FEATURES

Ultrawideband frequency range: $\mathbf{1 0 0} \mathbf{~ M H z}$ to $\mathbf{4 4} \mathbf{~ G H z}$
Nonreflective design
Low insertion loss: 1.2 dB to $18 \mathrm{GHz}, 1.7 \mathrm{~dB}$ to 26 GHz, 2.4 dB to $40 \mathrm{GHz}, 3.8 \mathrm{~dB}$ to 44 GHz
High isolation: 55 dB to $18 \mathrm{GHz}, 53 \mathrm{~dB}$ to $26 \mathrm{GHz}, 50 \mathrm{~dB}$ to 40 GHz, 45 dB to 44 GHz
High input linearity: $\mathbf{2 7} \mathbf{~ d B m}$ typical P1dB, $\mathbf{5 3}$ dBm typical IP3
High power handling: $\mathbf{2 4} \mathbf{d B m}$ insertion loss path,
$\mathbf{2 4 ~ d B m}$ isolation path
All off state control
No low frequency spurious signals
0.1 dB RF settling time: $\mathbf{4 0} \mathbf{n s}$ typical

20-terminal, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ LGA package
Pin compatible with ADRF5027, low frequency cutoff version

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard)
Military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+105^{\circ} \mathrm{C}\right)$
Controlled manufacturing baseline
1 assembly/test site
1 fabrication site
Product change notification
Qualification data available on request

APPLICATIONS

Industrial scanners

Test and instrumentation

Cellular infrastructure: 5G mmWave
Military radios, radars, electronic counter measures (ECMs)
Microwave radios and very small aperture terminals (VSATs)

GENERAL DESCRIPTION

The ADRF5026-EP is a nonreflective, single-pole, double-throw (SPDT) RF switch manufactured in a silicon process.

The ADRF5026-EP operates from 100 MHz to 44 GHz with better than 3.8 dB of insertion loss and 45 dB of isolation. The ADRF5026-EP features an all off control, where both RF ports are in an isolation state. The ADRF5026-EP has a nonreflective design and both of the RF ports are internally terminated to 50Ω.
The ADRF5026-EP requires a dual-supply voltage of +3.3 V and -3.3 V . The device employs CMOS and low voltage transistor transistor logic (LVTTL)-compatible controls.

The ADRF5026-EP is pin compatible with the ADRF5027 low frequency cutoff version, which operates from 9 kHz to 44 GHz .

FUNCTIONAL BLOCK DIAGRAM

The ADRF5026-EP RF ports are designed to match a characteristic impedance of 50Ω. For ultrawideband products, impedance matching on the RF transmission lines can further optimize high frequency insertion loss and return loss characteristics. Refer to the ADRF5026 data sheet for an example of a matched circuit that achieves a flat insertion loss response of 2.4 dB from 28 GHz to 43 GHz .

The ADRF5026-EP comes in a 20 -terminal, $3 \mathrm{~mm} \times 3 \mathrm{~mm}$, RoHS compliant, land grid array (LGA) package and can operate from $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.
Additional application and technical information can be found in the ADRF5026 data sheet.

ADRF5026-EP

TABLE OF CONTENTS

Features 1
Enhanced Product Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Electrical Specifications 3
Absolute Maximum Ratings 5
Thermal Resistance 5
Power Derating Curves 5
ESD Caution 5
Pin Configuration and Function Descriptions 6
Interface Schematics 6
Typical Performance Characteristics 7
Outline Dimensions 8
Ordering Guide 8

REVISION HISTORY

10/2020—Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL SPECIFICATIONS

$\mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{VSS}=-3.3 \mathrm{~V}$, CTRL pin voltage $\left(\mathrm{V}_{\mathrm{CTRL}}\right)=\mathrm{EN}$ pin voltage $\left(\mathrm{V}_{\mathrm{EN}}\right)=0 \mathrm{~V}$ or VDD, and $\mathrm{T}_{\text {CASE }}=25^{\circ} \mathrm{C}$ in a 50Ω system, unless otherwise noted.

Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
FREQUENCY RANGE			100		44,000	MHz
INSERTION LOSS Between RFC and RF1/RF2	IL	100 MHz to 18 GHz 18 GHz to 26 GHz 26 GHz to 35 GHz 35 GHz to 40 GHz 40 GHz to $44 \mathrm{GHz}^{1}$		$\begin{aligned} & 1.2 \\ & 1.7 \\ & 2.2 \\ & 2.4 \\ & 3.8 \end{aligned}$		dB dB dB dB dB
RETURN LOSS RFC and RF1/RF2 (On) RF1/RF2 (Off)	RL	100 MHz to 18 GHz 18 GHz to 26 GHz 26 GHz to 35 GHz 35 GHz to 40 GHz 40 GHz to $44 \mathrm{GHz}^{1}$ 100 MHz to 18 GHz 18 GHz to 26 GHz 26 GHz to 35 GHz 35 GHz to 40 GHz 40 GHz to $44 \mathrm{GHz}^{1}$		$\begin{aligned} & 22 \\ & 12 \\ & 9 \\ & 10 \\ & 7 \\ & 23 \\ & 23 \\ & 21 \\ & 13 \\ & 12 \end{aligned}$		dB dB
ISOLATION Between RFC and RF1/RF2 Between RF1 and RF2		100 MHz to 18 GHz 18 GHz to 26 GHz 26 GHz to 35 GHz 35 GHz to 40 GHz 40 GHz to 44 GHz 100 MHz to 18 GHz 18 GHz to 26 GHz 26 GHz to 35 GHz 35 GHz to 40 GHz 40 GHz to 44 GHz		$\begin{aligned} & 55 \\ & 53 \\ & 53 \\ & 50 \\ & 45 \\ & 63 \\ & 60 \\ & 60 \\ & 63 \\ & 55 \end{aligned}$		dB dB
SWITCHING CHARACTERISTICS Rise and Fall Time On and Off Time RF Settling Time 0.1 dB 0.05 dB	$\mathrm{t}_{\text {RISE, }} \mathrm{t}_{\text {fall }}$ ton, toff	10% to 90% of RF output 50% of triggered $\mathrm{V}_{\text {CTRL }}$ to 90% of RF output 50% of triggered $\mathrm{V}_{\text {ствL }}$ to 0.1 dB of final RF output 50% of triggered $\mathrm{V}_{\text {CTRL }}$ to 0.05 dB of final RF output		$\begin{aligned} & 3 \\ & 14 \\ & 40 \\ & 45 \end{aligned}$		ns ns ns ns
INPUT LINEARITY 1 dB Compression Third-Order Intercept	$\begin{aligned} & \text { P1dB } \\ & \text { IP3 } \end{aligned}$	$100 \mathrm{MHz} \text { to } 40 \mathrm{GHz}$ Two-tone input power $=12 \mathrm{dBm}$ each tone, $\Delta \mathrm{f}=1 \mathrm{MHz}$		$\begin{array}{r} 27 \\ 53 \end{array}$		dBm dBm
SUPPLY CURRENT Positive Negative	$\begin{aligned} & \mathrm{I} D \mathrm{D} \\ & \mathrm{ISS}^{2} \end{aligned}$	VDD and VSS pins		$\begin{aligned} & 2 \\ & 100 \end{aligned}$		$\mu \mathrm{A}$ $\mu \mathrm{A}$

Parameter	Symbol	Test Conditions/Comments	Min	Typ	Max	Unit
DIGITAL CONTROL INPUTS		CTRL and EN pins				
Voltage						
Low	VINL		0		0.8	V
High	$\mathrm{V}_{\text {INH }}$		1.2		3.3	V
Current						
Low and High Current	IINL, $\mathrm{I}_{\text {INH }}$		<1			$\mu \mathrm{A}$
RECOMMENDED OPERATING CONDITONS						
Supply Voltage						
Positive	VDD		3.15		3.45	V
Negative	VSS		-3.45		-3.15	V
Digital Control Voltage	$\mathrm{V}_{\text {ctrl, }} \mathrm{V}_{\text {en }}$		0		VDD	V
RF Input Power ${ }^{2}$	PIN	$\mathrm{f}=100 \mathrm{MHz}$ to $40 \mathrm{GHz}, \mathrm{T}_{\text {CASE }}=85^{\circ} \mathrm{C}^{3}$				
Insertion Loss Path		RF signal is applied to RFC or through connected RF1/RF2			24	dBm
Isolation Path		RF signal is applied to terminated RF1/RF2			24	dBm
Hot Switching		RF signal is present at RFC while switching between RF1 and RF2			24	dBm
Case Temperature	$\mathrm{T}_{\text {CASE }}$		-55		+105	${ }^{\circ} \mathrm{C}$

${ }^{1}$ Impedance matching on RF transmission lines improves high frequency performance. Refer to the ADRF5026 data sheet for more information.
${ }^{2}$ For power derating vs. frequency, see Figure 2 and Figure 3. This power derating is applicable for insertion loss path, isolation path, and hot switching power specifications.
${ }^{3}$ For $105^{\circ} \mathrm{C}$ operation, the power handling degrades from the $\mathrm{T}_{\text {CASE }}=85^{\circ} \mathrm{C}$ specification by 3 dB .

ABSOLUTE MAXIMUM RATINGS

For recommended operating conditions, see Table 1.
Table 2.

