

DEMO MANUAL DC1583A

LTC3625/LTC3625-1: 1A High Efficiency 2-Cell Supercapacitor Charger with Automatic Cell Balancing

DESCRIPTION

Demonstration circuit 1583A is a 1A high efficiency 2- Cell supercapacitor charger with automatic cell balancing featuring the LTC3625/LTC3625-1. The LTC3625/LTC3625-1 are programmable supercapacitor chargers designed to charge two supercapacitors in series to a fixed voltage of 5.3V/4.8V (LTC3625) or 4.5V/4.0V (LTC3625-1) from a 2.7V to 5.5V input supply. Automatic cell balancing is achieved during the charging phase, preventing overvoltage damage to either supercapacitor while maximizing charge rate.

High efficiency, high charging current, low quiescent current and low minimum external parts count make the LTC3625/LTC3625-1 ideally suited for small form factor backup or high peak power systems.

Charging current/maximum input current level is programmed with an external resistor. When the input supply is removed and/or the EN pin is low, the LTC3625/LTC3625-1 automatically enters a low current state, drawing less than 1μ A from the supercapacitors.

The LTC3625/LTC3625-1 are offered in a 12-lead (3mm \times 4mm \times 0.75mm) DFN package.

Design files for this circuit board are available at http://www.linear.com/demo

Δ7, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

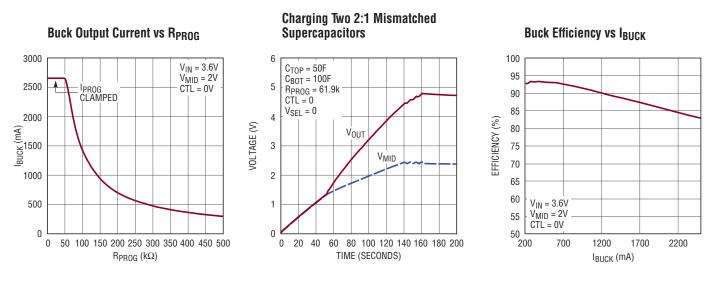
PERFORMANCE SUMMARY

Typical Specifications (25°C) LTC3625

Input Voltage Range: V _{CC}	2.7V to 5.5V		
Charge Current	1.0A		
V _{OUT}	4.8V or 5.3V Dependant on JP1 Setting		
Typical Specifications (25°C) LTC3625-1			
nput Voltage Range: V _{CC} 2.7V to 5.5V			
Charge Current	1.0A		
V _{OUT}	4.0V or 4.5V Dependant on JP1 Setting		

OPERATING PRINCIPLES

The LTC3625/LTC3625-1 are dual cell supercapacitor chargers. Their unique topology charges two series connected capacitors to a fixed voltage with programmable charging current preventing overvoltage damage to either of the cells, even if they are severely mismatched. No balancing resistors are required. The LTC3625/LTC3625-1 include an internal buck converter between V_{IN} and V_{MID} to regulate


the voltage on C_{BOT} (the bottom capacitor) as well as an internal boost converter between V_{MID} and V_{OUT} to regulate the voltage on C_{TOP} (the top capacitor). The output current of the buck converter is user-programmed via the PROG pin while the input current of the boost converter is set to 2A (typical).

OPERATING PRINCIPLES

The LTC3625/LTC3625-1 contains various functions that are digitally controlled. The CTL pin is a control function that sets the device into a two inductor mode (low) or a single inductor mode (high). The CTL pin must be hard tied to either V_{IN} or GND. A logic high on the V_{SEL} pin sets V_{OUT} to 5.3V/4.5V while a logic low sets V_{OUT} to 4.8V/4.0V. The EN pin will enable the device with a logic high while a logic low disables the device and V_{OUT} becomes high impedance.

An internal undervoltage lockout (UVLO) circuit monitors V_{IN} and keeps the LTC3625/LTC3625-1 disabled until V_{IN} rises above 2.90V/2.63V if V_{SEL} is high or 2.63V/2.63V if V_{SEL} is low. Hysteresis on the UVLO turns off the LTC3625/LTC3625-1 if V_{IN} drops approximately 100mV below the UVLO rising threshold. When in UVLO, only current needed to detect a valid input will be drawn from V_{IN} or V_{OUT} .

