DESCRIPTION

The LT® ${ }^{\circledR} 220 / L T 6221 / L T 6222$ are single/dual/quad, low power, high speed rail-to-rail input and output operational amplifiers with excellent DC performance. The LT6220/ LT6221/LT6222 feature reduced supply current, lower input offset voltage, lower input bias current and higher DC gain than other devices with comparable bandwidth.
Typically, the LT6220/LT6221/LT6222 have an input offset voltage of less than $100 \mu \mathrm{~V}$, an inputbias current of less than 15 nA and an open-loop gain of $100 \mathrm{~V} / \mathrm{mV}$. The parts have an input range that includes both supply rails and an output that swings within 10 mV of either supply rail to maximize the signal dynamic range in low supply applications.
The LT6220/LT6221/LT6222 maintain performance for supplies from 2.2 V to 12.6 V and are specified at $3 \mathrm{~V}, 5 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$ supplies. The inputs can be driven beyond the supplies without damage or phase reversal of the output.
The LT6220 is housed in the 8-lead S0 package with the standard op amp pinout as well as the 5 -lead SOT-23 package. The LT6221 is available in 8-lead SO and DFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$ low profile dual fine pitch leadless) packages with the standard op amp pinout. The LT6222 features the standard quad op amp configuration and is available in the 16-lead SSOP package. The LT6220/LT6221/LT6222 can be used as plug-in replacements for many op amps to improve input/output range and performance.

[^0]
TYPICAL APPLICATION

Stepped-Gain Photodiode Amplifier

$\mathrm{V}_{\text {OS }}$ Distribution, $\mathrm{V}_{\mathrm{CM}}=\mathbf{O V}$
(S8, PNP Stage)

LT6220/LT6221/LT6222

ABSOLUTE MAXIMUM RATINGS (Note 1)

Total Supply Voltage ($\mathrm{V}_{S}{ }^{-}$to V^{+}) 12.6 V
Maximum Junction Temperature $150^{\circ} \mathrm{C}$
Input Voltage (Note 2) $\pm V_{S}$
Input Current (Note 2) $\pm 10 \mathrm{~mA}$
Output Short Circuit Duration (Note 3) Indefinite
Operating Temperature Range (Note 4).... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
(DD Package) $125^{\circ} \mathrm{C}$
Storage Temperature. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

\qquad
(DD Package) $-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec.$)$ $300^{\circ} \mathrm{C}$ $300^{\circ} \mathrm{C}$
Specified Temperature Range (Note 5) $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

pIn COnfiguration

TOP VIEW DD PACKAGE 8-LEAD ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) PLASTIC DFN $T_{\text {JMAX }}=125^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=160^{\circ} \mathrm{C} / \mathrm{W}$ (NOTE 10) EXPOSED PAD INTERNALLY CONNECTED TO $\mathrm{V}_{\mathrm{S}}{ }^{-}$ (PCB CONNECTION OPTIONAL)		GN PACKAGE 16-LEAD NARROW PLASTIC SSOP $\mathrm{T}_{\mathrm{JMAX}}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=135^{\circ} \mathrm{C} / \mathrm{W}$

