FEATURES

- +36 dBm Input IP3
- 2.4dB Conversion Gain
- Low Noise Figure: <10dB
- +18dBm Ultra High Input P1dB
- 670mW Power Consumption
- 2.5V to 3.6V Operation
- 50Ω Single-Ended RF and LO Inputs
- OdBm LO Drive Level
- Low Power Mode
- $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ Operation $\left(\mathrm{T}_{\mathrm{C}}\right)$
- Small Solution Size
- Enable Pin
- 16-Lead ($4 \mathrm{~mm} \times 4 \mathrm{~mm}$) QFN Package

APPLICATIOOS

- GSM, LTE, LTE-Advanced Basestations
- Repeaters
- DPD Observation Receiver
- Public Safety Radios, Military and Defense
- Avionics Radios and TCAS Transponders
- Active Phased-Array Antennas
- White-Space Radio Receiver

DESCRIPTIOn
The LTC ${ }^{\circledR} 5551$ is a 2.5 V to 3.6 V mixer optimized for RF downconverting mixer applications that require very high dynamic range. The LTC5551 covers the 300 MHz to 3.5 GHz RF Frequency range with LO frequency range of $\mathbf{2 0 0 M H z}$ to 3.5 GHz . The LTC5551 provides very high IIP3 and P1dB with low power consumption. A typical application is a basestation receiver covering 700 MHz to 2.7GHzfrequency range. The RFinput can be matched for a wide range of frequencies and the IF is usable up to 1 GHz .
A low power mode is activated by pulling the ISEL pin high, reducing the power consumption by about $1 / 3$, however, with a corresponding reduction in IIP3 to approximately +29 dBm . The mixer can also be turned on or off by using the EN pin.

The LTC5551's high level of integration minimizes the total solution cost, board space and system level variation, while providing the highest dynamic range for demanding receiver applications.
$\boldsymbol{\boxed { } 7}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners. Protected by U.S. Patents, including 8558605.

TYPICAL APPLICATION

Mixer Conversion Gain and IIP3 vs IF Frequency (Low-Side LO)

AßSOLUTG MAXIMUM RATINGS
(Note 1)
Supply Voltage (V ${ }_{\text {CC }}$, IF $^{+}$, IF $^{-}$) 4V
Enable Input Voltage (EN) -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Power Select Voltage (ISEL) -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
LO Input Power (0.2GHz to 3.5 GHz) $+10 \mathrm{dBm}$
LO Input DC Voltage $\pm 0.1 \mathrm{~V}$
RF Input Power (0.3 GHz to 3.5 GHz) $+20 \mathrm{dBm}$
RF Input DC Voltage $\pm 0.1 \mathrm{~V}$
TEMP Diode Continuous DC Input Current 10 mA
TEMP Diode Input Voltage $\pm 1 \mathrm{~V}$
IFBIAS Voltage 2.5 V
Operating Temperature Range (T_{C})

\qquad
$-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Junction Temperature (T_{J}) $150^{\circ} \mathrm{C}$
PIn CONFIGURATIOn

UF PACKAGE
16-LEAD $(4 \mathrm{~mm} \times 4 \mathrm{~mm})$ PLASTIC QFN
$T_{J M A X}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JC}}=6^{\circ} \mathrm{C} / \mathrm{W}$
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB

CAUTION: This part is sensitive to electrostatic discharge (ESD). It is very important that proper ESD precautions be observed when handling the LTC5551.

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	CASE TEMPERATURE RANGE
LTC5551IUF\#PBF	LTC5551IUF\#TRPBF	5551	$16-$ Lead $(4 \mathrm{~mm} \times 4 \mathrm{~mm})$ Plastic QFN	$-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges.
Consult LTC Marketing for information on non-standard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

AC ELECTRICAL CHARACTERISTICS The o denotes the speciifications which apply vere the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{EN}=$ High, $\mathrm{ISEL}=\mathrm{Low}, \mathrm{P}_{\mathrm{L}}=0 \mathrm{dBm}$, unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS		
LO Input Frequency Range		\bullet		200 to 3500		MHz		
RF Input Frequency Range		\bullet		300 to 3500		MHz		
IF Output Frequency Range	Requires External Matching			5 to 1000		MHz		
RF Input Return Loss	$\mathrm{Z}_{0}=50 \Omega, 1100 \mathrm{MHz}$ to $2700 \mathrm{MHz}, \mathrm{X} 1=7.5 \mathrm{nH}, \mathrm{C} 1=2.2 \mathrm{pF}$			>12		dB		
LO Input Return Loss	$Z_{0}=50 \Omega, 1000 \mathrm{MHz}$ to $3500 \mathrm{MHz}, \mathrm{C} 2=3.9 \mathrm{pF}$			>12		dB		
IF Output Impedance	Differential at 153 MHz			950, \|	1.2pF		R\|	C
LO Input Power	LO $=200 \mathrm{MHz}$ to 3500MHz		-6	0	6	dBm		
LO to RF Leakage	LO $=200 \mathrm{MHz}$ to 3500MHz			<-25		dBm		
LO to IF Leakage	LO $=200 \mathrm{MHz}$ to 3500MHz			<-21		dBm		
RF to LO Isolation	$\mathrm{RF}=300 \mathrm{MHz}$ to 3500 MHz			>55		dB		
RF to IF Isolation	$\mathrm{RF}=300 \mathrm{MHz}$ to 3500 MHz			>23		dB		

