OP220

FEATURES

Excellent TCV ${ }_{\text {os }}$ Match: $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Max
Low Input Offset Voltage: $150 \mu \mathrm{~V}$ Max
Low Supply Current: $100 \mu \mathrm{~A}$
Single-Supply Operation: 5 V to 30 V
Low Input Offset Voltage Drift: $0.75 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Max
High Open-Loop Gain: 2,000 V/mV
High PSRR: $3 \mu \mathrm{~V} / \mathrm{V}$
Low Input Bias Current: 12 nA
Wide Common-Mode Voltage Range: V- to Within 1.5 V of $\mathrm{V}+$

Pin Compatible with 1458, LM158, and LM2904
Available in Die Form

GENERAL DESCRIPTION

The OP220 is a monolithic dual operational amplifier that can be used either in single or dual supply operation. The low offset voltage and input offset voltage tracking as low as $1.0 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, make this the first micropower precision dual operational amplifier.
The excellent specifications of the individual amplifiers combined with the tight matching and temperature tracking between channels provides high performance in instrumentation amplifier designs. The individual amplifiers feature extremely low input offset voltage, low offset voltage drift, low noise voltage, and low bias current. They are fully compensated and protected.
M atching between channels is provided on all critical parameters including input offset voltage, tracking of offset voltage versus temperature, noninverting bias currents, and common-mode rejection ratios.

PIN CONFIGURATIONS

8-Lead Hermatic Dip (Z-Suffix)

8-Lead SOIC (S-Suffix)

8-Lead Plastic Dip
(P-Suffix)

8-Lead TO-99 (J-Suffix)

*ACESSIBLE IN CHIP FORM ONLY

REV. A
Figure 1. Simplified Schematic

[^0]One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A
Tel: 781/329-4700
www.analog.com
Fax: 781/326-8703
© Analog Devices, Inc., 2002

OP220- SPECIFICATIONS

*Sample tested.
 $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ for OP220G unless otherwise noted.)

Parameter	Symbol	Conditions	OP220A/E			OP220F			OP220C/G			Unit
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage Drift*	TCV ${ }_{\text {os }}$	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		0.75	1.5		1.2	2		2	3	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Voltage	$\mathrm{V}_{0 S}$			200	300		400	500		1,000	1,300	$\mu \mathrm{V}$
Input Offset Current	Ios	$V_{C M}=0$		0.5	2		0.6	2.5		0.6	5	nA
Input Bias C urrent	I_{B}	$V_{C M}=0$		12	25		13	30		14	40	nA
Input Voltage Range	IVR	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 / 3.2 \\ & -15 /+1 \end{aligned}$			$\begin{aligned} & \hline 0 / 3.2 \\ & -15 /+ \end{aligned}$			$\begin{aligned} & 0 / 3.2 \\ & -15 /+1 \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Common-M ode Rejection Ratio	CMRR	$\begin{aligned} & V+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 3.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & -15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+13.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 86 \\ & 90 \end{aligned}$	$\begin{aligned} & 90 \\ & 95 \end{aligned}$		$\begin{aligned} & 80 \\ & 85 \end{aligned}$	$\begin{aligned} & 85 \\ & 90 \end{aligned}$		$\begin{aligned} & 70 \\ & 75 \end{aligned}$	80 85		dB dB
Power Supply Rejection Ratio	PSRR	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V} \text { to } \pm 15 \mathrm{~V}, \\ & \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}+=5 \mathrm{~V} \text { to } 30 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 6 \\ & 10 \end{aligned}$	$\begin{aligned} & 18 \\ & 32 \end{aligned}$		18	$\begin{aligned} & 57 \\ & 100 \end{aligned}$		$\begin{aligned} & 57 \\ & 100 \end{aligned}$	$\begin{aligned} & 180 \\ & 320 \end{aligned}$	$\mu \mathrm{V} / \mathrm{N}$ $\mu \mathrm{V} / \mathrm{N}$
L arge-Signal Voltage Gain	Avo	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \mathrm{k} \Omega \\ & \mathrm{~V}_{0}= \pm 10 \mathrm{~V} \end{aligned}$	500	1,000			800		400	500		V / mV
Output Voltage Swing	V_{0}	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=20 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \mathrm{k} \Omega \end{aligned}$	$\begin{gathered} 0.9 / 3.8 \\ \pm 13.6 \end{gathered}$			$\begin{gathered} 0.9 / 3.8 \\ \pm 13.6 \end{gathered}$			$\begin{array}{r} 1.0 / 3.8 \\ \pm 13.6 \\ \hline \end{array}$			
Supply Current (Both Amplifiers)	I_{SY}	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}, \mathrm{No} \text { Load } \\ & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{No} \text { Load } \end{aligned}$		$\begin{aligned} & 135 \\ & 190 \end{aligned}$	$\begin{aligned} & 170 \\ & 250 \end{aligned}$		$\begin{aligned} & 155 \\ & 200 \end{aligned}$	$\begin{aligned} & 185 \\ & 280 \end{aligned}$		$\begin{aligned} & 170 \\ & 275 \end{aligned}$	$\begin{aligned} & 210 \\ & 330 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$