Parameter	Rating
Positive Supply Voltage	-0.3 V to +3.6 V
Negative Supply Voltage	-3.6 V to +0.3 V
Digital Control Inputs	-0.3 V to VDD +0.3 V
Voltage	3 mA
Current	
RF Input Power ${ }^{1}(100 \mathrm{MHz}$ to 40 GHz at	
\quad TCASE $\left.=85^{\circ} \mathrm{C}^{2}\right)$	26 dBm
Insertion Loss Path	25 dBm
Isolation Path	25 dBm
\quad Hot Switching	
Temperature	$135^{\circ} \mathrm{C}$
Junction, T,	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Range	$260^{\circ} \mathrm{C}$
Reflow	
Electrostatic Discharge (ESD) Sensitivity	
Human Body Model (HBM)	500 V
\quad RFC, RF1, RF2 Pins	2000 V
\quad Digital Pins	1250 V
Charged Device Model (CDM)	

${ }^{1}$ For power derating vs. frequency, see Figure 2 and Figure 3. This power derating is applicable for insertion loss path, isolation path, and hot switching power specifications.
${ }^{2}$ For $105^{\circ} \mathrm{C}$ operation, the power handling degrades from the $T_{\text {CASE }}=85^{\circ} \mathrm{C}$ specification by 3 dB .

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.
Only one absolute maximum rating can be applied at any one time.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.
θ_{JC} is the junction to case bottom (channel to package bottom) thermal resistance.

Table 3. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathbf{\prime c}}$	Unit
CC-20-4		
Through Path	423	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Terminated Path	241	${ }^{\circ} \mathrm{C} / \mathrm{W}$

POWER DERATING CURVES

Figure 2. Power Derating vs. Frequency, Low Frequency Detail, $T_{\text {CASE }}=85^{\circ} \mathrm{C}$

Figure 3. Power Derating vs. Frequency, High Frequency Detail, $T_{\text {CASE }}=85^{\circ} \mathrm{C}$

Figure 4. Maximum Power Dissipation vs. Case Temperature

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
 ADRF5026-EP

NOTES

1. THE EXPOSED PAD MUST BE CONNECTED TO THE RF AND DC GROUND OF THE PCB.

Figure 5. Pin Configuration
Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
$1,2,4,5,6,7,9,10$,	GND	Ground. These pins must be connected to the RF and dc ground of the PCB.
$13,16,17,19,20$	RFC	RF Common Port. This pin is dc-coupled to 0 V and ac matched to 50Ω. No dc blocking capacitor is necessary when the RF line potential is equal to 0 V dc. See Figure 6 for the interface schematic.
8	RF1	RF1 Port. This pin is dc-coupled to 0 V and ac matched to 50Ω. No dc blocking capacitor is necessary when the RF line potential is equal to 0 V dc. See Figure 6 for the interface schematic. 8
11	VDD	Positive Supply Voltage.
12	CTRL	Control Input Voltage. See Figure 7 for the interface schematic.
14	VSS	Enable Input Voltage. See Figure 7 for the interface schematic.
15	Regative Supply Voltage.	
18	RF2	RF2 Port. This pin is dc-coupled to 0 V and ac matched to 50Ω. No dc blocking capacitor is necessary when the RF line potential is equal to 0 V dc. See Figure 6 for the interface schematic. Exposed Pad. The exposed pad must be connected to the RF and dc ground of the PCB.

INTERFACE SCHEMATICS

Figure 6. RFC, RF1, RF2 Interface Schematic

Figure 7. CTRL, EN Interface Schematic

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{VSS}=-3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CTrL}} / \mathrm{V}$ EN $=0 \mathrm{~V}$ or VDD, and $\mathrm{T}_{\mathrm{CASE}}=25^{\circ} \mathrm{C}$ in a 50Ω system, unless otherwise noted.
Insertion loss is measured on the probe matrix board using ground-signal-ground (GSG) probes close to the RFx pins. Signal coupling between the probes limits the isolation performance of the ADRF5026-EP. Isolation is measured on the ADRF5026-EVALZ evaluation board. See the ADRF5026 data sheet for details on the ADRF5026-EVALZ evaluation board and probe matrix board.

See the ADRF5026 data sheet for a full set of Typical Performance Characteristics plots.

Figure 8. Insertion Loss vs. Frequency over Temperature

ADRF5026-EP

OUTLINE DIMENSIONS

Figure 9. 20-Terminal Land Grid Array [LGA]
$3 \mathrm{~mm} \times 3 \mathrm{~mm}$ Body and 0.726 mm Package Height
(CC-20-4)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Marking Code
ADRF5026SCCZ-EP 10	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	$20-$ Terminal Land Grid Array $[\mathrm{LGA}]$	$\mathrm{CC}-20-4$	6 EP
ADRF5026SCCZ-EPR7	$-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	20 -Terminal Land Grid Array $[\mathrm{LGA}]$	$\mathrm{CC}-20-4$	6 EP

${ }^{1} Z=$ RoHS Compliant Part.