ORDER InFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE
LT6220CS5\#PBF	LT6220CS5\#TRPBF	LTAFP	5-Lead Plastic TSOT-23	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT6220IS5\#PBF	LT6220IS5\#TRPBF	LTAFP	5-Lead Plastic TSOT-23	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6220CS8\#PBF	LT6220CS8\#TRPBF	6220	8-Lead Plastic SO	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT6220IS8\#PBF	LT6220IS8\#TRPBF	62201	8-Lead Plastic SO	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6221CDD\#PBF	LT6221CDD\#TRPBF	LADZ	8 -Lead ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) Plastic DFN	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT6221IDD\#PBF	LT6221IDD\#TRPBF	LADZ	8-Lead (3mm $\times 3 \mathrm{~mm}$) Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6221CS8\#PBF	LT6221CS8\#TRPBF	6221	8-Lead Plastic SO	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT6221IS8\#PBF	LT6221IS8\#TRPBF	62211	8-Lead Plastic SO	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6222CGN\#PBF	LT6222CGN\#TRPBF	6222	16-Lead Narrow Plastic SSOP	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LT6222IGN\#PBF	LT6222IGN\#TRPBF	62221	16-Lead Narrow Plastic SSOP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges.
Consult LTC Marketing for information on nonstandard lead based finish parts.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{S}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0 U T}=$ half supply, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=0 \mathrm{~V} \\ & V_{C M}=0 V \text { (DD Package) } \\ & V_{C M}=0 V \text { (S5 Package) } \\ & V_{C M}=V_{S} \\ & V_{C M}=V_{S} \text { (S5 Package) } \end{aligned}$		$\begin{gathered} 70 \\ 150 \\ 200 \\ 0.5 \\ 0.5 \end{gathered}$	$\begin{gathered} \hline 350 \\ 700 \\ 850 \\ 2.5 \\ 3 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$ mV mV
$\Delta V_{\text {OS }}$	Input Offset Voltage Shift	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 3.5 \mathrm{~V} \\ & V_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 1.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 30 \\ & 15 \end{aligned}$	$\begin{aligned} & 195 \\ & 120 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
	Input Offset Voltage Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & V_{\mathrm{CM}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { (DD Package) } \\ & \hline \end{aligned}$		$\begin{aligned} & 100 \\ & 150 \end{aligned}$	$\begin{gathered} 600 \\ 1100 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=1 V \\ & V_{C M}=V_{S} \end{aligned}$		$\begin{aligned} & 15 \\ & 250 \end{aligned}$	$\begin{aligned} & 150 \\ & 600 \end{aligned}$	nA
	Input Bias Current Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & V_{C M}=1 \mathrm{~V} \\ & V_{C M}=V_{S} \end{aligned}$		$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 175 \\ & 250 \end{aligned}$	nA nA
IOS	Input Offset Current	$\begin{aligned} & V_{C M}=1 \mathrm{~V} \\ & V_{C M}=V_{S} \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	nA
	Input Noise Voltage	0.1 Hz to 10 Hz		0.5		$\mu \mathrm{V}$ P-P
e_{n}	Input Noise Voltage Density	$\mathrm{f}=10 \mathrm{kHz}$		10		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current Density	$\mathrm{f}=10 \mathrm{kHz}$		0.8		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			2		pF
AVOL	Large Signal Voltage Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{\text {OUT }}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { at } \mathrm{V}_{\mathrm{S}} / 2 \\ & V_{S}=5 \mathrm{~V}, V_{\text {OUT }}=1 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \text { at } \mathrm{V}_{S} / 2 \\ & V_{S}=3 \mathrm{~V}, V_{\text {OUT }}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { at } \mathrm{V}_{\mathrm{S}} / 2 \end{aligned}$	$\begin{aligned} & \hline 35 \\ & 3.5 \\ & 30 \end{aligned}$	$\begin{gathered} 100 \\ 10 \\ 90 \end{gathered}$		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 3.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 1.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 85 \\ & 82 \end{aligned}$	$\begin{aligned} & 102 \\ & 102 \end{aligned}$		dB dB
	CMRR Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{C M}=0 \mathrm{~V} \text { to } 3.5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V}, V_{C M}=0 \mathrm{~V} \text { to } 1.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 79 \\ & 76 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		dB dB
	Input Common Mode Range		0		V_{S}	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$	84	105		dB
	PSRR Match (Channel-to-Channel) (Note 9)		79	105		dB
	Minimum Supply Voltage (Note 6)			2.2	2.5	V
V_{OL}	Output Voltage Swing LOW (Note 7)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SINK }}=5 \mathrm{~mA} \\ & \text { I SINK }^{2}=20 \mathrm{~mA} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 5 \\ 100 \\ 325 \\ \hline \end{gathered}$	$\begin{gathered} \hline 40 \\ 200 \\ 650 \\ \hline \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=20 \mathrm{~mA} \end{aligned}$		$\begin{gathered} \hline 5 \\ 130 \\ 475 \end{gathered}$	$\begin{aligned} & \hline 40 \\ & 250 \\ & 900 \end{aligned}$	mV mV mV
$\mathrm{I}_{\text {SC }}$	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 45 \\ & 35 \end{aligned}$		mA
I_{S}	Supply Current Per Amplifier			0.9	1	mA
GBW	Gain-Bandwidth Product	$V_{S}=5 \mathrm{~V}$, Frequency $=1 \mathrm{MHz}$	35	60		MHz
SR	Slew Rate	$V_{S}=5 \mathrm{~V}, A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{V}_{\text {OUT }}=4 \mathrm{~V}$	10	20		V/us
FPBW	Full Power Bandwidth	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~A}_{V}=1, \mathrm{~V}_{\text {OUT }}=4 \mathrm{~V}_{\text {P-P }}$		1.6		MHz
HD	Harmonic Distortion	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~A}_{V}=1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{0 U T}=2 \mathrm{~V}_{\text {P-P }}, \mathrm{f}_{\mathrm{C}}=500 \mathrm{kHz}$		-77.5		dBC
$\mathrm{t}_{\text {S }}$	Settling Time	$0.01 \%, V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {STEP }}=2 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$		300		ns
$\Delta \mathrm{G}$	Differential Gain (NTSC)	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=2, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$		0.3		\%
$\Delta \theta$	Differential Phase (NTSC)	$V_{S}=5 \mathrm{~V}, \mathrm{~A}_{V}=2, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$		0.3		Deg

