

v04.0810

PCS/UMTS HIGH IP3 RFIC DOWNCONVERTER, 1.4 - 2.3 GHz

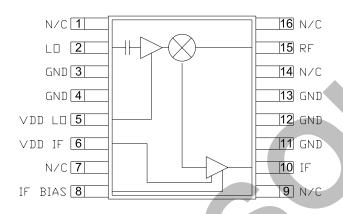
Typical Applications

The HMC421QS16 / HMC421QS16E is ideal for:

- GSM, GPRS & EDGE Infrastructure
- CDMA, WCDMA Infrastructure
- PHS & PDC Infrastructure

Features

Input IP3: +19 dBm


Integrated IF & LO Amps: +10 dBm LO

Conversion Gain: 9 dB

Noise Figure: 9 dB

Single Positive Supply: +5V @ 60 mA

Functional Diagram

General Description

The HMC421QS16 & HMC421QS16E are high linearity down-converter receiver ICs suitable for PCS/UMTS infrastructure applications. The receiver IC is designed to support UMTS applications where a high third order intercept point (OIP3) is required. A passive mixer coupled with a high dynamic range IF amplifier achieves an Input IP3 of +19 dBm. The converter provides a gain of 8 dB and 9 dB typical single side band noise. The IC operates from positive +5V rails and consumes 60 mA of current. The design requires no external Baluns. The mixer supports IF frequencies between 50 MHz and 300 MHz.

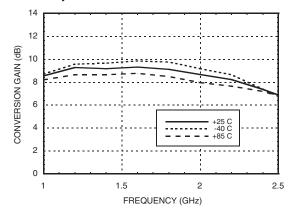
Electrical Specifications, $T_A = +25$ °C, LO = +10 dBm, Vdd = 5V

	IF= 100 MHz		IF= 250 MHz		IF= 250 MHz					
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range, RF		1.4 - 1.6			1.7 - 2.0			2.0 - 2.3		GHz
Frequency Range, LO	1.3 - 1.55		1.4 - 1.95		1.7 - 2.25		GHz			
Frequency Range, IF*	50 - 100 50 - 300			50 - 300		MHz				
Conversion Gain	6	9		7	9		5	8		dB
Noise Figure (SSB)		11			9			9.5		dB
LO to RF Isolation	23	29		28	33		26	32		dB
LO to IF Isolation	35	42		42	52		50	60		dB
RF to IF Isolation	35	42		42	52		50	60		dB
IP3 (Input)	15	18		17	19		17	20		dBm
1 dB Compression (Input)	3	6		4	6.5		4	7		dBm
LO Input Drive Level (Typical)		+8 to +12			+8 to +12			+8 to +12		dBm
Supply Current (Idd for LO & IF) (IF bias resistor= 6.8 Ohms)		84	105		84	105		84	105	mA

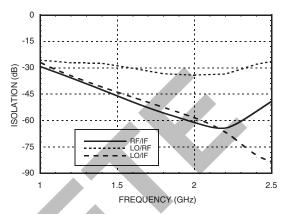
^{*} If matching must be tuned for optimal results, see application circuit herein.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

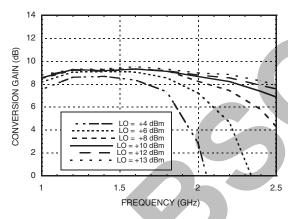
For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