The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$.
$V_{\mathrm{cc}}=3.3 \mathrm{~V}, \mathrm{EN}=$ High, $\mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm}$ ($0 \mathrm{dBm} /$ tone for 2 -tone tests), unless otherwise noted. Test circuit shown in Figure 1.
(Notes 2, 3)
0.3GHz to 3.5GHz Downmixer Application: IF = 153MHz, ISEL = Low, unless otherwise noted. (Notes 2, 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Power Conversion Gain	$\begin{aligned} & \hline \text { RF }=400 \mathrm{MHz} \text {, High Side LO } \\ & \mathrm{RF}=850 \mathrm{MHz} \text {, High Side LO } \\ & \mathrm{RF}=1950 \mathrm{MHz}, \text { Low Side LO } \\ & \mathrm{RF}=2700 \mathrm{MHz}, \text { Low Side LO } \end{aligned}$		$\begin{aligned} & 3.2 \\ & 2.8 \\ & 2.4 \\ & 1.7 \end{aligned}$		dB $d B$ $d B$ $d B$
Conversion Gain Flatness	$\mathrm{RF}=1870 \mathrm{MHz} \pm 100 \mathrm{MHz}, \mathrm{LO}=1700 \mathrm{MHz}$, IF $=170 \pm 100 \mathrm{MHz}$		± 0.2		dB
Conversion Gain vs Temperature	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}, \mathrm{RF}=1950 \mathrm{MHz}$, Low Side LO		-0.013		$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
2-Tone Input $3^{\text {rd }}$ Order Intercept $(\Delta \mathrm{f}=2 \mathrm{MHz})$	$\begin{aligned} & \text { RF }=400 \mathrm{MHz} \text {, High Side LO } \\ & \mathrm{RF}=850 \mathrm{MHz} \text {, High Side LO } \\ & \mathrm{RF}=1950 \mathrm{MHz} \text {, Low Side LO } \\ & \mathrm{RF}=2700 \mathrm{MHz}, \text { Low Side LO } \end{aligned}$		$\begin{aligned} & 33.2 \\ & 35.2 \\ & 35.5 \\ & 38.1 \end{aligned}$		dBm dBm dBm dBm
2-Tone Input 2nd 0 rder Intercept $\left(\Delta \mathrm{f}=154 \mathrm{MHz}=\mathrm{f}_{\mathrm{IM} 2}\right)$	$\begin{aligned} & \hline \mathrm{RF}=400 \mathrm{MHz}(477 \mathrm{MHz} / 323 \mathrm{MHz}), \mathrm{LO}=553 \mathrm{MHz} \\ & \mathrm{RF}=850 \mathrm{MHz}(927 \mathrm{MHz} / 773 \mathrm{MHz}), \mathrm{LO}=1053 \mathrm{MHz} \\ & \mathrm{RF}=1950 \mathrm{MHz}(2027 \mathrm{MHz} / 1873 \mathrm{MHz}), \mathrm{LO}=1797 \mathrm{MHz} \\ & \mathrm{RF}=2700 \mathrm{MHz}(2777 \mathrm{MHz} / 2623 \mathrm{MHz}), \mathrm{LO}=2547 \mathrm{MHz} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 65.8 \\ & 68.2 \\ & 58.4 \\ & 57.1 \end{aligned}$		dBm dBm dBm dBm
SSB Noise Figure	$\begin{aligned} & \text { RF }=400 \mathrm{MHz} \text {, High Side LO } \\ & \text { RF }=850 \mathrm{MHz}, \text { High Side LO } \\ & \text { RF }=1950 \mathrm{MHz}, \text { Low Side LO } \\ & \text { RF }=2700 \mathrm{MHz}, \text { Low Side LO } \end{aligned}$		$\begin{gathered} 10.6 \\ 9.1 \\ 9.7 \\ 10.9 \end{gathered}$		dB $d B$ $d B$ $d B$
SSB Noise Figure Under Blocking	$\begin{aligned} & \mathrm{RF}=850 \mathrm{MHz} \text {, High Side LO, } 750 \mathrm{MHz} \text { Blocker at } 5 \mathrm{dBm} \\ & \mathrm{RF}=1950 \mathrm{MHz} \text {, Low Side LO, 2050MHz Blocker at } 5 \mathrm{dBm} \end{aligned}$		$\begin{aligned} & \hline 16.5 \\ & 16.9 \end{aligned}$		dB dB
1/2 IF Output Spurious Product ($\mathrm{f}_{\text {RF }}$ Offset to Produce Spur at $\mathrm{f}_{\mathrm{IF}}=153 \mathrm{MHz}$)	850MHz: RF $=926.5 \mathrm{MHz}$ at $-3 \mathrm{dBm}, \mathrm{LO}=1003 \mathrm{MHz}$ 1950MHz: RF $=1873.5 \mathrm{MHz}$ at $-3 \mathrm{dBm}, \mathrm{LO}=1797 \mathrm{MHz}$		$\begin{aligned} & -66 \\ & -68 \end{aligned}$		dBc dBc
1/3 IF Output Spurious Product ($f_{\text {RF }}$ Offset to Produce Spur at $\mathrm{f}_{\mathrm{IF}}=153 \mathrm{MHz}$)	$850 \mathrm{MHz}: \mathrm{RF}=952 \mathrm{MHz}$ at $-3 \mathrm{dBm}, \mathrm{LO}=1003 \mathrm{MHz}$ 1950MHz: $R F=1848 \mathrm{MHz}$ at $-3 \mathrm{dBm}, \mathrm{LO}=1797 \mathrm{MHz}$		$\begin{aligned} & \hline-97 \\ & -93 \end{aligned}$		$\begin{aligned} & \mathrm{dBC} \\ & \mathrm{dBC} \end{aligned}$
Input 1dB Compression	$\begin{aligned} & \text { RF }=400 \mathrm{MHz} \text {, High Side LO } \\ & \mathrm{RF}=850 \mathrm{MHz} \text {, High Side LO } \\ & \mathrm{RF}=1950 \mathrm{MHz} \text {, Low Side LO } \\ & \mathrm{RF}=2700 \mathrm{MHz}, \text { Low Side LO } \end{aligned}$		$\begin{aligned} & 17.1 \\ & 17.8 \\ & 18.0 \\ & 18.7 \end{aligned}$		dBm dBm dBm dBm