LT6220/LT6221/LT6222

ELECTRICALCHARACTRISTICS The \bullet denotes the specifications which apply over the $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0 U T}=$ half supply, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=0 V \\ & V_{C M}=0 V \text { (DD Package) } \\ & V_{C M}=0 V \text { (S5 Package) } \\ & V_{C M}=V_{S} \\ & V_{C M}=V_{S} \text { (S5 Package) } \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \end{aligned}$		$\begin{gathered} 90 \\ 180 \\ 230 \\ 0.5 \\ 0.5 \end{gathered}$	$\begin{gathered} 500 \\ 850 \\ 1250 \\ 3 \\ 3.5 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$ mV mV
$\overline{\Delta V_{0 S}}$	Input Offset Voltage Shift	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{C M}=0 \mathrm{~V} \text { to } 3.5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V}, V_{C M}=0 \mathrm{~V} \text { to } 1.5 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 30 \\ & 15 \end{aligned}$	$\begin{aligned} & 280 \\ & 190 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
	Input Offset Voltage Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & V_{C M}=0 \mathrm{~V} \\ & V_{C M}=0 \mathrm{~V} \text { (DD Package) } \end{aligned}$	\bullet		$\begin{aligned} & 110 \\ & 180 \end{aligned}$	$\begin{aligned} & 850 \\ & 1400 \end{aligned}$	${ }_{\mu \mathrm{V}}^{\mu \mathrm{V}}$
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 8)	(S5 Package)	\bullet		$\begin{aligned} & 1.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} \hline 5 \\ 10 \end{gathered}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=1 \mathrm{~V} \\ & V_{C M}=V_{S}-0.2 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} 20 \\ 275 \end{gathered}$	$\begin{aligned} & 175 \\ & 800 \\ & \hline \end{aligned}$	nA nA
	Input Bias Current Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & V_{C M}=1 \mathrm{~V} \\ & V_{C M}=V_{S}-0.2 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 15 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 300 \\ & \hline \end{aligned}$	$n A$ $n A$
los	Input Offset Current	$\begin{aligned} & V_{C M}=1 \mathrm{~V} \\ & V_{C M}=V_{S}-0.2 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	nA nA
AVOL	Large Signal Voltage Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{\text {OUT }}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, R_{L}=1 \mathrm{k} \text { at } V_{S} / 2 \\ & V_{S}=5 \mathrm{~V}, V_{\text {OUT }}=1 \mathrm{~V} \text { to } 4 \mathrm{~V}, R_{L}=100 \Omega \text { at } V_{S} / 2 \\ & V_{S}=3 \mathrm{~V}, V_{\text {OUT }}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, R_{L}=1 \mathrm{k} \text { at } V_{S} / 2 \end{aligned}$	$\stackrel{\bullet}{\bullet} \stackrel{\rightharpoonup}{\bullet}$	$\begin{gathered} \hline 30 \\ 3 \\ 25 \end{gathered}$	$\begin{gathered} \hline 90 \\ 9 \\ 80 \end{gathered}$		V / mV V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{C M}=0 \mathrm{~V} \text { to } 3.5 \mathrm{~V} \\ & V_{S}=3 V, V_{C M}=0 \mathrm{~V} \text { to } 1.5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & \hline 82 \\ & 78 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		dB $d B$
	CMRR Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{C M}=0 \mathrm{~V} \text { to } 3.5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V}, V_{C M}=0 \mathrm{~V} \text { to } 1.5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 77 \\ & 73 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		dB dB
	Input Common Mode Range		\bullet	0		V_{S}	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$	\bullet	81	104		dB
	PSRR Match (Channel-to-Channel) (Note 9)		\bullet	76	104		dB
	Minimum Supply Voltage (Note 6)		\bullet		2.2	2.5	V
$\mathrm{V}_{0 \mathrm{~L}}$	Output Voltage Swing LOW (Note 7)	No Load $\begin{aligned} & I_{\text {SINK }}=5 \mathrm{~mA} \\ & I_{\text {SINK }}=20 \mathrm{~mA} \\ & \hline \end{aligned}$	$\stackrel{-}{\bullet}$		$\begin{gathered} \hline 8 \\ 110 \\ 375 \\ \hline \end{gathered}$	$\begin{gathered} \hline 50 \\ 220 \\ 750 \\ \hline \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	$\begin{array}{\|l} \hline \text { No Load } \\ l_{\text {SOURCE }}=5 \mathrm{~mA} \\ l_{\text {SOURCE }}=20 \mathrm{~mA} \\ \hline \end{array}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} \hline 8 \\ 150 \\ 600 \\ \hline \end{gathered}$	$\begin{gathered} \hline 50 \\ 300 \\ 1100 \\ \hline \end{gathered}$	mV mV mV
ISC	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 30 \end{aligned}$		mA mA
$I_{\text {S }}$	Supply Current Per Amplifier		\bullet		1	1.4	mA
GBW	Gain-Bandwidth Product	$V_{S}=5 \mathrm{~V}$, Frequency $=1 \mathrm{MHz}$	\bullet	30	60		MHz
SR	Slew Rate	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{AV}=-1, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{V}_{\text {OUT }}=4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	\bullet	9	18		$\mathrm{V} / \mathrm{\mu s}$