[^1]MATCHING CHARACTERISTICS @ $\mathrm{V}_{\mathrm{s}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless othervise noted.)

Parameter	Symbol	Conditions	OP220A/E			OP220F			OP220C/G			Unit
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage M atch	$\Delta \mathrm{V}_{\text {OS }}$			150	300		250	500		300	800	$\mu \mathrm{V}$
A verage N oninverting Bias Current	$\mathrm{I}_{\mathrm{B}}+$	$V_{C M}=0$		10	20		15	25		20	30	nA
N oninverting Offset Current	los+	$V_{C M}=0$		0.7	1.5		1	2		1.4	2.5	nA
Common-M ode Rejection Ratio M atch ${ }^{1}$	$\triangle \mathrm{CMRR}$	$\mathrm{V}_{\text {CM }}=-15 \mathrm{~V}$ to +13.5 V	92	100		87	95		72	85		dB
Power Supply Rejection Ratio M atch ${ }^{2}$	\triangle PSRR	$\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$,			14					57	140	$\mu \mathrm{V} / \mathrm{N}$

NOTES

${ }^{1} \triangle C M R R$ is $20 \log _{10} V_{C M} / \Delta C M E$, where $V_{C M}$ is the voltage applied to both noninverting inputs and $\triangle C M E$ is the difference in common-mode input-referred error.
${ }^{2} \Delta$ PSRR is $\frac{\text { Input Referred Differential Error }}{\Delta \mathrm{V}_{S}}$.
${ }^{3}$ Sample tested.
MATCHING CHARACTERISTICS
$\left(V_{S}= \pm 15 \mathrm{~V},-55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}\right.$ for $0 P 220 \mathrm{~A} / \mathrm{C},-25^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ for OP220E/F, $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$ for OP220G unless otherwise noted. Grades E, F are sample tested.)

Parameter	Symbol	Conditions	$\text { Min } \begin{gathered} \text { OP220A/E } \\ \text { Typ } \end{gathered} \text { Max }$			OP220F			OP220C/G			Unit
						Min	Typ	Max	Min	Typ	Max	
Input Offset Voltage M atch	$\Delta \mathrm{V}_{\text {os }}$				500		400	800		800	1,800	$\mu \mathrm{V}$
Input Offset Voltage Tracking ${ }^{1}$	$\mathrm{TC} \Delta \mathrm{V}_{\text {os }}$				2		1.5	3		1.5	5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Average N oninverting Bias Current	$\mathrm{I}_{\mathrm{B}}+$	$\mathrm{V}_{\text {CM }}=0$			25		15	30		22	40	nA
Average Drift of N oninverting Bias Current ${ }^{1}$	$\mathrm{TCl}_{\text {B }}+$	$V_{C M}=0$			25		15	30		30	50	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
N oninverting Offset Current	los+	$V_{C M}=0$			2		1	2.5		2.5	5	nA
Average D rift of N oninverting Offset Current ${ }^{1}$	TClos+	$V_{C M}=0$			15		12	22.5		15	30	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
Common-M ode Rejection Ratio M atch ${ }^{2}$	\triangle CMRR	$\mathrm{V}_{C M}=-15 \mathrm{~V}$ to +13 V	87	96		82	96		72	80		dB
Power Supply Rejection Ratio M atch ${ }^{3}$	$\Delta \mathrm{PSRR}$	$\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$,			26		30	78		57	250	$\mu \mathrm{V} / \mathrm{V}$