AC ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the tull operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{EN}=$ High, $\mathrm{P}_{\mathrm{L} O}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm}$ ($0 \mathrm{dBm} /$ tone for 2-tone tests), unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3)
Low Power Mode, 0.3GHz to 3.5GHz Downmixer Application: IF = 153MHz, ISEL = High (Notes 2, 3)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Power Conversion Gain	$\begin{aligned} & \mathrm{RF}=400 \mathrm{MHz} \text {, High Side LO } \\ & \mathrm{RF}=850 \mathrm{MHz} \text {, High Side LO } \\ & R \mathrm{RF}=1950 \mathrm{MHz} \text {, Low Side LO } \\ & \mathrm{RF}=2700 \mathrm{MHz} \text {, Low Side LO } \end{aligned}$		$\begin{aligned} & 3.0 \\ & 2.7 \\ & 2.4 \\ & 1.7 \end{aligned}$		dB $d B$ $d B$ $d B$
Input 3 ${ }^{\text {rd }}$ Order Intercept	$\begin{aligned} & \mathrm{RF}=400 \mathrm{MHz} \text {, High Side LO } \\ & R \mathrm{RF}=850 \mathrm{MHz} \text {, High Side LO } \\ & R \mathrm{RF}=1950 \mathrm{MHz} \text {, Low Side LO } \\ & \mathrm{RF}=2700 \mathrm{MHz} \text {, Low Side LO } \end{aligned}$		$\begin{aligned} & 27.3 \\ & 28.0 \\ & 29.3 \\ & 29.7 \end{aligned}$		dBm dBm dBm dBm
SSB Noise Figure	$\begin{aligned} & R F=400 \mathrm{MHz} \text {, High Side LO } \\ & R F=850 \mathrm{MHz} \text {, High Side LO } \\ & R F=1950 \mathrm{MHz} \text {, Low Side LO } \\ & R F=2700 \mathrm{MHz} \text {, Low Side LO } \end{aligned}$		9.8 8.2 8.3 9.2		dB dB dB dB
Input 1dB Compression	$\begin{aligned} & \text { RF }=400 \mathrm{MHz}, \text { High Side LO } \\ & \mathrm{RF}=850 \mathrm{MHz}, \text { High Side LO } \\ & \mathrm{RF}=1950 \mathrm{MHz}, \text { Low Side LO } \\ & \mathrm{RF}=2700 \mathrm{MHz}, \text { Low Side LO } \end{aligned}$		$\begin{aligned} & 14.8 \\ & 16.2 \\ & 16.7 \\ & 17.7 \end{aligned}$		dBm dBm dBm dBm

DC ELECTRICAL CHARACTERISTICS
The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{EN}=$ High, ISEL $=$ Low, unless otherwise noted. Test circuit shown in Figure 1. (Note 2)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Power Supply Requirements						
Supply Voltage (VCC)		\bullet	2.5	3.3	3.6	VDC
Supply Current (ISEL = Low)	$\begin{aligned} & \text { EN = High, No LO Applied } \\ & \text { EN = High, with LO Applied } \\ & \text { EN = Low } \end{aligned}$			$\begin{aligned} & 148 \\ & 204 \end{aligned}$	$\begin{aligned} & 234 \\ & 100 \end{aligned}$	mA mA $\mu \mathrm{A}$
Supply Current - Low Power Mode (ISEL = High)	$\begin{aligned} & \text { EN = High, No LO Applied } \\ & \text { EN = High, with LO Applied } \\ & \text { EN = Low } \end{aligned}$			$\begin{aligned} & 128 \\ & 142 \end{aligned}$	100	mA mA $\mu \mathrm{A}$

Enable Logic Input (EN)

Input High Voltage (On)		\bullet	1.2	
Input Low Voltage (Off)		\bullet		0.3
Input Current	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$	VDC		
Turn On Time	LO Applied		-30	100
Turn Off Time	LO Applied		$\mu \mathrm{A}$	

Power Select Logic Input (ISEL)

Input High Voltage (Low Power Mode)		\bullet	1.2	VDC
Input Low Voltage (High Power Mode)		\bullet		0.3
Input Current	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$		-30	100

Temperature Sensing Diode (TEMP)

DC Voltage at $T_{J}=25^{\circ} \mathrm{C}$	$I_{I N}=10 \mu \mathrm{~A}$	726	mV	
	$I_{\text {IN }}=80 \mu \mathrm{~A}$		783	mV
Voltage Temperature Coefficient	$I_{\text {N }}=10 \mu \mathrm{~A}$	-1.72	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
	$I_{\text {IN }}=80 \mu \mathrm{~A}$	\bullet	-1.53	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The LTC5551 is guaranteed functional over the $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ case temperature range.

Note 3: SSB Noise Figure measurements performed with a small-signal noise source, bandpass filter and 6dB matching pad on RF input, bandpass filter and 6dB matching pad on the LO input, bandpass filter on the IF output and no other RF signals applied.

TYPICAL DC PERFORMANCG CHARACTERISTICS

5551 G01

Supply Current vs Supply Voltage, No LO Applied

Supply Current vs LO Frequency ($\mathrm{P}_{\mathrm{LO}}=\mathrm{OdBm}$)

Supply Current vs $V_{\text {CC }}$
$\mathrm{LO}=1800 \mathrm{MHz}$ at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$

5551 G04
5551 G05

TYPICAL AC PERFORMANCE CHARACTERISTICS 1100nHz to 2700мHz application.
$V_{C C}=3.3 \mathrm{~V}, \mathrm{EN}=$ High, ISEL $=$ Low, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{L} 0}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm}$ (OdBm/tone for two-tone IIP3 tests, $\Delta \mathrm{f}=2 \mathrm{MHz}$), IF =153MHz, unless otherwise noted. Test circuit shown in Figure 1.

5551 G06

5551 G07
1950MHz Conversion Gain, IIP3 and NF vs LO Power (High Side LO)

5551 G10

2550MHz Conversion Gain, IIP3 and NF vs LO Power (Low Side LO)

5551 G08
2550MHz Conversion Gain, IIP3 and NF vs LO Power (High Side LO)

5551 G11

5551 G1

5551 G13

LO Leakage vs LO Frequency

TYPICAL AC PERFORMANCE CHARACTERISTICS 1100 nHz to 2700мHz application.
$V_{C C}=3.3 \mathrm{~V}, \mathrm{EN}=$ High, ISEL $=$ Low, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{L} 0}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm}$ ($0 \mathrm{dBm} /$ tone for two-tone IIP3 tests, $\Delta \mathrm{f}=2 \mathrm{MHz}$), IF = 153MHz, unless otherwise noted. Test circuit shown in Figure 1.

5551 G15
SSB Noise Figure vs RF Blocker Level

5551 G18

Single-Tone IF Output Power, 2×2 and 3×3 Spurs vs RF Input Power

5551 G16

Conversion Gain, IIP3 and SSB

 NF vs Temperature

5551 G19
2×2 and 3×3 Spurs
vs LO Power

5551 G17
Conversion Gain, IIP3, P1dB and SSB NF vs Supply Voltage

5551 G20

1950MHz Conversion Gain

 Histogram

5551 G21

1950MHz SSB NF Histogram

TYPICAL AC PERFORMANCE CHARACTERISTICS
1100 MHz to 2700 MHz application. Low
Power Mode. $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{EN}=$ High, ISEL $=$ High, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm}$ ($0 \mathrm{dBm} /$ tone for two-tone IIP3 tests, $\Delta \mathrm{f}=2 \mathrm{MHz}$), IF = 153MHz, unless otherwise noted. Test circuit shown in Figure 1.