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathbf{0 V} ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathbf{0 V} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ half supply, unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=0 \mathrm{~V} \\ & V_{C M}=0 \mathrm{~V} \text { (DD Package) } \\ & V_{C M}=0 V \text { (S5 Package) } \\ & V_{C M}=V_{S} \\ & V_{C M}=V_{S} \text { (S5 Package) } \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \end{aligned}$		$\begin{gathered} \hline 125 \\ 300 \\ 350 \\ 0.75 \\ 1 \end{gathered}$	$\begin{gathered} 700 \\ 1300 \\ 2000 \\ 3.5 \\ 4.5 \end{gathered}$	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \\ & \mu \mathrm{~V} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\overline{\Delta V_{0 S}}$	Input Offset Voltage Shift	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{C M}=0 \mathrm{~V} \text { to } 3.5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V}, \mathrm{~V}_{C M}=0 \mathrm{~V} \text { to } 1.5 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 300 \\ & 210 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
	Input Offset Voltage Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & V_{C M}=0 V \\ & V_{C M}=0 V \text { (DD Package) } \end{aligned}$	\bullet		$\begin{aligned} & 175 \\ & 300 \end{aligned}$	$\begin{aligned} & 1200 \\ & 2200 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \end{aligned}$
$V_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 8)	(S5 Package)	\bullet		$\begin{aligned} & 1.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 15 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=1 \mathrm{~V} \\ & V_{C M}=V_{S}-0.2 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} \hline 25 \\ 300 \\ \hline \end{gathered}$	$\begin{aligned} & 200 \\ & 900 \\ & \hline \end{aligned}$	nA
	Input Bias Current Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & V_{C M}=1 \mathrm{~V} \\ & V_{C M}=V_{S}-0.2 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 15 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 350 \\ & \hline \end{aligned}$	nA $n A$
Ios	Input Offset Current	$\begin{aligned} & V_{C M}=1 \mathrm{~V} \\ & V_{C M}=V_{S}-0.2 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	nA
$\mathrm{A}_{\mathrm{VOL}}$	Large Signal Voltage Gain	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { at } \mathrm{V}_{\mathrm{S}} / 2 \\ & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.5 \mathrm{~V} \text { to } 3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \text { at } V_{\mathrm{S}} / 2 \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V} \text { to } 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { at } \mathrm{V}_{\mathrm{S}} / 2 \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \end{aligned}$	$\begin{aligned} & 25 \\ & 2.5 \\ & 20 \end{aligned}$	$\begin{gathered} \hline 70 \\ 8 \\ 60 \end{gathered}$		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{C M}=0 \mathrm{~V} \text { to } 3.5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 1.5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 81 \\ & 77 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		dB dB
	CMRR Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & V_{S}=5 \mathrm{~V}, V_{C M}=0 \mathrm{~V} \text { to } 3.5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V}, V_{C M}=0 \mathrm{~V} \text { to } 1.5 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 76 \\ & 72 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & \hline \end{aligned}$		dB dB
	Input Common Mode Range		\bullet	0		V_{S}	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$	\bullet	79	104		dB
	PSRR Match (Channel-to-Channel) (Note 9)		\bullet	74	104		dB
	Minimum Supply Voltage (Note 6)		\bullet		2.2	2.5	V
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing LOW (Note 7)	No Load $\mathrm{I}_{\text {SINK }}=5 \mathrm{~mA}$ $\mathrm{I}_{\text {SINK }}=10 \mathrm{~mA}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} \hline 10 \\ 120 \\ 220 \end{gathered}$	$\begin{gathered} \hline 60 \\ 240 \\ 450 \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	No Load $I_{\text {SOURCE }}=5 \mathrm{~mA}$ $I_{\text {SOURCE }}=10 \mathrm{~mA}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} \hline 10 \\ 160 \\ 325 \\ \hline \end{gathered}$	$\begin{array}{r} 60 \\ 325 \\ 650 \\ \hline \end{array}$	mV mV mV
ISC	Short-Circuit Current	$\begin{aligned} & V_{S}=5 \mathrm{~V} \\ & V_{S}=3 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 12.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 30 \\ & 25 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {S }}$	Supply Current Per Amplifier		\bullet		1.1	1.5	mA
GBW	Gain-Bandwidth Product	$\mathrm{V}_{S}=5 \mathrm{~V}$, Frequency $=1 \mathrm{MHz}$	\bullet	25	50		MHz
SR	Slew Rate	$\mathrm{V}_{S}=5 \mathrm{~V}, \mathrm{~A}_{V}=-1, \mathrm{R}_{L}=1 \mathrm{k}, \mathrm{V}_{0 U T}=4 \mathrm{~V}$	\bullet	8	15		V/ HS