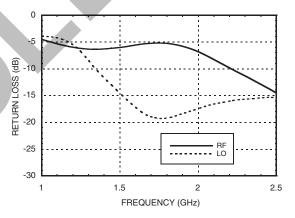


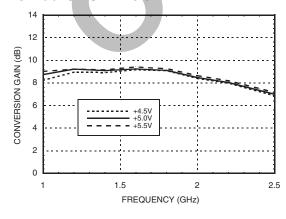
v04.0810

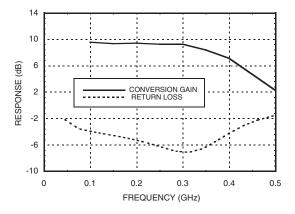


PCS/UMTS HIGH IP3 RFIC DOWNCONVERTER, 1.4 - 2.3 GHz


Conversion Gain vs. Temperature @ LO = +10 dBm

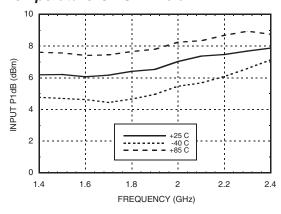

Isolation @ LO = +10 dBm


Conversion Gain vs. LO Drive

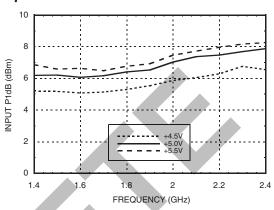

Return Loss @ LO = +10 dBm

Conversion Gain vs. Vdd @ LO = +10 dBm

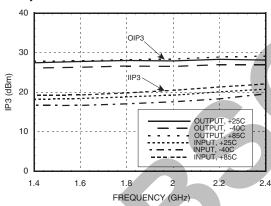
IF Bandwidth @ LO = +10 dBm

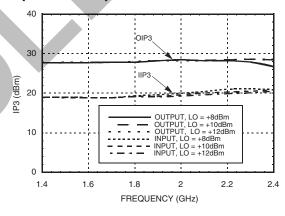

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

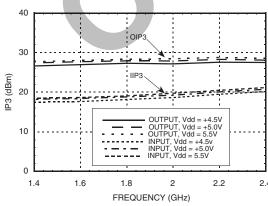
For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

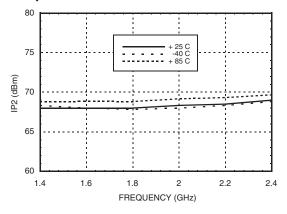

v04.0810

PCS/UMTS HIGH IP3 RFIC **DOWNCONVERTER, 1.4 - 2.3 GHz**


Input P1dB vs. Temperature @ LO = +10 dBm


Input P1dB vs. Vdd @ LO = +10 dBm


Input and Output IP3 vs. Temperature @ LO = +10 dBm*


Input and Output IP3 vs. LO Drive*

Input and Output IP3 vs. $Vdd @ LO = +10 dBm^2$

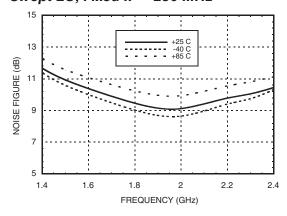
Input IP2 vs. Temperature @ LO = +10 dBm*

^{*} Two-tone input power= -5 dBm each tone, 1 MHz spacing.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

MIXERS - DOWNCONVERTERS - SMT

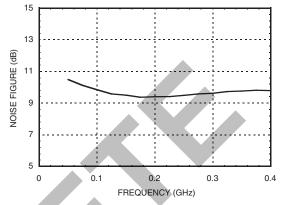


PCS/UMTS HIGH IP3 RFIC

v04.0810

Noise Figure vs. Temperature, Swept LO, Fixed IF = 250 MHz

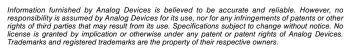
MxN Spurious @ IF Port


	nLO				
mRF	0	1	2	3	4
0	XX	42	55	47	52
1	65	0	66	80	89
2	>108	103	50	99	106
3	>108	>108	>108	80	>108
4	>108	>108	>108	>108	>108

RF = 2.05 GHz @ -10 dBmLO = 1.8 GHz @ +10 dBm

All values in dBc relative to the IF power level.

DOWNCONVERTER, 1.4 - 2.3 GHz



Harmonics of LO

		nLO Spur @ RF Port			
	LO Freq. (GHz)	1	2	3	4
	1.4	27	16	33	33
١	1.6	30	19	33	42
	1.8	32	19	29	35
	2	33	19	30	49
	2.2	33	20	34	45
	2.4	28	20	34	42

LO = +10 dBm

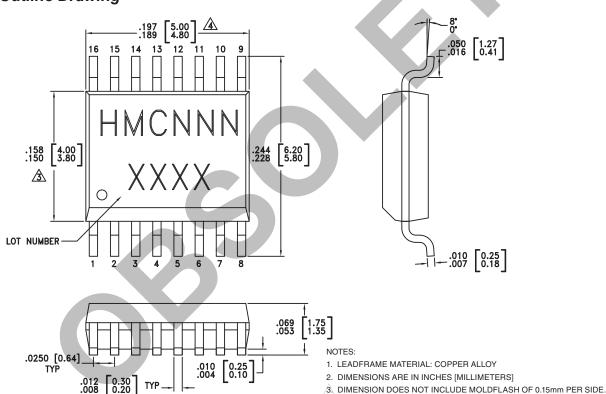
All values in dBc below input LO level @ RF port.