QUICK START PROCEDURE

Using short twisted pair leads for any power connections and with all loads and power supplies off, refer to Figure 1 for the proper measurement and equipment setup.

Jumper and Load Settings to start:

Connect Jumper from V_{OUT} to V_{PULLUP}

JP1 (V_{SEL}) = 5.3V/4.5V

JP2 (ENABLE) = OFF

LOAD1 = OFF

- 1. Set V_{IN} to 3.3V and verify that the input current is less than 10mA. Verify that V_{OUT} is less than 2.0V indicating that the supercapacitor is in a low charge state.
- 2. Set JP2 to the ON position. Verify that V_{OUT} is less than 3.5V and that PGOOD is low.

- 3. Monitor PGOOD and V_{OUT}. When PGOOD goes high, verify V_{OUT} is ~5.0V/4.1V.
- 4. Verify V_{OUT} when the input current drops to less than 10mA indicating a fully charged capacitor. Monitor PFO, verify PFO is high. Verify V_{OUT} is ~5.3V/4.5V.
- 5. Turn on Load1 and set to 950mA. Monitor PGOOD and V_{0UT}. When PGOOD goes low, verify V_{0UT} is ${\sim}5.0V/4.1V$.
- 6. Set JP2 to OFF, monitor PFO and PGOOD, verify both are low. Allow the supercapacitor to discharge to 1.5V, then turn off Load1.
- Note: Once JP2 is placed in the OFF position, V_{OUT} will drop quickly.
- 7. Set JP1 to 4.8V/4.0V. Set JP2 to the ON position. Verify that V_{OUT} is less than 3.0V and that PGOOD is low.

QUICK START PROCEDURE

- 8. Monitor PGOOD and $V_{OUT}.$ When PGOOD goes high, verify V_{OUT} is ~4.5V/3.7V.
- 9. Verify V_{OUT} when the input current drops to less than 10mA indicating a fully charged capacitor. Verify V_{OUT} is ~4.8V/4.0V.
- 10. Turn on Load1 and set to 950mA. Monitor PGOOD and V_{OUT}. When PGOOD goes low, verify V_{OUT} is ${\sim}4.3V\!/\!3.5V\!.$
- 11. Set JP2 to OFF and allow the supercapacitor to discharge to 1.0V, then turn off Load1.