LT6220/LT6221/LT6222

ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$V_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=-5 \mathrm{~V} \\ & V_{C M}=-5 \mathrm{~V}(D D \text { Package }) \\ & V_{C M}=-5 \mathrm{~V}(\text { S5 Package }) \\ & V_{C M}=5 \mathrm{~V} \\ & V_{C M}=5 \mathrm{~V}(\text { S5 Package }) \end{aligned}$		$\begin{gathered} 80 \\ 150 \\ 200 \\ 0.7 \\ 0.7 \end{gathered}$	$\begin{gathered} 500 \\ 750 \\ 900 \\ 2.5 \\ 3 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$ mV mV
$\triangle \mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift	$\mathrm{V}_{\mathrm{CM}}=-5 \mathrm{~V}$ to 3.5 V		70	675	$\mu \mathrm{V}$
	Input Offset Voltage Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & V_{C M}=-5 \mathrm{~V} \\ & V_{C M}=-5 \mathrm{~V} \text { (DD Package) } \end{aligned}$		$\begin{aligned} & 100 \\ & 150 \end{aligned}$	$\begin{gathered} 850 \\ 1300 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=-4 \mathrm{~V} \\ & V_{C M}=5 \mathrm{~V} \end{aligned}$		$\begin{gathered} 20 \\ 250 \end{gathered}$	$\begin{aligned} & 150 \\ & 700 \end{aligned}$	nA
	Input Bias Current Match (Channel-to-Channel)	$\begin{aligned} & V_{C M}=-4 \mathrm{~V} \\ & V_{C M}=5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 175 \\ & 250 \end{aligned}$	nA nA
IOS	Input Offset Current	$\begin{aligned} & V_{C M}=-4 \mathrm{~V} \\ & V_{C M}=5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	nA nA
	Input Noise Voltage	0.1 Hz to 10 Hz		0.5		$\mu \mathrm{V}$ P-P
e_{n}	Input Noise Voltage Density	$\mathrm{f}=10 \mathrm{kHz}$		10		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current Density	$\mathrm{f}=10 \mathrm{kHz}$		0.8		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{f}=100 \mathrm{kHz}$		2		pF
AVOL	Large Signal Voltage Gain	$\begin{aligned} & V_{\text {OUT }}=-4 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}=-2 \mathrm{~V} \text { to } 2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$	$\begin{aligned} & 35 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \hline 95 \\ & 10 \end{aligned}$		V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=-5 \mathrm{~V}$ to 3.5 V	82	102		dB
	CMRR Match (Channel-to-Channel)		77	100		dB
	Input Common Mode Range		V_{S}		$\mathrm{V}^{\text {S }}$	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}^{+}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$	84	105		dB
	PSRR Match (Channel-to-Channel)		79	105		dB
V_{OL}	Output Voltage Swing LOW (Note 7)	$\begin{aligned} & \text { No Load } \\ & l_{\text {SINK }}=5 \mathrm{~mA} \\ & \text { I SINK }^{2}=20 \mathrm{~mA} \end{aligned}$		$\begin{gathered} \hline 5 \\ 100 \\ 325 \end{gathered}$	$\begin{gathered} \hline 40 \\ 200 \\ 650 \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & \text { I SOURCE }^{2}=20 \mathrm{~mA} \end{aligned}$		$\begin{gathered} \hline 5 \\ 130 \\ 475 \end{gathered}$	$\begin{aligned} & \hline 40 \\ & 250 \\ & 900 \end{aligned}$	mV mV mV
ISC	Short-Circuit Current		25	50		mA
Is	Supply Current Per Amplifier			1	1.5	mA
GBW	Gain-Bandwidth Product	Frequency $=1 \mathrm{MHz}$		60		MHz
SR	Slew Rate	$\begin{aligned} & A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{~V}_{\text {OUT }}= \pm 4 \mathrm{~V}, \\ & \text { Measure at } V_{\text {OUT }}= \pm 2 \mathrm{~V} \end{aligned}$		20		V/ $/ \mathrm{s}$
FPBW	Full Power Bandwidth	$\mathrm{V}_{\text {OUT }}=8 \mathrm{~V}_{\text {P-P }}$		0.8		MHz
HD	Harmonic Distortion	$A_{V}=1, R_{L}=1 \mathrm{k}, \mathrm{V}_{0 U T}=2 V_{\text {P-P, }}, f_{C}=500 \mathrm{kHz}$		-77.5		dBc
$\mathrm{t}_{\text {s }}$	Settling Time	$0.01 \%, \mathrm{~V}_{\text {STEP }}=5 \mathrm{~V}, \mathrm{~A}_{V}=1, \mathrm{R}_{L}=1 \mathrm{k}$		375		ns
$\Delta \mathrm{G}$	Differential Gain (NTSC)	$A_{V}=2, R_{L}=1 \mathrm{k}$		0.15		\%
$\Delta \theta$	Differential Phase (NTSC)	$\mathrm{A}_{\mathrm{V}}=2, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$		0.6		Deg