PCS/UMTS HIGH IP3 RFIC **DOWNCONVERTER, 1.4 - 2.3 GHz**

Absolute Maximum Ratings

RF / IF Input (Vdd= +5V)	+13 dBm
LO Drive (Vdd= +5V)	+15 dBm
Vdd (LO or IF)	+7 Vdc
Channel Temperature	150°C
Continuous Pdiss (T = 85°C) (Derate 6.34 mW/°C above 85 C)	0.41 W
Storage Temperature	-65 to +150°C
Operating Temperature	-40 to +85°C

v04.0810


Typical Supply Current vs. Vdd

Vdd (LO + IF) (Vdc)	(Idd) mA
4.5	61
5.0	62
5.5	63

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC421QS16	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	HMC421 XXXX
HMC421QS16E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	HMC421 XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

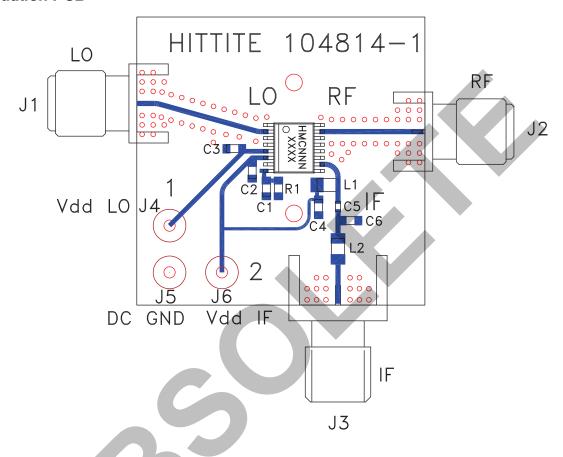
4. DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE. 5. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

v04.0810

PCS/UMTS HIGH IP3 RFIC DOWNCONVERTER, 1.4 - 2.3 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic	
1, 7, 9, 14, 16	N/C	Not Connected		
2	LO	This pin is AC coupled and matched to 50 Ohm from 1.3 - 2.5 GHz.	LO O Vdd	
3, 4, 11, 12, 13	GND	Pin must connect to RF ground.	= O GND	
5	Vdd LO	Power supply for the LO amplifier. One external RF bypass capacitor (10,000 pF) is required.	Vdd LOO	
6	Vdd IF	Bias voltage for IF amplifier. One external RF bypass capacitor (10,000 pF) is required.	Vdd IFO	
8	IF Bias	DC bias setting for IF amplifier.	Vdd OIF Bias	
10	lF	Output of IF and bias port for amplifier. A pull up inductor (L1), output matching network (C5, C6, L2), and 10,000 pF bypass capacitor (C4) are required.	O IF	
15	RF	This pin is DC coupled and matched to 50 Ohm from 1.7 - 2.5 GHz.	RF O	



PCS/UMTS HIGH IP3 RFIC **DOWNCONVERTER, 1.4 - 2.3 GHz**

Evaluation PCB

List of Materials for Evaluation PCB 105087 [1]

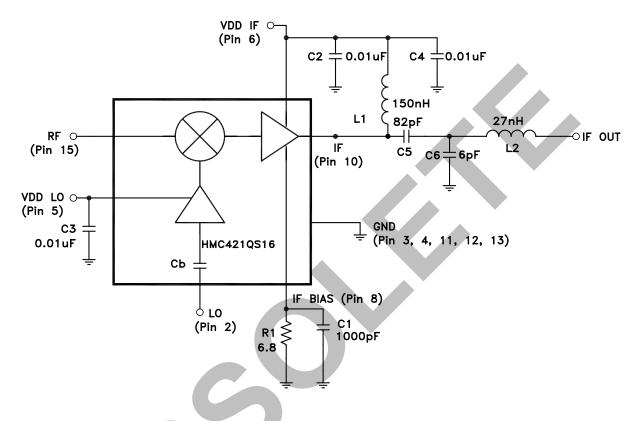
Item	Description		
J1 - J3	PCB Mount SMA RF Connector		
J4 - J6	DC Pins		
C1	1000 pF Chip Capacitor, 0603 Pkg.		
C2, C3, C4	0.01 μF Chip Capacitor, 0603 Pkg.		
C5	82 pF Chip Capacitor, 0402 Pkg.		
C6	6 pF Chip Capacitor, 0603 Pkg.		
L1	150 nH Chip Inductor, 0805 Pkg.		
L2	27 nH Chip Inductor, 0805		
R1	6.8 Ohm Resistor, 0603		
U1	HMC421QS16 / HMC421QS16E Mixer		
PCB [2]	104814 Evaluation Board, 1.100" x 1.100"		

[1] Reference this number when ordering complete evaluation PCB

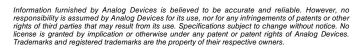
[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.



v04.0810


PCS/UMTS HIGH IP3 RFIC DOWNCONVERTER, 1.4 - 2.3 GHz

Application Circuit

Notes:

- 1. Pin 5 and Pin 6 may be connected to a common Vdd supply.
- 2. Select C6 & L2 to optimize IF frequency. Values for IF = 250 MHz are shown.