NOTES

${ }^{1}$ Sample tested.
${ }^{2} \triangle C M R R$ is $20 \log _{10} V_{C M} / \Delta C M E$, where $V_{C M}$ is the voltage applied to both noninverting inputs and $\triangle C M E$ is the difference in common-mode input-referred error.
${ }^{3} \Delta \mathrm{PSRR}$ is $\frac{\text { Input Referred Differential Error }}{\Delta \mathrm{V}_{S}}$.

TYPICAL ELECTRICAL CHARACTERISTICS
 (@ $V_{5}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Parameter	Symbol	Conditions	OP220N Typical	Unit
Average Input Offset Voltage Drift	TCV OS		1.5	$\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
Large-Signal Voltage Gain	A_{Vo}	$\mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega$	2000	$\mathrm{~V} / \mathrm{mV}$

OP220- SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS*

Supply Voltage	
Differential Input Voltage 30 V or Supply Voltage	
Input Voltage . Supply Voltage	
Output Short-C ircuit D uration	Indefinite
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Junction Temperature (T_{i}) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
O perating T emperature R ange	
OP220A/OP220C	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
OP220E/OP220F	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
OP220G	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
L ead T emperature R ange (Sold	$300^{\circ} \mathrm{C}$
TES	

DIE CHARACTERISTICS

1. INVERTING INPUT (A) 2. NONINVERTING INPUT (A)
2. BALANCE (A)
. V- BALANCE (B)
NONINVERTING INPUT (B) 7. INVERTING INPUT (B)
3. BALANCE (B)
i. ${ }^{+}+{ }_{+}^{(B)}$
4. V_{+}(B)
5. V_{+}
6. $\mathrm{OUT}(\mathrm{A})$
7. BALANCE (A)

DIE SIZE 0.097 INCH $\times 0.063$ INCH, 6111 SQ. MILS
($2.464 \mathrm{~mm} \times 1.600 \mathrm{~mm}, 3.94$ SQ. mm)
NOTE : ALL V + PADS ARE INTERNALL CONNECTED

Package Type	$\boldsymbol{\theta}_{\mathbf{J A}}{ }^{*}$	$\boldsymbol{\theta}_{\mathbf{J C}}$	Unit
8-L ead H ermetic DIP (Q)	148	16	${ }^{\circ} \mathrm{C} / \mathrm{W}$
8-L ead Plastic DIP (N)	103	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$
8-L ead SOL (RN)	158	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$
TO-99 (H)	150	18	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{*} \theta_{J A}$ is specified for worst-case mounting conditions, i.e., $\theta_{J A}$ is specified for device in socket for CERDIP and PDIP packages; θ_{JA} is specified for device soldered to printed circuit board for SO packages.

ORDERING GUIDE

$\begin{aligned} & \hline \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{OS}} \mathrm{MAX} \\ & (\mathrm{mV}) \\ & \hline \end{aligned}$	Package Options			Operating Temperature Range
	CERDIP	Plastic	TO-99	
150	OP220AZ*			M IL
150	OP220EZ*			IND
300	OP220FZ*			IND
750		OP220CJ*	MIL	
750	OP220GZ*	OP220GP*		XIND
750		OP220GS		XIND

For military processed devices, please refer to the M il Standard Data Sheet
OP220AJ/883*
*N ot for new design. O bsolete A pril 2002.