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathbf{O V}, \mathrm{V}_{O U T}=\mathbf{V V}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{0 S}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=-5 \mathrm{~V} \\ & V_{C M}=-5 \mathrm{~V}(D D \text { Package }) \\ & \left.V_{C M}=-5 \mathrm{~V} \text { (S5 Package }\right) \\ & V_{C M}=5 \mathrm{~V} \\ & V_{C M}=5 \mathrm{~V}(\text { S5 Package }) \end{aligned}$	$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \end{aligned}$		$\begin{aligned} & 100 \\ & 180 \\ & 230 \\ & 0.75 \\ & 0.75 \end{aligned}$	$\begin{gathered} 650 \\ 900 \\ 1300 \\ 3 \\ 3.5 \end{gathered}$	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \\ & \mu \mathrm{~V} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\triangle \mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift	$\mathrm{V}_{\mathrm{CM}}=-5 \mathrm{~V}$ to 3.5 V	\bullet		90	850	$\mu \mathrm{V}$
	Input Offset Voltage Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & V_{C M}=-5 \mathrm{~V} \\ & V_{C M}=-5 \mathrm{~V}(D D \text { Package }) \end{aligned}$	\bullet		$\begin{gathered} 90 \\ 180 \end{gathered}$	$\begin{aligned} & 1100 \\ & 1500 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 8)	(S5 Package)	\bullet		$\begin{aligned} & 1.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 5 \\ 10 \end{gathered}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=-4 \mathrm{~V} \\ & V_{C M}=4.8 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} 20 \\ 275 \end{gathered}$	$\begin{aligned} & 175 \\ & 800 \end{aligned}$	nA
	Input Bias Current Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & V_{C M}=-4 \mathrm{~V} \\ & V_{C M}=4.8 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 200 \\ & 300 \end{aligned}$	nA nA
10 S	Input Offset Current	$\begin{aligned} & V_{C M}=-4 \mathrm{~V} \\ & V_{C M}=4.8 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 125 \\ & 125 \end{aligned}$	$\begin{aligned} & \overline{\mathrm{nA}} \\ & \mathrm{nA} \end{aligned}$
AVOL	Large Signal Voltage Gain	$\begin{aligned} & V_{\text {OUT }}=-4 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}=-2 \mathrm{~V} \text { to } 2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \hline \end{aligned}$	\bullet	$\begin{gathered} 30 \\ 3 \end{gathered}$	$\begin{gathered} 90 \\ 9 \end{gathered}$		V / mV V/mV
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=-5 \mathrm{~V}$ to 3.5 V	\bullet	80	100		dB
	CMRR Match (Channel-to-Channel) (Note 9)		\bullet	75	100		dB
	Input Common Mode Range		\bullet	$\mathrm{V}_{S}{ }^{-}$		$\mathrm{V}^{+}{ }^{+}$	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}^{+}{ }^{+}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$	\bullet	81	104		dB
	PSRR Match (Channel-to-Channel) (Note 9)		\bullet	76	104		dB
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing LOW (Note 7)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SINK }}=5 \mathrm{~mA} \\ & \mathrm{I}_{\text {SINK }}=20 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{gathered} 8 \\ 110 \\ 375 \end{gathered}$	$\begin{gathered} \hline 50 \\ 220 \\ 750 \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	$\begin{aligned} & \hline \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & I_{\text {SOURCE }}=20 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{gathered} \hline 8 \\ 150 \\ 600 \end{gathered}$	$\begin{gathered} 50 \\ 300 \\ 1100 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\mathrm{I}_{\text {SC }}$	Short-Circuit Current		\bullet	20	40		mA
Is	Supply Current Per Amplifier		\bullet		1.2	2	mA
GBW	Gain-Bandwidth Product	Frequency $=1 \mathrm{MHz}$	\bullet		60		MHz
SR	Slew Rate	$\begin{aligned} & A_{V}=-1, R_{L}=1 \mathrm{k}, \mathrm{~V}_{\text {OUT }}= \pm 4 \mathrm{~V}, \\ & \text { Measure at } V_{\text {OUT }}= \pm 2 \mathrm{~V} \end{aligned}$	\bullet		18		V/us

ELECTRICAL CHARACTERISTICS The odennes the seacifications which papyly ver the - $400^{\circ} \leq T_{A} \leq 85^{5} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V}$, unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	$\begin{aligned} & V_{C M}=-5 \mathrm{~V} \\ & \left.V_{C M}=-5 \mathrm{~V} \text { (DD Package }\right) \\ & \left.V_{C M}=-5 \mathrm{~V} \text { (S5 Package }\right) \\ & V_{C M}=5 \mathrm{~V} \\ & V_{C M}=5 \mathrm{~V}(\text { S5 Package }) \end{aligned}$	$\stackrel{\ominus}{\bullet}$		$\begin{gathered} \hline 150 \\ 300 \\ 350 \\ 0.75 \\ 1 \end{gathered}$	$\begin{gathered} \hline 800 \\ 1300 \\ 2000 \\ 3.5 \\ 4.5 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$ mV mV
$\triangle \mathrm{V}_{\text {OS }}$	Input Offset Voltage Shift	$\mathrm{V}_{\text {CM }}=-5 \mathrm{~V}$ to 3.5 V	\bullet		90	950	$\mu \mathrm{V}$
	Input Offset Voltage Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & V_{C M}=-5 \mathrm{~V} \\ & V_{C M}=-5 \mathrm{~V} \text { (DD Package) } \end{aligned}$	\bullet		$\begin{aligned} & 175 \\ & 300 \end{aligned}$	$\begin{aligned} & 1350 \\ & 2200 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$
$\mathrm{V}_{\text {OS }}$ TC	Input Offset Voltage Drift (Note 8)	(S5 Package)	\bullet		$\begin{aligned} & 1.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 15 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=-4 \mathrm{~V} \\ & V_{C M}=4.8 \mathrm{~V} \end{aligned}$			$\begin{gathered} 25 \\ 300 \end{gathered}$	$\begin{aligned} & 200 \\ & 900 \end{aligned}$	nA nA
	Input Bias Current Match (Channel-to-Channel) (Note 9)	$\begin{aligned} & V_{C M}=-4 \mathrm{~V} \\ & V_{C M}=4.8 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 250 \\ & 350 \end{aligned}$	nA nA
10 S	Input Offset Current	$\begin{aligned} & V_{C M}=-4 \mathrm{~V} \\ & V_{C M}=4.8 \mathrm{~V} \end{aligned}$	\bullet		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 150 \\ & 150 \end{aligned}$	nA nA
$A_{\text {VOL }}$	Large Signal Voltage Gain	$\begin{aligned} & V_{\text {OUT }}=-4 \mathrm{~V} \text { to } 4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}=-1 \mathrm{~V} \text { to } 1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$	\bullet	$\begin{aligned} & \hline 25 \\ & 2.5 \end{aligned}$	$\begin{gathered} 70 \\ 8 \end{gathered}$		V / mV V / mV
CMRR	Common Mode Rejection Ratio	$\mathrm{V}_{\text {CM }}=-5 \mathrm{~V}$ to 3.5 V	\bullet	79	100		dB
	CMRR Match (Channel-to-Channel) (Note 9)		\bullet	74	100		dB
	Input Common Mode Range		\bullet	-5		5	V
PSRR	Power Supply Rejection Ratio	$\mathrm{V}^{+}=2.5 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}^{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}$	\bullet	79	104		dB
	PSRR Match (Channel-to-Channel) (Note 9)		\bullet	74	104		dB
$\mathrm{V}_{\text {OL }}$	Output Voltage Swing LOW (Note 7)	$\begin{array}{\|l\|} \hline \text { No Load } \\ I_{\text {SINK }}=5 \mathrm{~mA} \\ I_{\text {SINK }}=10 \mathrm{~mA} \\ \hline \end{array}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} \hline 10 \\ 120 \\ 220 \end{gathered}$	$\begin{gathered} 60 \\ 240 \\ 450 \end{gathered}$	mV mV mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	$\begin{aligned} & \text { No Load } \\ & I_{\text {SOURCE }}=5 \mathrm{~mA} \\ & \text { I SOURCE }^{2}=10 \mathrm{~mA} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{gathered} 10 \\ 160 \\ 325 \end{gathered}$	$\begin{gathered} \hline 60 \\ 325 \\ 650 \end{gathered}$	mV mV mV
${ }_{\text {ISC }}$	Short-Circuit Current		\bullet	12.5	30		mA
Is	Supply Current		\bullet		1.4	2.25	mA
GBW	Gain-Bandwidth Product	Frequency $=1 \mathrm{MHz}$	\bullet		50		MHz
SR	Slew Rate	$\begin{aligned} & A_{V}=-1, R_{L}=1 \mathrm{k}, V_{\text {OUT }}= \pm 4 \mathrm{~V}, \\ & \text { Measure at } V_{\text {OUT }}= \pm 2 \mathrm{~V} \end{aligned}$	\bullet		15		$\mathrm{V} / \mathrm{\mu s}$

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The inputs are protected by back-to-back diodes. If the differential input voltage exceeds 1.4 V , the input current should be limited to less than 10 mA .
Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely.
Note 4: The LT6220C/LT6221C/LT6222C and LT6220I/LT6221I/LT6222I are guaranteed functional over the temperature range of $-40^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$.
Note 5: The LT6220C/LT6221C/LT6222C are guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LT6220C/LT6221C/LT6222C are designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but is not tested or QA sampled at these temperatures. The

LT62201/LT6221//LT6222I are guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 6: Minimum supply voltage is guaranteed by power supply rejection ratio test.
Note 7: Output voltage swings are measured between the output and power supply rails.
Note 8: This parameter is not 100% tested.
Note 9: Matching parameters are the difference between amplifiers A and D and between B and C on the LT6222; between the two amplifiers on the LT6221.
Note 10: Thermal resistance $\left(\theta_{\mathrm{JA}}\right)$ varies with the amount of PC board metal connected to the package. The specified values are for short traces connected to the leads. If desired, the thermal resistance can be substantially reduced by connecting Pin 2 of the LT6220CS5/LT6220IS5 or the underside metal of DD packages to a larger metal area ($\mathrm{V}_{\mathrm{S}}^{-}$trace).