5551924

Input P1dB vs RF Frequency

5551 G27

Conversion Gain, IIP3 and NF vs RF Frequency (High Side LO)

5551625

Conversion Gain, IIP3, P1dB and NF vs Supply Voltage

Single Tone IF Output Power, 2×2 and 3×3 Spurs vs RF Input Power

1950MHz Conversion Gain, IIP3 and NF vs LO Power

5551 G26

2-Tone IF Output Power, IM3 and IM5 vs RF Input Power

5551 G30

TYPICAL AC PERFORMANCE CHARACTERISTICS 300 MHz to 650 MHz application.

$\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}, \mathrm{EN}=\mathrm{High}$, ISEL $=$ Low, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm}$ (OdBm/tone for two-tone IIP3 tests, $\Delta \mathrm{f}=2 \mathrm{MHz}$), $\mathrm{IF}=153 \mathrm{MHz}$, unless otherwise noted. Test circuit shown in Figure 1.

5551 G33

Input P1dB vs Frequency

5551 G36

Conversion Gain, IIP3 and NF vs RF Frequency (High Side LO)

5551 G34

Conversion Gain, IIP3 and SSB NF vs Temperature

Conversion Gain, IIP3 and NF vs RFFrequency

5551 G35
Conversion Gain, IIP3, P1dB and NF vs Supply Voltage

2-Tone IF Output Power, IM3 and IM5 vs RF Input Power

TYPICAL AC PGRFORMANCE CHARACTERISTICS 500nHz to 1100 NHz application.
$V_{C C}=3.3 \mathrm{~V}, \mathrm{EN}=\mathrm{High}$, ISEL $=$ Low, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{Lo}}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm}$ (OdBm/tone for two-tone IIP3 tests, $\triangle \mathrm{f}=2 \mathrm{MHz}$), $\mathrm{IF}=153 \mathrm{MHz}$, unless otherwise noted. Test circuit shown in Figure 1.

5551 G42

Input P1dB vs RF Frequency

5551 G45

Conversion Gain, IIP3 and NF vs RF Frequency (High Side LO)

5551 G43
850MHz Conversion Gain, IIP3 and NF vs LO Power

5551 G46

LO Leakage and RF Isolation

Conversion Gain, IIP3 and NF vs RF Frequency

5551 G44
Conversion Gain, IIP3, P1dB and NF vs Supply Voltage

2-Tone IF Output Power, IM3 and IM5 vs RF Input Power

TYPICAL AC PERFORMANCE CHARACTERISTICS 2300 MHzz to 3500 NHz application.
$V_{C C}=3.3 \mathrm{~V}, \mathrm{EN}=\mathrm{High}$, ISEL $=$ Low, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{P}_{\mathrm{L} 0}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm}$ (OdBm/tone for two-tone IIP3 tests, $\Delta \mathrm{f}=2 \mathrm{MHz}$),
$\mathrm{IF}=153 \mathrm{MHz}$, unless otherwise noted. Test circuit shown in Figure 1.

5551 G51

5551 G54

Conversion Gain, IIP3 and NF vs RF Frequency (High Side LO)

5551 G52

2.7GHz Conversion Gain, IIP3 and NF vs LO Power

5551 G55

Conversion Gain, IIP3 and SSB NF vs Temperature

Conversion Gain, IIP3 and NF vs RF Frequency

5551 G53
Conversion Gain, IIP3, P1dB and NF vs Supply Voltage

2-Tone IF Output Power, IM3 and IM5 vs RF Input Power

PIn functions

TP (Pin 1): Test Point. It is used for manufacture measurement only. It is recommended to be connected to ground.

RF (Pin 2): Single-Ended Input for the RF Signal. This pin is internally connected to the primary side of the RF input transformer, which has low DC resistance to ground. A series DC-blocking capacitor should be used to avoid damage to the integrated transformer when DC voltage is present at the RF input. The RF input impedance is matched under the condition that the LO input is driven with a $0 \mathrm{dBm} \pm 6 \mathrm{~dB}$ source between 0.2 GHz and 3.5 GHz .

CT (Pin 3): RF Transformer Secondary Center-Tap. This pin must be connected to ground with minimum parasitic resistance and inductance to complete the Mixer's DC current path. Typical DC current is 80 mA with LO disabled and 134 mA when LO signal is applied.
GND (Pins 4, 9, 11, 13, Exposed Pad Pin 17): Ground. These pins must be soldered to the RF ground plane on the circuit board. The exposed pad metal of the package provides both electrical contact to ground and good thermal contact to the printed circuit board.

EN (Pin 5): Enable Pin. When the input voltage is greater than 1.2 V , the mixer is enabled. When the input voltage is less than 0.3 V or left open, the mixer is disabled. Typical input current is less than $30 \mu \mathrm{~A}$. This pin has an internal pull-down resistor.

VCC (Pins 6, 7): Power Supply Pins. These pins are internally connected and must be externally connected to
a regulated 2.5 V to 3.6 V supply, with bypass capacitors located close to the pin. Typical current consumption is 70 mA through these pins.

ISEL (Pin 8): Low Power Select Pin. Whenthis pin is pulled low ($<0.3 \mathrm{~V}$) or left open, the mixer is biased at the normal current level for best RF performance. When greater than 1.2 V is applied, the mixer operates at reduced current mode, which provides reasonable performance at lower power consumption. This pin has an internal pull-down resistor.
LO (Pin 10): Single-Ended Input for the Local Oscillator. This pin is internally connected to the primary side of the RF input transformer, which has low DC resistance to ground. A series DC blocking capacitor should be used to avoid damage to the integrated transformer when DC voltage is present at the LO input.

TEMP (Pin 12): Temperature Sensing Diode. This pin is connected to the anode of a diode that may be used to measure the die temperature, by forcing a current and measuring the voltage.