WAFER TEST LIMITS (@ $\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}$, to $\pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Parameter	Symbol	Conditions	OP220N Limit	Unit
Input Offset V oltage	$\mathrm{V}_{\text {OS }}$		200	$\mu \mathrm{V}$ M ax
Input Offset V oltage M atch	$\Delta \mathrm{V}_{\text {OS }}$		300	$\mu \mathrm{V}$ M ax
Input Offset C urrent	tos	$V_{C M}=0$	2	nA M ax
Input Bias C urrent	I_{B}	$\mathrm{V}_{\text {CM }}=0$	25	nA M ax
Input Voltage Range	IVR	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	-15/13.5	$\checkmark \mathrm{M}$ in
Common-M ode Rejection R atio	CMRR	$\begin{aligned} & \mathrm{V}-=0 \mathrm{~V}, \mathrm{~V}+=5 \mathrm{~V}, 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 3.5 \mathrm{~V} \\ & -15 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 88 \\ & 93 \end{aligned}$	$d B M$ in
Power Supply Rejection R atio	PSRR	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V} \text { to } \pm 15 \mathrm{~V} \\ & \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~V}+=5 \mathrm{~V} \text { to } 30 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 12.5 \\ & 22.5 \end{aligned}$	$\mu \mathrm{V} / \mathrm{V}$ M ax
L arge-Signal Voltage G ain	$A_{\text {vo }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V} \\ & \mathrm{~V}_{0}= \pm 10 \mathrm{~V} \end{aligned}$	1000	$\mathrm{V} / \mathrm{mV} \mathrm{M}$ in
Output Voltage Swing	V_{0}	$\begin{aligned} & \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=25 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 0.7 / 4 \\ & \pm 14 \end{aligned}$	V M in
Supply Current (Both Amplifiers)	$I_{S Y}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}, \mathrm{~N} \text { o Load } \\ & \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~N} \text { o Load } \end{aligned}$	$\begin{aligned} & 125 \\ & 190 \end{aligned}$	$\mu \mathrm{A} \mathrm{M} \mathrm{ax}$

NOTE

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packing is not guaranteed for standard product dice. Consult factory to negotiate specifications based on die lot qualification through sample lot assembly and testing.

Typical Performance Characteristics- OP220

TPC 1. Normalized Offset Voltage vs. Temperature

TPC 2. Input Offset Voltage vs. Power Supply Voltage

TPC 3. Open-Loop Gain vs. Temperature

TPC 4. Input Bias Current vs. Temperature

TPC 5. Input Offset Current vs. Temperature

TPC 6. Supply Current vs. Supply Voltage

TPC 7. CMRR vs. Frequency

TPC 8. PSRR vs. Frequency

TPC 9. Maximum Output Voltage vs. Load Resistance

TPC 10. Open-Loop Voltage Gain and Phase vs. Frequency

TPC 11. Maximum Output Swing vs. Frequency

TPC 12. Slew Rate vs. Temperature

TPC 13. Voltage Noise Density vs. Frequency
 TPC 14. Noise Density vs. Frequency

Figure 2. Small-Signal Transient Response

Figure 3. Large-Signal Transient Response

INSTRUMENTATION AMPLIFIER APPLICATIONS OF THE OP220

Two Op Amp Configuration
The excellent input characteristics of the OP220 make it ideal for use in instrumentation amplifier configurations where low-level differential signals are to be amplified. The low-noise, low input offsets, low drift, and high gain combined with excellent CM RR provide the characteristics needed for high-performance instrumentation amplifiers. In addition, the power supply current drain is very low.
The circuit of Figure 4 is recommended for applications where the common-mode input range is relatively low and differential gain will be in the range of 10 to 1,000 . This two op amp instrumentation amplifier features independent adjustment of common-mode rejection and differential gain. Input impedance is very high since both inputs are applied to noninverting op amp inputs.

