High Frequency, Dual Output, Synchronous Buck Converter Using GaN FETs

DESCRIPTION

Demonstration circuit 2938A is a dual output nonisolated synchronous step-down converter that drives all N-channel gallium nitride (GaN) FET power stages. DC2938A features the LTC®7890, a low quiescent current high frequency (programmable fixed frequency from 100kHz up to 3MHz) dual step-down DC/DC synchronous controller, with dedicated driver feature for GaN FET housed in a small $6 \mathrm{~mm} \times 6 \mathrm{~mm}$ QFN package.
The DC2938A operates over an input voltage range from 30 V to 72 V , while the LTC7890 can operate up to 100 V . The DC2938A demo board produces two outputs: 5V and 12 V with up to 20A output, respectively. DC2938A is configured with a sense resistor for current sensing. A mode selector allows the DC2938A to operate in forced
continuous operation, pulse-skipping or Burst Mode ${ }^{\circledR}$ operation during light loads. DTCA and DTCB selector provides easy adjustment of the dead time to improve efficiency or to tailor the application. DRVSET and DRVUV selector offers option to choose drive voltage from 4 V to 5.5 V to optimize performance.

The EXTV ${ }_{\text {CC }}$ pin permits the LTC7890 to be powered from the output of the switching regulator or other available source, reducing power dissipation, and improving efficiency. Please refer to the LTC7890 data sheet for a complete description of the part operation and application information.
Design files for this circuit board are available.
All registered trademarks and trademarks are the property of their respective owners.

BOARD PHOTO

DEMO MANUAL DC2938A

PGRFORMANCE SUMMARY
Specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
VIN	Input Supply Range	Continuous Operation, Free Air	30		72	V
$\mathrm{V}_{\text {OUT1 }}$	Output Voltage 1			5		V
$\mathrm{V}_{\text {OUT2 }}$	Output Voltage 2			12		V
IOUT1	Output Current 1				20	A
Iout2	Output Current 2				20	A
$\mathrm{P}_{\text {OUT }} / \mathrm{P}_{\text {IN }}$	Efficiency, See Figure 3 and Figure 4 for More Information	$V_{\text {IN }}=48 \mathrm{~V}, \mathrm{~V}_{\text {OUT } 1}=5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=20 \mathrm{~A}$		93.87		\%
		$\mathrm{V}_{\text {IN }}=48 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=12 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=20 \mathrm{~A}$		96.71		\%

PUICK START PROCEDURE

Demonstration circuit 2938A is easy to set up to evaluate the performance of the LTC7890. Refer to Figure 1 for the proper measurement equipment setup and follow the procedure below.

1. With power off, connect the input power supply to V_{IN} (30V to 72V) and GND (input return).
2. Connect the output loads between $\mathrm{V}_{0 U T 1}$ and GND, Vout2 and GND, respectively. (initial load: no load). Refer to Figure 1.

NOTE: Please use J1 and J2 (not E3 and E4), J5 and J6 (not E6 and E8), and J3 and J4 (not E5 and E7) for input power supply, output load $\mathrm{V}_{\text {OUT1 }}$ and $\mathrm{V}_{\text {OUT2 }}$ connection.
3. Connect the DVMs to the input and outputs.
4. Check the default jumper/switch position: RUN1 and RUN2 are OFF.
5. Turn on the input power supply and adjust voltage to 48 V .

NOTE: Make sure that the input voltage does not exceed 72V.
6. Turn on the switches: RUN1: ON and RUN2: ON
7. Check for the proper output voltages from $\mathrm{V}_{\text {OUT1 }}$ to GND and $V_{\text {OUT2 }}$ to GND.
8. Once the proper output voltage is established, adjust the loads within the operating range and measure the efficiency, output ripple voltage and other parameters.
9. After completing all tests, adjust the load to OA, power off the input power supply.
NOTE: When measuring the output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the $\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\text {OUT }}$ and GND terminals or directly across the relevant capacitor. See Figure 2 for the proper scope probe technique.

EXTERNAL EXTV cc OPTION

The EXTV ${ }_{\text {CC }}$ pin of the LTC7890 on the DC2938A board can be utilized for better efficiency and better thermal performance. Please follow the below procedure if an external power supply is used to bias the LTC7890 EXTV ${ }_{\text {CC }}$ pin (do not float this pin).

1. Open R59 and populate R61 with a 0Ω resistor.
2. Apply a DC voltage (recommend 6 V to 13 V) on EXTV CC and GND turret after the input voltage is established. Make sure EXTV ${ }_{\text {CC }}<\mathrm{V}_{\text {IN }}$.
3. Turn off the DC bias on the EXTV ${ }_{C C}$ before powering off the input power supply.