IF ${ }^{-}$(Pin 14) and IF+ (Pin 15): Open-Collector Differential Outputs for the IFAmplifier. These pins must be connected to a DC supply through impedance matching inductors, or a transformer center-tap. Typical DC current consumption is 67 mA into each pin.

IFBIAS (Pin 16): This Pin Allows Adjustment of the IF Amplifier Current. Typical DC voltage is 2.1 V . This pin should be left floating for optimum performance.

BLOCK DIAGRAM

GND PINS ARE NOT SHOWN

TEST CIRCUIT

APPLICATION		RF MATCH			LO MATCH		IF TRANSFORMER	
RF (MHz)	LO	X1	C1	X2	C2	C3	T1	VENDOR
300 to 650	HS	15 nH	15 pF	15 pF	15 pF	8.2 pF	TC4-1W-7ALN +	Mini-Circuits
500 to 1100	HS	13 nH	6.8 pF	4.7 pF	8.2 pF	2.2 pF	WBC4-6TLB	Coilcraft
1100 to 2700	LS, HS	7.5 nH	2.2 pF	-	3.9 pF	-	TC4-1W-7ALN +	Mini-Circuits
2300 to 3500	LS, HS	1.2 pF	22 pF	2.2 nH	3.9 pF	-	TC4-1W-7ALN+	Mini-Circuits

REF DES	VALUE	SIZE	VENDOR	REF DES	VALUE	SIZE	VENDOR
C4, C6	$0.56 \mu \mathrm{~F}$	0603	Murata	R1, R2	$475 \Omega, 1 \%$	0402	Vishay
C5, C7	22 pF	0402	AVX	L1, L2	$470 \mathrm{nH}, 2 \%$	0603	Coilcraft 0603LS
C8, C9	1 nF	0402	AVX				

Figure 1. Standard Downmixer Test Circuit Schematic (153MHz IF)

APPLICATIONS InFORMATION

Introduction

The LTC5551 consists of a high linearity double-balanced mixer core, IF buffer amplifier, LO buffer amplifier and bias/enable circuits. See the Block Diagram section for a description of each pin function. The RF and LO inputs are single-ended. The IF output is differential. Low side or high side LO injection can be used. The evaluation circuit, shown in Figure 1, utilizes bandpass IF output matching and an IF transformer to realize a 50Ω single-ended IF output. The evaluation board layout is shown in Figure 2.

Figure 2. Evaluation Board Layout

RF Input

The mixer's RF input, shown in Figure 3, is connected to the primary winding of an integrated transformer. A 50Ω match can be realized with a π-network as shown in Figures 1 and 3 . The primary side of the RF transformer is DC-grounded internally and the DC resistance of the primary is approximately 4Ω. A DC blocking capacitor is needed if the RF source has DC voltage present.

The secondary winding of the RF transformer is internally connected to the mixer core. The center-tap of the transformer secondary is connected to Pin 3 (CT). Pin 3 needs to be connected to ground with a minimum parasitic resistance and inductance.

For the RF input to be matched, the LO input must be driven. Using components listed in Figure 1, the RF input can be matched from 300 MHz to 3.5 GHz . The measured RF input return loss is shown in Figure 4 for LO frequencies of $0.5 \mathrm{GHz}, 1.0 \mathrm{GHz} .1 .8 \mathrm{GHz}$ and 2.8 GHz . These LO frequencies correspond to the lower, middle and upper values of the LO range.

The RF input impedance and input reflection coefficient, versus RF frequency, is listed in Table 1. The reference plane for this data is Pin 2 of the IC, with no external matching, and the LO is driven at 1.8 GHz .

Figure 3. RF Input Schematic

5551 F04
Figure 4. RF Input Return Loss

APPLICATIONS INFORMATION

Table 1. RF Input Impedance and S11
(at Pin 2, No External Matching, LO Input Driven at 1.8GHz)

FREQUENCY (GHz)	INPUT	S11	
		MAG	ANGLE
0.3	$7.6+\mathrm{j} 8.4$	0.74	160.4
0.7	$11.7+\mathrm{j} 15.2$	0.65	144.5
1.1	$17.7+\mathrm{j} 22.2$	0.55	127.4
1.5	$29.3+\mathrm{j} 27.8$	0.41	107.4
1.9	$46.7+\mathrm{j} 21.8$	0.22	85.8
2.3	$49.6-\mathrm{j} 1.3$	0.01	-106.3
2.7	$31.1-\mathrm{j} 9.0$	0.26	-148.2
3.1	$18.2-\mathrm{j} 1.8$	0.47	-175.2
3.5	$11.8+\mathrm{j} 8.4$	0.63	159.8

LO Input

The mixer's LO input circuit, shown in Figure 5, consists of a balun transformer and a two-stage high speed limiting differential amplifier to drive the mixer core. The LTC5551's LO amplifiers are optimized for the 200 MHz to 3.5 GHz LO frequency range. LO frequencies above or below this frequency range may be used with degraded performance.
The mixer's LO input is directly connected to the primary winding of an integrated transformer. The LO is 50Ω matched from 1 GHz to 3.5 GHz with a single 3.9 pF series
capacitor on the input. Matching to LO frequencies below 1 GHz is easily accomplished by adding shunt capacitor C3 shown in Figure 5. Measured LO input return loss is shown in Figure 6.

The nominal LO input level is 0dBm although the limiting amplifiers will deliver excellent performance over a $\pm 6 \mathrm{~dB}$ input power range. LO input power of -9 dBm may be used with slightly degraded performance.

The LO input impedance and input reflection coefficient, versus frequency, is shown in Table 2.

Table 2. LO Input Impedance vs Frequency
(at Pin 10, No External Matching)

FREQUENCY (GHz)	INPUT IMPEDANCE	S11	
		ANGLE	
0.3	$4.8+j 12.0$	0.84	152.7
0.7	$13.4+j 28.1$	0.67	118.5
1.1	$32.7+\mathrm{j} 39.1$	0.47	88.6
1.5	$56.8+\mathrm{j} 31.1$	0.29	61.5
1.9	$62.8+\mathrm{j} 9.3$	0.14	31.4
2.3	$54.1-\mathrm{j} 1.4$	0.04	-18.3
2.7	$45.1-\mathrm{j} 1.4$	0.05	-163.6
3.1	$39.8+\mathrm{j} 3.6$	0.12	158.6
3.5	$37.2+\mathrm{j} 10.4$	0.19	134.1

Figure 6. LO Input Return Loss

Figure 5. LO Input Schematic

APPLICATIONS InFORMATION

IF Output

The IF amplifier, shown in Figure 7, has differential opencollector outputs (IF^{+}and IF^{-}), and a pin for modifying the internal bias (IFBIAS). The IF outputs must be biased at the supply voltage ($\mathrm{V}_{\text {CC }}$), which is applied through matching inductors L1 and L2. Alternatively, the IF outputs can be biased through the center tap of a transformer. Each IF output pin draws approximately 67 mA of DC supply current (134 mA total). For the highest performance, high-Q wire-wound chip inductors are recommended for L1 and L2. Low cost multilayer chip inductors may be substituted, with a slight degradation in performance.

Figure 7. IF Amplifier Schematic with Transformer-Based Bandpass Match

For optimum single-ended performance, the differential IF outputs must be combined through an external IF transformer or discrete IF balun circuit. The evaluation board (see Figures 1 and 2) uses a 4:1 ratio IF transformer for impedance transformation and differential to single-ended transformation. It is also possible to eliminate the IF transformer and drive differential filters or amplifiers directly.

The IF output impedance can be modeled as 950Ω in parallel with $1.2 p F$ at IF frequencies. An equivalent smallsignal model is shown in Figure 8. Frequency-dependent differential IF output impedance is listed in Table 3. This data is referenced to the package pins (with no external components) and includes the effects of IC and package parasitics.

Figure 8. IF Output Small-Signal Model

Table 3. IF Output Impedance vs Frequency

FREQUENCY (MHz)	DIFFERENTIAL OUTPUT IMPEDANCE $\left(\mathbf{R}_{\text {IF }} \\| \mathbf{X I F}_{\text {IF }}\left(\mathbf{C}_{\text {IF }}\right)\right)$
90	$954 \\|-\mathrm{j} 1442(1.2 \mathrm{pF})$
140	$950 \\|-\mathrm{j} 848(1.2 p F)$
190	$945 \\|-\mathrm{j} 681(1.2 p F)$
240	$942 \\|-\mathrm{j} 539(1.2 p F)$
380	$938 \\|-\mathrm{j} 338(1.2 p \mathrm{FF})$
456	$926 \\|-\mathrm{j} 281(1.2 p \mathrm{FF})$

Transformer-Based Bandpass IF Matching

The IF output can be matched using the bandpass IF matching shown in Figures 1 and 7. L1 and L2 resonate with the internal IF output capacitance at the desired IF frequency. The value of $\mathrm{L} 1, \mathrm{~L} 2$ is calculated as follows:

$$
L 1, L 2=1 /\left[\left(2 \pi f_{I F}\right)^{2} \cdot 2 \cdot C_{I F}\right]
$$

where C_{IF} is the internal IF capacitance (listed in Table 3).
Values of L1 and L2 are tabulated in Figure 1 for various IF frequencies.

For IFFrequency below 80MHz, the inductor values become unreasonably high and the high pass impedance matching network described in a later section is preferred, due to its lower inductor values.

Table 4 summarizes the optimum IF matching inductor values vs IF center frequency, to be used in the standard downmixer test circuit shown in Figure 1. The inductor values listed are less than the ideal calculated values due to the additional capacitance of the 4:1 transformer. Measured IF output return Iosses are shown in Figure 9.

APPLICATIONS INFORMATION

Table 4. Bandpass Matching Elements Values vs IF Frequency

L1, L2 vs IF Frequencies

IF (MHz)	L1, L2 (nH)	COMMENTS
120	810	Coilcraft 0603 LS
153	470	Coilcraft 0603 LS
240	180	Coilcraft 0603 CS
305	120	Coilcraft 0603 CS
380	56	Coilcraft 0603 CS
456	33	Coilcraft 0603 CS

The resistors R1 and R2 which are connected between the IF^{+}and IF^{-}is used to assist the IF impedance matching. A lower value of R1, R2 will help improve the IF return loss and broaden the IF bandwidth. However, it will results in lower conversion gain with minor impact to linearity and noise figure performances.

Other 4:1 transformers can be used to replace the TC4-$1-7 A L N+$ that is used in the standard demoboards. The insertion Ioss and parasitics of the transformer will impact the overall circuit performance. For IF frequency higher than 300MHz, the TC4-1-17LN+ from Mini-Circuits or the WBC4-6TLB from Coilcraft is preferred.

Figure 9. IF Output Return Loss Bandpass Matching with 4:1 Transformer

Highpass IF Matching

The highpass IF matching circuits shown in Figure 10 can be used when higher conversion gain than that from the standard demoboard is desired. The highpass matching network will have less IF bandwidth than the bandpass matching. It also use smaller inductance values; an advantage when designing for IF center frequency well lower than 80 MHz .

Referring to the small-signal output network schematic in Figure 10, the reactive matching element values (L1, L2, C8 and C9) are calculated using the following equations. The source resistance $\left(R_{S}\right)$ is the parallel combination of external resistors R1 + R2 and the internal IF resistance, R_{IF} taken from Table 3. The differential load resistance $\left(R_{L}\right)$ is typically 200Ω, but can be less. C_{IF}, the IF output capacitance, is taken from Table 3. Choosing R_{S} in the 380Ω to 450Ω range will yield power conversion gains around 4 dB .

$$
\begin{array}{ll}
R_{S}=R_{\text {IF }} \| 2 \cdot R 1 & (R 1=R 2) \\
Q=\sqrt{\left(R_{S} / R_{L}-1\right)} & \left(R_{S}>R_{L}\right) \\
Y_{L}=Q / R_{S}+\left(\omega_{I F} \cdot C_{\text {IF }}\right) & \\
L 1, L 2=1 /\left(2 \cdot Y_{L} \cdot \omega_{\text {IF }}\right) & \\
C 7, C 8=2 /\left(Q \cdot R_{L} \cdot \omega_{\text {IF }}\right) &
\end{array}
$$

To demonstrate the highpass impedance transformer output matching, these equations were used to calculate the element values for a 80 MHz IF frequency and 200Ω differential load resistance. The measured performance with $\mathrm{L} 1, \mathrm{~L} 2=330 \mathrm{nH}, \mathrm{C} 8, \mathrm{C} 9=15 \mathrm{pF}$ is shown in Figure 11. The test conditions are: $\mathrm{P}_{\mathrm{RF}}=-6 \mathrm{dBm}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}$ with low side LO injection.

