
BOURNS®

- Designed for Complementary Use with BDX33, BDX33A, BDX33B, BDX33C and BDX33D
- 70 W at 25°C Case Temperature
- 10 A Continuous Collector Current
- Minimum h_{FE} of 750 at 3V, 3 A

Pin 2 is in electrical contact with the mounting base.

MDTRACA

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT	
	BDX34		-45	
Collector-base voltage (I _E = 0)	BDX34A		-60	
	BDX34B	V _{CBO}	-80	V
	BDX34C		-100	
	BDX34D		-120	
	BDX34		-45	
Collector-emitter voltage (I _B = 0)	BDX34A		-60	
	BDX34B	V_{CEO}	-80	V
	BDX34C		-100	
	BDX34D		-120	
Emitter-base voltage		V _{EBO}	-5	V
Continuous collector current		I _C	-10	Α
Continuous base current	I _B	-0.3	Α	
Continuous device dissipation at (or below) 25°C case temperature (see Note 1)	P _{tot}	70	W	
Continuous device dissipation at (or below) 25°C free air temperature (see Note	P _{tot}	2	W	
Operating free air temperature range	T _J	-65 to +150	°C	
Storage temperature range	T _{stg}	-65 to +150	°C	
Operating free-air temperature range	T _A	-65 to +150	°C	

NOTES: 1. Derate linearly to 150°C case temperature at the rate of $0.56~\text{W}/^{\circ}\text{C}$.

PRODUCT INFORMATION

^{2.} Derate linearly to 150°C free air temperature at the rate of 16 mW/°C.

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER		TEST	CONDITIONS		MIN	TYP	MAX	UNIT
					BDX34	-45			
	0.11.				BDX34A	-60			
V _{(BR)CEO}	Collector-emitter	$I_{\rm C} = -100 \text{mA}$	$I_B = 0$	(see Note 3)	BDX34B	-80			V
(=::,/===	breakdown voltage		_		BDX34C	-100			
					BDX34D	-120			
		V _{CE} = -30 V	I _B = 0		BDX34			-0.5	
		$V_{CE} = -30 \text{ V}$	$I_B = 0$		BDX34A			-0.5	
		$V_{CE} = -40 \text{ V}$	$I_B = 0$		BDX34B			-0.5	
		$V_{CE} = -50 \text{ V}$	$I_B = 0$		BDX34C			-0.5	i
	Collector-emitter	$V_{CE} = -60 \text{ V}$	$I_B = 0$		BDX34D			-0.5	A
ICEO	cut-off current	$V_{CE} = -30 \text{ V}$	$I_B = 0$	$T_C = 100$ °C	BDX34			-10	mA
		$V_{CE} = -30 \text{ V}$	$I_B = 0$	$T_{C} = 100^{\circ}C$	BDX34A			-10	
		V _{CE} = -40 V	$I_B = 0$	$T_{C} = 100^{\circ}C$	BDX34B			-10	
		V _{CE} = -50 V	$I_B = 0$	$T_{C} = 100^{\circ}C$	BDX34C			-10	
		V _{CE} = -60 V	$I_B = 0$	$T_{C} = 100^{\circ}C$	BDX34D			-10	
		V _{CB} = -45 V	I _E = 0	-	BDX34			-1	
		V _{CB} = -60 V	$I_E = 0$		BDX34A			-1	
		$V_{CB} = -80 \text{ V}$	$I_E = 0$		BDX34B			-1	
		V _{CB} = -100 V	$I_E = 0$		BDX34C	9		-1	
	Collector cut-off current	V _{CB} = -120 V	$I_E = 0$		BDX34D			-1	mA
I _{CBO}		$V_{CB} = -45 \text{ V}$	$I_E = 0$	$T_{\rm C} = 100^{\circ}{\rm C}$	BDX34			-5	
		V _{CB} = -60 V	$I_E = 0$	$T_{\rm C} = 100^{\circ}{\rm C}$	BDX34A			-5	
		$V_{CB} = -80 \text{ V}$	$I_E = 0$	$T_{C} = 100^{\circ}C$	BDX34B			-5	
		V _{CB} = -100 V	I _E = 0	T _C = 100°C	BDX34C			-5	
		V _{CB} = -120 V	$I_E = 0$	$T_{\rm C} = 100^{\circ}{\rm C}$	BDX34D			-5	
I _{EBO}	Emitter cut-off current	V _{EB} = -5 V	$I_C = 0$					-10	mA
		V _{CE} = -3 V	$I_C = -4 A$		BDX34	750			
	Forward current transfer ratio	-V _{CE} = -3 V	$I_C = -4 A$		BDX34A	750			
h_{FE}		V _{CE} = -3 V	I _C = -3 A	(see Notes 3 and 4)	BDX34B	750			
		V _{CE} = -3 V	$I_C = -3 A$		BDX34C	750			
		V _{CB} = -3 V	$I_C = -3 A$		BDX34D	750			
	Base-emitter voltage	V _{CE} = -3 V	I _C = -4 A		BDX34			-2.5	
		V _{CE} = -3 V	$I_C = -4 A$		BDX34A			-2.5	
$V_{BE(on)}$		V _{CE} = -3 V	$I_C = -3 A$	(see Notes 3 and 4)	BDX34B			-2.5	V
		V _{CE} = -3 V	$I_C = -3 A$		BDX34C			-2.5	
		V _{CE} = -3 V	$I_C = -3 A$		BDX34D			-2.5	
	Collector-emitter saturation voltage	$I_B = -8 \text{ mA}$	I _C = -4 A		BDX34			-2.5	
		$I_B = -8 \text{ mA}$	$I_C = -4 A$		BDX34A			-2.5	
V _{CE(sat)}		$I_B = -6 \text{ mA}$	$I_C = -3 A$	(see Notes 3 and 4)	BDX34B			-2.5	V
		$I_B = -6 \text{ mA}$	$I_C = -3 A$		BDX34C			-2.5	
		$I_B = -6 \text{ mA}$	$I_C = -3 A$		BDX34D			-2.5	
V _{EC}	Parallel diode forward voltage	I _E = -8 A	I _B = 0					-4	V