DEMO MANUAL DC2938A

PUICK START PROCEDURE

Figure 1. Test Setup Drawing for DC2938A

Figure 2. Proper Measurement Equipment Setup

DEMO MANUAL DC2938A

TYPICAL TEST RESULTS

Figure 3. Measured Efficiency ($\mathrm{V}_{\text {IN }}=48 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{f}_{\text {SW }}=500 \mathrm{kHz}$)

Figure 4. Measured Efficiency ($\mathrm{V}_{\mathrm{IN}}=48 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=12 \mathrm{~V}, \mathrm{f}_{\mathrm{SW}}=500 \mathrm{kHz}$)

DEMO MANUAL DC2938A

TYPICAL TEST RESULTS

Figure 5. Measured Output Voltage vs Load Current

Figure 6. Measured Output Voltage Ripple (20MHz BW, CCM)

DEMO MANUAL DC2938A

TYPICAL TEST RESULTS

(a) Front View

(b) Back View

Figure 7. Thermal at $\mathrm{V}_{\text {IN }}=48 \mathrm{~V}, \mathrm{~V}_{\text {OUT1 }}=5 \mathrm{~V}, \mathrm{I}_{\text {OUT1 }}=20 \mathrm{~A}, \mathrm{~V}_{\text {OUT2 }}=12 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=20 \mathrm{~A}$

Airflow	Heat Sink	Ambient $\left({ }^{\circ} \mathrm{C}\right)$
Natural Convection	None	25

DEMO MANUAL DC2938A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	1	C1	CAP., 4.7山F, X5R, 25V, 10\%, 0603, N0 SUBS. ALLOWED	MURATA, GRM188R61E475KE11D
2	5	C2, C3, C4, C15, C17	CAP., $0.1 \mu \mathrm{~F}, \mathrm{X} 7 \mathrm{R}, 25 \mathrm{~V}, 10 \%$, 0603	AVX, 06033C104KAT2A
3	2	C5, C7	CAP., 1000pF, X7R, 25V, 10\%, 0603	AVX, 06033C102KAT2A
4	1	C12	CAP., 3300pF, X7R, 50V, 10\%, 0603	WURTH ELEKTRONIK, 885012206086
5	1	C14	CAP., 5600pF, COG, 50V, 5\%, 0603	KEMET, C0603C562J5GACTU
6	3	C18, C19, C23	CAP., 14F, X7R, 25V, 10\%, 0603, AEC-Q200	MURATA, GCM188R71E105KA64D
7	2	C20, C24	CAP., 100pF, COG, 100V, 5\%, 0603	MURATA, GRM1885C2A101JA01D
8	2	C21, C22	CAP., 14F, X7R, 25V, 10\%, 0805	AVX, 08053C105KAT2A
9	1	C25	CAP., $0.14 \mathrm{~F}, \mathrm{X7R}, 100 \mathrm{~V}, 10 \%, 0603$	AVX, 06031C104KAT2A
10	2	CIN1, CIN2	CAP., 47 $\mu \mathrm{F}$, ALUM POLY, OS-CON, 80V, 20\%, $10 \mathrm{~mm} \times 12.6 \mathrm{~mm}, \mathrm{~F} 12$, SMD, RADIAL	PANASONIC, 80SXV47M
11	4	CIN7, CIN12, CIN13, CIN14	CAP., $1 \mu \mathrm{~F}, \mathrm{X7S}, 100 \mathrm{~V}, 10 \%$, 0805, S0FT TERM.	MURATA, GRJ21BC72A105KE11L
12	8	CIN8, CIN9, CIN10, CIN11, CIN15, CIN16, CIN17, CIN18	CAP., 10^F, X7S, 100V, 10\%, 1210	MURATA, GRM32EC72A106KE05L
13	8	COUT1, COUT2, COUT8, COUT9, COUT10, COUT11, COUT12, COUT14	CAP., 22 $2 \mathrm{~F}, \mathrm{X} 7 \mathrm{R}, 16 \mathrm{~V}, 10 \%$, 1210	MURATA, GRM32ER71C226KEA8L
14	4	COUT3, COUT5, COUT7, COUT13	CAP., 150¢F, TANT, POSCAP, 16V, 20\%, 7343, 50ms, TQC	PANASONIC, 16TQC150MYF
15	2	D3, D4	DIODE, SCHOTTKY, 100V, 12A, S0-8FL, AEC-101	ON SEMICONDUCTOR, NTS12100EMFST1G
16	19	E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19	TEST POINT, TURRET, 0.094" MTG. HOLE, PCB $0.062^{\prime \prime}$ THK	MILL-MAX, 2501-2-00-80-00-00-07-0
17	2	L1, L2	IND., $2 \mu \mathrm{H}$, PWR, SHIELDED, $20 \%, 40 \mathrm{~A}, 1.34 \mathrm{~m} \Omega$, $19.69 \mathrm{~mm} \times 19.55 \mathrm{~mm} \times 10.67 \mathrm{~mm}$, SER2011, AEC-Q200	COILCRAFT, SER2011-202MLB
18	8	Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8	XSTR., MOSFET, N-CH, E-MODE, 100V, 90A, GaNPX-4, BOTTOM-SIDE COOLED	GAN SYSTEMS INC., GS61008P-E05-MR
19	2	Q9, Q10	XSTR., MOSFET, N-CH, 40V, 14A, DPAK (T0-252)	VISHAY, SUD50N04-8M8P-4GE3
20	4	R1, R5, R56, R62	RES., 1M, 1\%, 1W/10W, 0603, AEC-Q200	VISHAY, CRCW06031M00FKEA
21	11	$\begin{aligned} & \text { R2, R18, R24, R25, R28, R29, } \\ & \text { R43, R45, R50, R52, R59 } \end{aligned}$	RES., $0 \Omega, 1 \mathrm{~W} / 10 \mathrm{~W}, 0603$, AEC-Q200	VISHAY, CRCW06030000Z0EA
22	8	$\begin{aligned} & \text { R6, R7, R8, R9, R13, R14, } \\ & \text { R15, R16 } \end{aligned}$	RES., $2 \Omega, 1 \%, 1 \mathrm{~W} / 10 \mathrm{~W}, 0603$, AEC-Q200	VISHAY, CRCW06032R00FKEA
23	2	R12, R17	RES., 10ת, 1\%, 1W/10W, 0603	VISHAY, CRCW060310ROFKEA
24	1	R20	RES., 4.02k, 1\%, 1W/10W, 0603, AEC-Q200	PANASONIC, ERJ3EKF4021V
25	1	R21	RES., $5.9 \mathrm{k}, 1 \%$, 1W/10W, 0603	PANASONIC, ERJ3EKF5901V
26	1	R23	RES., 1.4M, 1\%, 1W/10W, 0603, AEC-Q200	VISHAY
27	2	R32, R57	RES., 100k, 1\%, 1W/10W, 0603, AEC-Q200	VISHAY, CRCW0603100KFKEA
28	3	R36, R41, R64	RES., 10k, 1\%, 1W/10W, 0603, AEC-Q200	VISHAY, CRCW060310K0FKEA
29	1	R37	RES., 75k, 1\%, 1W/10W, 0603	PANASONIC, ERJ3EKF7502V
30	2	R40, R42	RES., 100k, 20\%, 1W/4W, SMD 4mm SQ, 1-TURN, TOP ADJ., TRIMPOT	BOURNS, 3314J-1-104E
31	1	R49	RES., 1k, 1\%, 1W/10W, 0603	VISHAY, CRCW06031K00FKEA