Figure 4. Two Op Amp Instrumentation Amplifier Configuration
The input voltages are represented as a common-mode input $V_{C M}$ plus a differential input V_{D}. The ratio $R 3 / R 4$ is made equal to the ratio $R 2 / R$, to reject the common-mode input $V_{C M}$. T he differential signal V_{D} is then amplified according to:

$$
V_{O}=\frac{R 4}{R 3}\left(1+\frac{R 3}{R 4}+\frac{R 2+R 3}{R_{O}}\right) V_{D} \text {, where } \frac{R 3}{R 4}=\frac{R 2}{R 1}
$$

N ote that gain can be independently varied by adjusting R_{0}. From considerations of dynamic range, resistor tempco matching, and matching of amplifier response, it is generally best to make RX, R2, R3, and R4 approximately equal. Designating R1, R2, R3, and R4 as RN allows the output equation to be further simplified:

$$
\mathrm{V}_{\mathrm{O}}=2\left(1+\frac{\mathrm{R}_{\mathrm{N}}}{\mathrm{R}_{\mathrm{O}}}\right) \mathrm{V}_{\mathrm{D}}, \text { where }_{\mathrm{N}}=\mathrm{R} 1=\mathrm{R} 2=\mathrm{R} 3=\mathrm{R} 4
$$

D ynamic range is limited by A1 as well as A2; the output of A1 is:

$$
\mathrm{V} 1=-\left(1+\frac{\mathrm{R}_{\mathrm{N}}}{\mathrm{R}_{\mathrm{O}}}\right) \mathrm{V}_{\mathrm{D}}+2 \mathrm{~V}_{\mathrm{CM}}
$$

If the instrumentation amplifier were designed for a gain of 10 and maximum V_{D} of $\pm 1 \mathrm{~V}$, then R_{N} / R_{0} would need to be four and V_{0} would be a maximum of $\pm 10 \mathrm{~V}$. Amplifier A 1 would have a maximum output of $\pm 5 \mathrm{~V}$ plus $2 \mathrm{~V}_{\mathrm{CM}}$, thus a limit of $\pm 10 \mathrm{~V}$ on the output of A 1 would imply a limit of $\pm 2.5 \mathrm{~V}$ on V_{CM}. A nominal value of $100 \mathrm{k} \Omega$ for R_{N} is suitable for most applications. A range of 200Ω to $25 \mathrm{k} \Omega$ for R_{0} will then provide a gain range of 10 to 1,000 . The current through R_{0} is V_{D} / R_{0}, so the amplifiers must supply $\pm 10 \mathrm{mV} / 200 \Omega$ when the gain is at the maximum value of 1,000 and V_{D} is at $\pm 10 \mathrm{mV}$.

Rejecting common-mode inputs is most important in accurately amplifying low-level differential signals. T wo factors determine the CM R of this instrumentation amplifier configuration (assuming infinite gain):

1. CMRR of the op amps
2. M atching of the resistor network ($\mathrm{R} 3 / \mathrm{R} 4=\mathrm{R} 2 / \mathrm{R} 1$)

In this instrumentation amplifier configuration, error due to CM RR effect is directly proportional to the differential CM RR of the op amps. For the OP220A/E, this combined CM RR is a minimum of 98 dB . A combined CM RR value of 100 dB and common-mode input range of $\pm 2.5 \mathrm{~V}$ indicates a peak inputreferred error of only $\pm 25 \mu \mathrm{~V}$.
Resistor matching is the other factor affecting CM RR. Defining Ad as the differential gain of the instrumentation amplifier and assuming that R1, R2, R3 and R4 are approximately equal (R_{N} will be the nominal value), then CM RR will be approximately A_{D} divided by $4 \Delta R / R_{N}$. CM RR at differential gain of 100 would be 88 dB with resistor matching of 0.1%. T rimming R1 to make the ratio $R 3 / R 4$ equal to $R 2 / R 1$ will directly raise the CM RR until it is limited by linearity and resistor stability considerations.
The high open-loop gain of the OP220 is very important in achieving high accuracy in the two-op-amp instrumentation amplifier configuration. G ain error can be approximated by:

$$
\text { Gain Error }=\frac{1}{1+\frac{A_{D}}{A_{02}}}, \frac{A_{D}}{2 \mathrm{~A}_{01} \mathrm{~A}_{02}}<1
$$

where A_{D} is the instrumentation amplifier differential gain and A_{02} is the open-loop gain of op amp A2. This analysis assumes equal values of R1, R2, R3, and R4. F or example, consider an OP220 with A_{02} of $700 \mathrm{~V} / \mathrm{mV}$. If the differential gain A_{D} were set to 700 , the gain error would be $1 / 1.001$ which is approximately 0.1%.
A nother effect of finite op amp gain is undesired feedthrough of common-mode input. D efining A_{01} as the open-loop gain of op amp A1, then the common-mode error (CME) at the output due to this effect will be approximately:

For $A D / A 01,<1$, this simplifies to $\left(2 A_{D} / A_{01}\right) \times V_{C M}$. If the op amp gain is $700 \mathrm{~V} / \mathrm{mV}, \mathrm{V}_{C M}$ is 2.5 V , and A_{D} is set to 700 , then the error at the output due to this effect will be approximately 5 mV .
The OP220 offers a unique combination of excellent dc performance, wide input range, and low supply current drain that is particularly attractive for instrumentation amplifier design.

THREE OP AMP CONFIGURATION

A three op amp instrumentation amplifier configuration using the OP220 and OP777 is recommended for applications requiring high accuracy over a wide gain range. This circuit provides excellent CM R over a wide input range. As with the two op amp instrumentation amplifier circuits, tight matching of the two op amps provides a real boost in performance.

Figure 5. Three Op Amp Instrumentation Amplifier Using OP220 and OP777
A simplified schematic is shown in Figure 2. The input stage (A 1 and A 2) serves to amplify the differential input V_{D} without amplifying the common-mode voltage V_{CM}. . he output stage then rejects the common-mode input. With ideal op amps and no resistor matching errors, the outputs of each amplifier will be:

$$
\begin{aligned}
& \mathrm{V} 1=-\left(1+\frac{2 \mathrm{R} 1}{\mathrm{R}_{\mathrm{O}}}\right) \frac{\mathrm{V}_{\mathrm{D}}}{2}+\mathrm{V}_{\mathrm{CM}} \\
& \mathrm{~V} 2=\left(1+\frac{2 \mathrm{R} 1}{\mathrm{R}_{\mathrm{O}}}\right) \frac{\mathrm{V}_{\mathrm{D}}}{2}+\mathrm{V}_{\mathrm{CM}} \\
& \mathrm{~V}_{\mathrm{O}}=\mathrm{V} 2-\mathrm{V} 1=\left(1+\frac{2 \mathrm{R} 1}{\mathrm{R}_{\mathrm{O}}}\right) \mathrm{V}_{\mathrm{D}} \\
& \mathrm{~V}_{\mathrm{O}}=\mathrm{A}_{\mathrm{D}} \mathrm{~V}_{\mathrm{D}}
\end{aligned}
$$

The differential gain A_{D} is $1+2 R 1 / R O$ and the common-mode input $V_{C M}$ is rejected.
This three op amp instrumentation amplifier configuration using an OP220 at the input and an OP777 at the output provides excellent performance over a wide gain range with very low power consumption. A gain range of 1 to 2,000 is practical and CM R of over 120 dB is readily achievable.

OUTLINE DIMENSIONS

8-Lead Ceramic DIP - Glass Hermatic Seal [CERDIP] (Q-8)
 Dimensions shown in inches and (millimeters)

CONTROLLING DIMENSIONS ARE IN INCH; MILLIMETERS DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

8-Lead Standard Small Outline Package [SOIC] Narrow Body (RN-8)

Dimensions shown in millimeters and (inches)

CONTROLLING DIMENSIONS ARE IN MIILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

8-Lead Plastic Dual-in-Line Package [PDIP]
(N-8)
Dimensions shown in inches and (millimeters)

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS (IN PARENTHESES)

8-Lead Metal Can [TO-99]

(H-08)
Dimensions shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MO-002AK

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

10/02-Data Sheet changed from REV. 0 to REV. A.
Edits to TYPICAL ELECTRICAL CHARACTERISTICS . 3
Edits to WAFER TEST LIMITS . 4
Change to ORDERING GUIDE . 4
Updated OUTLINE DIMENSIONS . 10

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^1]: *Sample tested.