NOTES: 3. These parameters must be measured using pulse techniques, t_p = 300 μ s, duty cycle \leq 2%.

^{4.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

thermal characteristics

PARAMETER			TYP	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			1.78	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance			62.5	°C/W

resistive-load-switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS †			MIN	TYP	MAX	UNIT
t _{on}	Turn-on time	I _C = -3 A	$I_{B(on)} = -12 \text{ mA}$	$I_{B(off)} = 12 \text{ mA}$		1		μs
t _{off}	Turn-off time	$V_{BE(off)} = 3.5 \text{ V}$	$R_L = 10 \Omega$	t_p = 20 μs , $dc \le 2\%$		5		μs

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

TYPICAL CHARACTERISTICS

TYPICAL DC CURRENT GAIN COLLECTOR-EMITTER SATURATION VOLTAGE COLLECTOR CURRENT COLLECTOR CURRENT TCS135AH TCS135AF 50000 -2.0 V_{CE(sat)} - Collector-Emitter Saturation Voltage - V = 300 μ s, duty cycle < 2% -40°C $= I_c / 100$ = 25°C T_c = 100°C h_E - Typical DC Current Gain 10000 -1.5 1000 -1.0 $T_c = -40^{\circ}C$ -3 V $T_c = 25^{\circ}C$ = 300 μs, duty cycle < 2% T_c = 100°C 100 -0.5 -0.5 -10 -10 -0.5 I_c - Collector Current - A I_c - Collector Current - A Figure 1. Figure 2.

COLLECTOR CURRENT TCS135AJ $T_c = -40^{\circ}C$ V_{EE(sat)} - Base-Emitter Saturation Voltage - \ $T_c = 25^{\circ}C$ = 100°C -2.5 -2.0 -1.5 -1.0 $= I_{c} / 100$ = 300 μ s, duty cycle < 2% -0.5 -1.0 -0.5 -10

I_c - Collector Current - A

Figure 3.

BASE-EMITTER SATURATION VOLTAGE

THERMAL INFORMATION

MAXIMUM POWER DISSIPATION

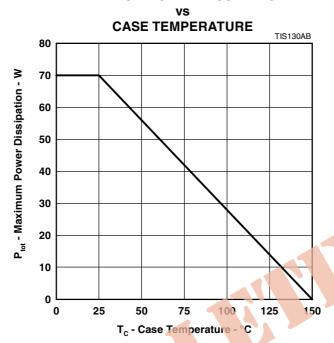


Figure 4.