions <u>1/</u>		Sub- groups	Limit Min	Limit Max	Units
				1		±0.4	
Input Offset Voltage	V _{IO}			2, 3		±0.6	mV
			M, D, L. R <u>3</u> /	1		±0.6	
		V _{CM} = 0V		1		±10	
Input Offset Current	l _{IO}	V CM	= UV	2, 3		±20	
			M, D, L. R <u>3</u> /	1		±50	nA
		1.1	01/	1		±25	
Input Bias Current	I _{IB}	$V_{CM} = 0V$		2, 3		±50	
			M, D, L. R <u>3</u> /	1		±500	1
		V ₀ =±10V, R ₁	/, R _L = 10kΩ	4	1000		V/mV
	Avs			5, 6	750		
Large-Signal Voltage Gain			M, D, L. R <u>3</u> /	4	100		
		$V_O = \pm 10V$, $R_L = 2k\Omega$		4	500		
				5, 6	400		
Output Voltage Swing <u>4</u> /	V _{OP}	R _L =	2kΩ	4, 5, 6	±12		V
C 1 C +2/		No Load		1, 2, 3		11	1
Supply Current <u>2/</u>	Is		M, D, L. R <u>3</u> /			11	mA
Slew Rate <u>4</u> /	SR	$A_{VCL} = \pm 21$, $R_L = 10$ k Ω		7	1.4		V/µs
Input Voltage Range <u>4</u> /	IVR			1, 2, 3	±11		V
Carrage Manda Dainatics Al	CMR	$V_{CM} = IVR$		1	110		dB
Common-Mode Rejection <u>4</u> /				2, 3	100		
Decree Consults Delication Delication	DCDD			1		1.8	μV/V
Power Supply Rejection Ratio <u>4</u> /	$ PSRR V_{CC} = \pm 4.5$		5V to ±18V	2, 3		5.6	

Table II Notes:

 $\begin{array}{ll} \underline{1/} & V_{CC} = \pm 15 V, \, R_S = 50 \Omega, \, \text{unless otherwise specified.} \\ \underline{2/} & \text{Is limit equals the total for all amplifiers.} \\ \underline{3/} & \text{Devices tested at 100Krad irradiation.} \\ \underline{4/} & \text{Parameter not tested post irradiation.} \end{array}$

Table III - Life Test Endpoint and Delta Parameter (Product is tested in accordance with Table II with the following exceptions)								
.	Ch.i	Sub-	Post Burn In Limit		Post Life Test Limit		Life Test	
Parameter	Symbol groups Min	Min	Max	Min	Max	Delta	Units	
Input Offset Voltage	V _{IO}	1		±0.4		±0.5	0.1	mV
input Onset voltage	VIO	2, 3		±0.6		±0.8		1111
		1		±25		±30	5	_
Input Bias Current	I _{IB}	2, 3		±50		±60		nA
Input Offset Current	lia	1		±10		±20		nA
input Onset Current	lio	2, 3		±20		±40		l IIA

5.0 <u>Life Test/Burn-In Information</u>

- 5.1 HTRB is not applicable for this drawing.
- 5.2 Burn-in is per MIL-STD-883 Method 1015 test condition B or C.
- 5.3 Steady state life test is per MIL-STD-883 Method 1005.

Rev	Description of Change	Date
Α	Initiate	20-DEC-01
В	Update web address. Add radiation part number and limits.	17-APR-03
С	Corrected Die Pad Numbering	11-Apr-07
D	Update 1.0 Scope description.	8-Aug-07
Е	Update header/footer & add to 1.0 Scope description.	Mar. 3, 2008
F	Add Junction Temperature (T _J)+150°C to 3.3 Absolute Maximum Ratings	April 3, 2008
G	Updated Section 4.0c note to indicate pre-screen temp testing being performed	6-JUN-2009
Н	Updated fonts and sizes to ADI standards	3-Oct-2011

www.analog.com