DEMO MANUAL DC2938A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
32	1	R54	RES., 0 $\Omega, 1 W, ~ 2010, ~ H I G H ~ P W R, ~ P U L S E ~ P R 00 F, ~$ AEC-Q200	VISHAY, CRCW20100000ZOEFHP
33	1	R65	RES., $0.01 \Omega, 1 \%, 1 W, 2010, ~ P W R, ~ M E T A L, ~ S E N S E, ~$ AEC-Q200	VISHAY, WSL2010R0100FEA18
34	2	RS1, RS2	RES., $0.0015 \Omega, 1 \%, 3 W, 2512, ~ M E T A L, ~ S E N S E, ~$ AEC-Q200	VISHAY, WSLP25121L500FEA
35	2	SW1, SW2	SWITCH, SLIDE, DPDT, 0.3A, 6VDC, PTH	C\&K, JS202011CQN
36	1	U1	IC, BUCK CONTROLLER FOR GaN FETs, QFN-40	ANALOG DEVICES, LTC7890RUJM\#TRPBF

Additional Demo Board Components

1	0	C6, C8, C9, C10, C11, C13, C16	CAP., OPTION, 0603	
2	0	CIN3, CIN4, CIN5, CIN6	CAP., 22 μ F, X7S, 100V, 20\%, 2220, STACKED	
3	0	COUT4, COUT6, COUT15, COUT18	CAP., OPTION, 7343	
4	0	R19, R22, R26, R27, R30, R31, R33, R34, R38, R39, R46, R51, R53, R58, R60, R61, R63, R66, R68	RES., OPTION, 0603	
5	0	R55	RES., OPTION, 2010	
6	0	R67, R71, R72, R73	RES., OPTION, 2512	

Hardware: For Demo Board Only

1	6	J1, J2, J3, J4, J5, J6	EVAL BOARD STUD HARDWARE SET, \#10-32	ANALOG DEVICES, 720-0010
2	3	J7, J8, J9	CONN., RF, BNC, RCPT, JACK, 5-PIN, ST, THT, 50	AMPHENOL RF, 112404
3	5	JP1, JP2, JP3, JP4, JP6	CONN., HDR, MALE, 2×3, 2mm, VERT, ST, THT	WURTH ELEKTRONIK, 62000621121
4	2	JP7, JP8	CONN., HDR, MALE, 2×4, 2mm, VERT, ST, THT	WURTH ELEKTRONIK, 62000821121
5	4	MP1, MP2, MP3, MP4	STANDOFF, NYLON, SNAP-ON, 0.625" (5/8), 15.9mm	KEYSTONE, 8834
6	7	XJP1, XJP2, XJP3, XJP4, XJP6, XJP7, XJP8	CONN., SHUNT, FEMALE, 2-POS, 2mm	WURTH ELEKTRONIK, 60800213421

SCHEMATIC DIAGRAM

ESD Caution
ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection
circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS ($\$ 100.00$). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed