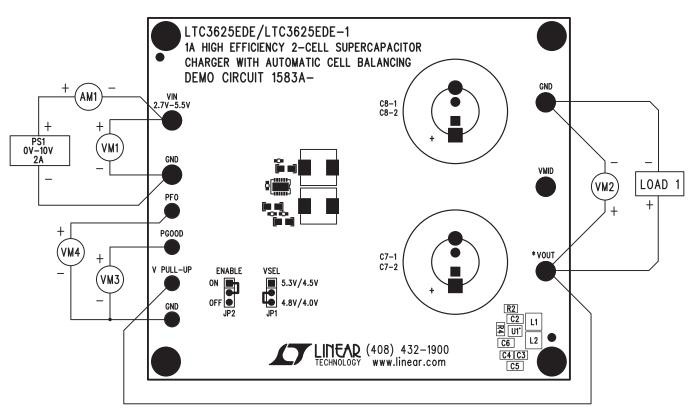


Figure 1. Proper Measurement Equipment Setup

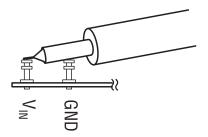
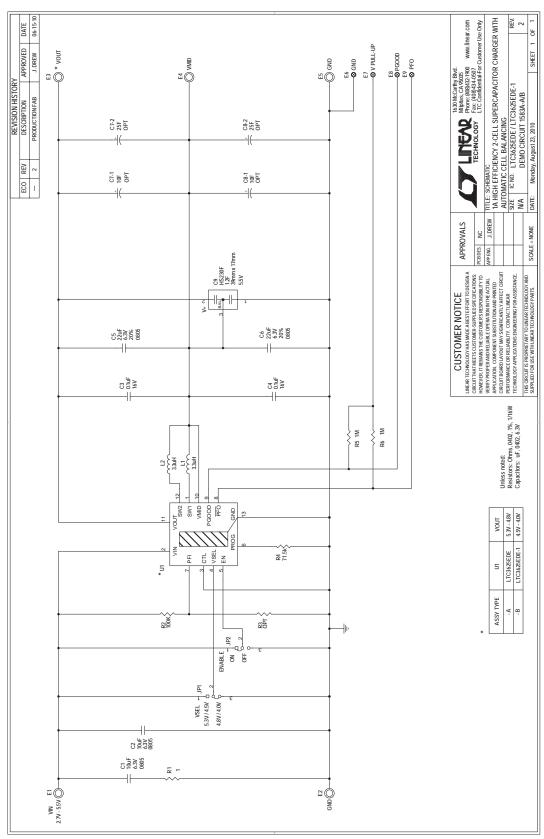


Figure 2. Measuring Input or Output Ripple


DEMO MANUAL DC1583A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURERS/PART NUMBER
lequired Circi	uit Components	b		
1	2	C1, C2	CAP, CHIP, X5R, 10µF, 20%, 6.3V, 0805	Murata, GRM21BR60J106E39L
2	2	C5, C6	CAP, CHIP, X5R, 22µF, 20%, 6.3V, 0805	Murata, GRM21BR60J226ME39L
3	2	C3, C4	CAP, CHIP, X7R, 0.1µF, 10%, 16V, 0402	Murata, GRM155R71C104KA88D
4	1	C9	Supercapacitor, 1.2F, 5.5V, 39mm × 17mm	CAP-XX, HS230F
5	2	L1, L2	Inductor, 3.3 μ H, 3.0A, 20m Ω , 7mm $ imes$ 7mm	Coiltronics, DR73-3R3-R
6	1	R1	Res., CHIP, 1Ω, 1/16W, 1%, 0402	Vishay, CRCW04021R00FKED
7	1	R2	Res., CHIP, 100k, 1/16W, 1%, 0402	Vishay, CRCW0402100KFKED
8	1	R4	Res., CHIP, 71.5k, 1/16W, 1%, 0402	Vishay, CRCW040271K5FKED
9	2	R5, R6	Res., CHIP, 1M, 1/16W, 1%, 0402	Vishay, CRCW04021M00FKED
10	1	U1	1A High Efficiency 2-Cell Supercapacitor Charger with Automatic Cell Balancing	LTC3625EDE
ptional Dem	o Board Circuit	Components	· ·	·
1	0	C7-1 - C8-1 (OPT)	Supercapacitor, 10.0F, 2.7V, 10mm × 30mm	Illinois CAP, 106DCN2R7Q
2	0	C7-2 - C8-2 (OPT)	Supercapacitor, 25.0F, 2.7V, 16mm × 25mm	Illinois CAP, 256DCN2R7Q
3	0	R3 (0PT)	RES., CHIP, 1/16W, 1%, 0402	User Selectable
4	0	U1	1A High Efficiency 2-Cell Supercapacitor Charger with Automatic Cell Balancing	LTC3625EDE-1
lardware For	Demo Board O	nly		
1	5	E1 - E5	Turret, 0.09 DIA	MILL-MAX, 2501-2
2	4	E6 - E9	Turret, 0.061 DIA	MILL-MAX, 2308-2
3	2	JP1, JP2	Header, 3 PINS, 2mm	Samtec, TMM-103-02-L-S
4	2	JP1, JP2	Shunt, 2mm	Samtec, 2SN-BK-G

SCHEMATIC DIAGRAM

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

DEMO MANUAL DC1583A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:

This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for **ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY** and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.

LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.

Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. **Common sense is encouraged**.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology 1630 McCarthy Blvd. Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