APPLICATIONS InFORMATION

Figure 10. IF Output Circuit for Highpass Matching Element Value Calculations

Figure 11. Performance Using 80MHz Highpass IF Matching Network

APPLICATIONS INFORMATION

Wideband Differential IF Output

Wide IF bandwidth and high input 1dB compression are obtained by reducing the IF output resistance with resistors R1 and R2. This will reduce the mixer's conversion gain, but will not degrade the IIP3 or noise figure.

The IF matching shown in Figure 12 uses 249Ω resistors and 470 nH supply chokes to produce a wideband 200Ω differential output. This differential output is suitable for driving a wideband differential amplifier, filter, or a wideband 4:1 transformer.

The complete test circuit, shown in Figure 13, uses resistive impedance matching attenuators (L-pads) on the evaluation board to transform each 100Ω IF output to 50Ω. An external $0^{\circ} / 180^{\circ}$ power combiner is then used to convert the 100Ω differential output to 50Ω single-ended, to facilitate measurement.

Measured conversion gain and IIP3 at the 200Ω differential output are plotted in Figure 14. As shown, the conversion gain is flat within 1 dB over the 50 MHz to 490 MHz IF output frequency range.

Figure 14. Conversion Gain and IIP3 vs IF Output Frequency for Wideband 200Ω Differential IF -

Figure 12. Wideband 200Ω Differential Output

APPLICATIONS InFORMATION

The IFBIAS pin (Pin 16) is available for reducing the DC current consumption of the IF amplifier, at the expense of reduced performance. This pin should be left open-circuited for optimum performance. The internal bias circuit produces a 4 mA reference for the IF amplifier, which causes the amplifier to draw approximately 134 mA . If resistor R3 is connected to Pin 16 as shown in Figure 7, a portion of the reference current can be shunted to ground, resulting in reduced IF amplifier current. For example, $\mathrm{R} 3=1 \mathrm{k} \Omega$ will shunt away 1.5 mA from Pin 16 and the IF amplifier current will be reduced to approximately 90 mA . The nominal, open-circuit DC voltage at Pin 16 is 2.1 V . Table 5 lists RF performance at 1950 MHz vs IF amplifier current.

Table 5. Mixer Performance with Reduced IF Amplifier Current ($\mathrm{RF}=1950 \mathrm{MHz}$, Low Side LO, IF = 153MHz, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$)

$\mathbf{R 3}$ $(\mathbf{k} \boldsymbol{\Omega})$	$\mathbf{I}_{\mathbf{c C}}$ $(\mathbf{m A})$	$\mathbf{G}_{\mathbf{C}}$ $(\mathbf{d B})$	$\mathbf{I I P 3}$ $(\mathbf{d B m})$	$\mathbf{P 1 d B}$ $(\mathbf{d B m})$	$\mathbf{N F}$ $(\mathbf{d B})$
OPEN	204	2.4	35.5	18.0	9.7
4.7	194	2.4	35.0	17.9	9.4
2.2	186	2.4	34.2	17.8	9.2
1.0	164	2.4	31.9	17.3	8.7

(RF = 1950MHz, High Side LO, IF = 153MHz, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$)

$\begin{gathered} \mathrm{R} 3 \\ (\mathrm{k} \Omega) \end{gathered}$	$\begin{aligned} & \mathrm{I}_{\mathrm{CCIF}} \\ & (\mathrm{~mA}) \end{aligned}$	$\begin{gathered} \mathrm{G}_{\mathrm{C}} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \text { IIP3 } \\ \text { (dBm) } \end{gathered}$	$\begin{aligned} & \text { P1dB } \\ & \text { (dBm) } \end{aligned}$	$\begin{gathered} \mathrm{NF} \\ \text { (dB) } \end{gathered}$
OPEN	204	2.4	33.0	17.9	10.5
4.7	194	2.3	32.6	17.8	10.2
2.2	186	2.3	32.1	17.6	9.9
1.0	164	2.3	30.5	17.0	9.4

Low Power Mode

The LTC5551 can be set to low power mode using a digital voltage applied to the ISEL pin (Pin 8). This allows the flexibility to reduce current when lower RF performance is acceptable. Figure 15 shows a simplified schematic of the ISEL pin interface. When ISEL is set low ($<0.3 \mathrm{~V}$), the mixer operates at maximum DC current. When ISEL is set high ($>1.2 \mathrm{~V}$), the DC current is reduced, thus reducing power consumption. When floating, the ISEL is pulled low by an internal pull-down resistor, and operates at maximum supply current. The performance in low power mode and nominal power mode are compared in Table 6.

Figure 15. ISEL Interface Schematic

Figure 16. Enable Input Circuit

Table 6. Performance Comparison - Low Power vs High Power Mode RF = 1950MHz, Low Side LO, IF = 153MHz, EN = High

ISEL	$\mathbf{I} \mathbf{C C}$ $(\mathbf{m A})$	GC $(\mathbf{d B})$	IIP3 $(\mathbf{d B m})$	$\mathbf{P 1 d B}$ $(\mathbf{d B m})$	NF $(\mathbf{d B})$
Low	204	2.4	35.5	18.0	9.7
High	139	2.4	29.3	16.7	8.3

Enable Interface

Figure 16 shows a simplified schematic of the EN pin interface. To enable the chip, the EN voltage must be higher than 1.2V. The EN voltage at the pin should never exceed the power supply voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$ by more than 0.3 V . If this should occur, the supply current could be sourced through the ESD diode, potentially damaging the IC.
If the EN pin is left floating, its voltage will be pulled low by the internal pull-down resistor and the chip will be disabled.

APPLICATIONS INFORMATION

Temperature Diode

The LTC5551 provides an on-chip diode at Pin 12 (TEMP) for chip temperature measurement. Pin 12 is connected to the anode of an internal ESD diode with its cathode connected to internal ground. The chip temperature can be measured by injecting a constant DC current into Pin 12 and measuring its DC voltage. The voltage vs temperature coefficient of the diode is about $-1.72 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ with $10 \mu \mathrm{~A}$ current injected into the TEMP pin. Figure 17 shows a typical temperature-voltage behavior when $10 \mu \mathrm{~A}$ and $80 \mu \mathrm{~A}$ currents are injected into Pin 12.

