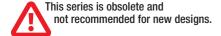
BOURNS®


- Designed for Complementary Use with BDW94, BDW94A, BDW94B and BDW94C
- 80 W at 25°C Case Temperature
- 12 A Continuous Collector Current
- Minimum h_{FE} of 750 at 3V, 5 A

TO-220 PACKAGE

Pin 2 is in electrical contact with the mounting base.

MDTRACA

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT		
	BDW93		45		
Collector-base voltage (I _E = 0)	BDW93A		60	V	
	BDW93B	СВО	80	V	
	BDW93C		100	i	
	BDW93		45		
Collector-emitter voltage (I _B = 0)	BDW93A	V	60	V	
	BDW93B	V _{CEO}	80		
	BDW93C		100		
Emitter-base voltage		V _{EBO}	5	V	
Continuous collector current		I _C	12	Α	
Continuous base current		I _B	0.3	Α	
Continuous device dissipation at (or below) 25°C case temperature (see Note 1)	P _{tot}	80	W		
Continuous device dissipation at (or below) 25°C free air temperature (see Note 2)		P _{tot}	2	W	
Operating junction temperature range	Tj	-65 to +150	°C		
Storage temperature range		T _{stg}	-65 to +150	°C	
Operating free-air temperature range		T _A	-65 to +150	°C	

NOTES: 1. Derate linearly to 150°C case temperature at the rate of 0.64 W/°C.

2. Derate linearly to 150°C free air temperature at the rate of 16 mW/°C.

electrical characteristics at 25°C case temperature (unless otherwise noted)

PARAMETER TEST CONDITIONS			MIN	TYP	MAX	UNIT			
V _{(BR)CEO}	Collector-emitter breakdown voltage	I _C = 100 mA	I _B = 0	(see Note 3)	BDW93 BDW93A BDW93B BDW93C	45 60 80 100			٧
I _{CEO}	Collector-emitter cut-off current	$V_{CB} = 40 \text{ V}$ $V_{CB} = 60 \text{ V}$ $V_{CB} = 80 \text{ V}$ $V_{CB} = 80 \text{ V}$	$I_{B} = 0$ $I_{B} = 0$ $I_{B} = 0$ $I_{B} = 0$		BDW93 BDW93A BDW93B BDW93C			1 1 1	mA
Ісво	Collector cut-off current	V _{CB} = 60 V V _{CB} = 80 V	I _E = 0	$T_{C} = 150^{\circ}C$ $T_{C} = 150^{\circ}C$ $T_{C} = 150^{\circ}C$ $T_{C} = 150^{\circ}C$	BDW93 BDW93A BDW93B BDW93C BDW93 BDW93A BDW93B BDW93C			0.1 0.1 0.1 0.1 5 5 5	mA
I_{EBO}	Emitter cut-off current	V _{EB} = 5 V	I _C = 0					2	mA
h _{FE}	Forward current transfer ratio		$I_C = 3 A$ $I_C = 10 A$ $I_C = 5 A$	(see Notes 3 and	14)	1000 100 750		20000	
V _{CE(sat)}	Collector-emitter saturation voltage	$I_B = 20 \text{ mA}$ $I_B = 100 \text{ mA}$	$I_C = 5 A$ $I_C = 10 A$	(see Notes 3 and 4)				2	V
V _{BE(sat)}	Base-emitter saturation voltage	$I_B = 20 \text{ mA}$ $I_B = 100 \text{ mA}$	$I_{C} = 5 A$ $I_{C} = 10 A$	(see Notes 3 and 4)				2.5 4	V
V _{EC}	Parallel diode forward voltage	I _E = 5 A I _E = 10 A	$I_{B} = 0$ $I_{B} = 0$					2 4	V

NOTES: 3. These parameters must be measured using pulse techniques, $t_p = 300 \mu s$, duty cycle $\leq 2\%$.

thermal characteristics

PARAMETER		MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			1.56	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance			62.5	°C/W

^{4.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

TYPICAL CHARACTERISTICS

TYPICAL DC CURRENT GAIN COLLECTOR CURRENT TCS130AE 50000 -40°C 25°C $T_c =$ = 100°C h_{FE} - Typical DC Current Gain 10000 1000 3 V = 300 μs, duty cycle < 2% 100 1.0 20 0.5

COLLECTOR-EMITTER SATURATION VOLTAGE

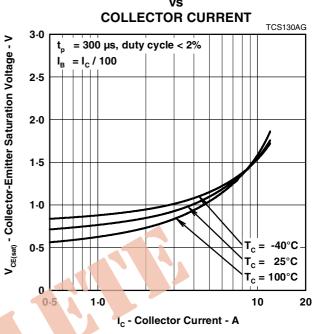


Figure 1.

I_c - Collector Current - A

Figure 2.

BASE-EMITTER SATURATION VOLTAGE

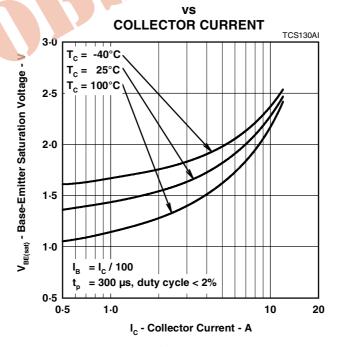


Figure 3.

PRODUCT INFORMATION

THERMAL INFORMATION

MAXIMUM POWER DISSIPATION

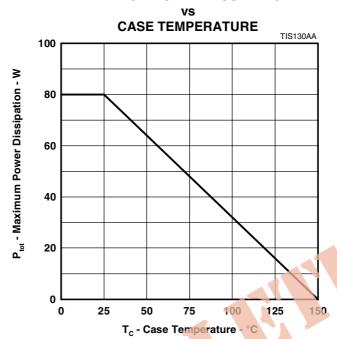


Figure 4.