5551 F17
Figure 17. TEMP Diode Voltage vs Junction Temperature (T_{J})

Supply Voltage Ramping

Fast ramping of the supply voltage can cause a current glitch in the internal ESD protection circuits. Depending on the supply inductance, this could result in a supply voltage transient that exceeds the maximum rating. A supply voltage ramp time of greater than 1 ms is recommended.

Spurious Output Levels

Mixer spurious output levels versus harmonics of the RF and LO are tabulated in Table 7. The spur levels were measured on a standard evaluation board using the test circuit shown in Figure 1. The spur frequencies can be calculated using the following equation:

$$
f_{S P U R}=\left(M \bullet f_{R F}\right)-\left(N \bullet f_{L O}\right)
$$

Table 7. IF Output Spur Levels (dBc)
$R F=1950 \mathrm{MHz}, \mathrm{P}_{\mathrm{RF}}=0 \mathrm{dBm}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{IF}=153 \mathrm{MHz}$, Low Side LO,
$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{EN}=$ High, ISEL $=$ Low, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$

	N										
		0	1	2	3	4	5	6	7	8	9
	0		-26	-36	-40	-40	-61	-70	-57	-60	*
	1	-28	0	-43	-26	-60	-43	-64	-49	-62	-63
	2	-83	-66	-70	-69	-83	*	*	-81	*	-79
	3	*	-81	*	*	*	*	*	*	*	*
M	4	*	*	*	*	*	*	*	*	*	*
	5	*	*	*	*	*	*	*	*	*	*
	6	-84	*	*	*	*	*	*	*	*	*
	7	-82	*	*	-84	*	*	*	*	*	*

*Less than -85 dBc

LTC5551

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

REVISIOC HISTORY

REV	DATE	DESCRIPTION	PAGE NUMBER
A	$12 / 13$	Added U.S. Patent number Corrected transformer T1 part number	1

TYPICAL APPLICATION

Wideband 100 Ω Differential IF Output Matching

Conversion Gain and IIP3 vs IF Frequency (Low Side LO)

5551 TA02b

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS

Mixers and Modulators

LT®5527	400MHz to 3.7GHz, 5V Downconverting Mixer	2.3dB Gain, 23.5dBm IIP3 and 12.5dB NF at 1900MHz, 5V/78mA Supply
LT5557	400MHz to 3.8GHz, 3.3V Downconverting Mixer	2.9dB Gain, 24.7dBm IIP3 and 11.7dB NF at 1950MHz, 3.3V/82mA Supply
LTC559x	600MHz to 4.5GHz Dual Downconverting Mixer Family	8.5dB Gain, 26.5dBm IIP3, 9.9dB NF, 3.3V/380mA Supply
LTC5569	300MHz to 4GHz, 3.3V Dual Active Downconverting Mixer	2dB Gain, 26.8dBm IIP3 and 11.7dB NF, 3.3V/180mA Supply
LTC554x	600MHz to 4GHz, 5V Downconverting Mixer Family	8dB Gain, >25dBm IIP3 and 10dB NF, 3.3V/200mA Supply
LT5578	400MHz to 2.7GHz Upconverting Mixer	27 dBm OIP3 at 900MHz, 24.2dBm at 1.95GHz, Integrated RF Output Transformer
LT5579	1.5 GHz to 3.8 GHz Upconverting Mixer	27.3 dBm OIP3 at 2.14GHz, NF = 9.9dB, 3.3V Supply, Single-Ended LO and RF Ports
LTC5588-1	200MHz to 6GHz I/Q Modulator	31 dBm OIP3 at 2.14GHz, $-160.6 \mathrm{dBm} / \mathrm{Hz}$ Noise Floor
LTC5585	700MHz to 3GHz Wideband I/Q Demodulator	>530MHz Demodulation Bandwidth, IIP2 Tunable to >80dBm, DC Offset Nulling
Amplifiers		
LTC6430-15	High Linearity Differential IF Amp	20MHz to 2GHz Bandwidth, 15.2dB Gain, 50dBm OIP3, 3dB NF at 240MHz
LTC6431-15	High Linearity Single-Ended IF Amp	20 MHz to 1.7GHz Bandwidth, 15.5dB Gain, 47dBm OIP3, 3.3dB NF at 240MHz
LTC6412	31dB Linear Analog VGA	35 dBm OIP3 at 240 MHz , Continuous Gain Range -14dB to 17dB
LT5554	Ultralow Distortion IF Digital VGA	48dBm OIP3 at 200MHz, 2dB to 18dB Gain Range, 0.125dB Gain Steps
RF Power Detectors		
LT5538	40MHz to 3.8GHz Log Detector	$\pm 0.8 \mathrm{~dB}$ Accuracy Over Temperature, -72 dBm Sensitivity, 75dB Dynamic Range
LT5581	6GHz Low Power RMS Detector	40 dB Dynamic Range, $\pm 1 \mathrm{~dB}$ Accuracy Over Temperature, 1.5 mA Supply Current
LTC5582	40MHz to 10GHz RMS Detector	$\pm 0.5 \mathrm{~dB}$ Accuracy Over Temperature, $\pm 0.2 \mathrm{~dB}$ Linearity Error, 57 dB Dynamic Range
LTC5583	Dual 6GHz RMS Power Detector	Up to 60dB Dynamic Range, $\pm 0.5 \mathrm{~dB}$ Accuracy Over Temperature, $>50 \mathrm{~dB}$ Isolation
ADCs		
LTC2208	16-Bit, 130Msps ADC	78dBFS Noise Floor, >83dB SFDR at 250MHz
LTC2153-14	14-Bit, 310Msps Low Power ADC	68.8dBFS SNR, 88dB SFDR, 401mW Power Consumption

RF PLL/Synthesizer with VCO

LTC6946-1/ \quad Low Noise, Low Spurious Integer-N PLL with $\quad 373 \mathrm{MHz}$ to $5.79 \mathrm{GHz},-157 \mathrm{dBc} / \mathrm{Hz}$ WB Phase Noise Floor, $-100 \mathrm{dBc} / \mathrm{Hz}$ Closed-Loop
LTC6946-2/ \quad Integrated VCO \quad Phase Noise

LTC6946-3