622012fc

TYPICAL PERFORMANCE CHARACTERISTICS

LT6220/LT6221/LT6222

TYPICAL PERFORMANCE CHARACTERISTICS

622012 G16

Input Noise Voltage vs Frequency

TYPICAL PERFORMANCE CHARACTERISTICS

Gain Bandwidth and Phase Margin vs Temperature

620012 G22
0.1Hz to 10Hz Output Voltage Noise

622012 G20

Gain Bandwidth and Phase Margin vs Supply Voltage

622012 G23

622012 G24

Gain vs Frequency $\left(A_{V}=1\right)$

Gain vs Frequency $\left(A_{V}=2\right)$

LT6220/LT6221/LT6222

TYPICAL PERFORMANCE CHARACTERISTICS

LT6220/LT6221/LT6222

TYPICAL PGRFORMAOCE CHARACTERISTICS

APPLICATIONS INFORMATION

Circuit Description

The LT6220/LT6221/LT6222 have an input and output signal range that covers from the negative power supply to the positive power supply. Figure 1 depicts a simplified schematic of the amplifier. The input stage comprises two differential amplifiers, a PNP stage, Q1/Q2, and an NPN stage, Q3/Q4, that are active over different ranges of common mode input voltage. The PNP stage is active between the negative supply to approximately 1.2 V below the positive supply. As the input voltage moves closer toward the positive supply, the transistor $Q 5$ will steer the
tail current, l_{1}, to the current mirror, Q6/Q7, activating the NPN differential pair and the PNP pair becomes inactive for the rest of the input common mode range up to the positive supply. Also, at the input stage, devices Q17 to Q19 act to cancel the bias current of the PNP input pair. When Q1/Q2 are active, the current in Q16 is controlled to be the same as the current Q1/Q2. Thus, the base current of Q16 is nominally equal to the base current of the input devices. The base current of Q16 is then mirrored by devices Q17-Q19 to cancel the base current of the input devices Q1/Q2.

Figure 1. LT6220/LT6221/LT6222 Simplified Schematic Diagram

APPLLCATIONS InFORMATION

A pair of complementary common emitter stages Q14/Q15 that enable the output to swing from rail-to-rail construct the output stage. The capacitors C2 and C3 form the local feedback loops that lower the output impedance at high frequency. These devices are fabricated by Linear Technology's proprietary high speed complementary bipolar process.

Power Dissipation

The LT6222, with four amplifiers, is housed in a small 16-lead SSOP package and typically has a thermal resistance $\left(\theta_{\mathrm{JA}}\right)$ of $135^{\circ} \mathrm{C} / \mathrm{W}$. It is necessary to ensure that the die's junction temperature does not exceed $150^{\circ} \mathrm{C}$. The junction temperature, T_{J}, is calculated from the ambient temperature, T_{A}, power dissipation, P_{D}, and thermal resistance, θ_{JA} :

$$
T_{J}=T_{A}+\left(P_{D} \bullet \theta_{J A}\right)
$$

The power dissipation in the IC is the function of the supply voltage, output voltage and the load resistance. For a given supply voltage, the worst-case power dissipation $P_{D(\text { MAX })}$ occurs when the maximum supply current and the output voltage is at half of either supply voltage for a given load resistance. $\mathrm{P}_{\mathrm{D}(\mathrm{MAX})}$ is given by:

$$
P_{\mathrm{D}(\mathrm{MAX})}=\left(\mathrm{V}_{\mathrm{S}} \bullet \mathrm{I}_{\mathrm{S}(\mathrm{MAX})}\right)+\left(\frac{\mathrm{V}_{\mathrm{S}}}{2}\right)^{2} / R_{\mathrm{L}}
$$

Example: For an LT6222 in a 16-lead SSOP package operating on $\pm 5 \mathrm{~V}$ supplies and driving a 100Ω load, the worst-case power dissipation is given by:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{D}(\text { MAX })} / \mathrm{Amp} & =(10 \cdot 1.8 \mathrm{~mA})+(2.5)^{2} / 100 \\
& =0.018+0.0625=80.5 \mathrm{~mW}
\end{aligned}
$$

If all four amplifiers are loaded simultaneously, then the total power dissipation is 322 mW .
The maximum ambient temperature at which the part is allowed to operate is:

$$
\begin{aligned}
T_{A} & =T_{J}-\left(P_{D(M A X)} \cdot 135^{\circ} \mathrm{C} / \mathrm{W}\right) \\
& =150^{\circ} \mathrm{C}-\left(0.322 \mathrm{~W} \cdot 135^{\circ} \mathrm{C} / \mathrm{W}\right)=106.5^{\circ} \mathrm{C}
\end{aligned}
$$

Input Offset Voltage

The offset voltage will change depending upon which input stage is active. The PNP input stage is active from the negative supply rail to 1.2 V below the positive supply rail, then the NPN input stage is activated for the remaining input range up to the positive supply rail during which the PNP stage remains inactive. The offset voltage is typically less than $70 \mu \mathrm{~V}$ in the range that the PNP input stage is active.

Input Bias Current

The LT6220/LT6221/LT6222 employ a patent pending technique to trim the input bias current to less than 150 nA for the input common mode voltage of 0.2 V above the negative supply rail to 1.2 V below the positive rail. The low input offset voltage and low input bias current of the LT6220/LT6221/LT6222 provide precision performance especially for high source impedance applications.

Output

The LT6220/LT6221/LT6222 can deliver a large outputcurrent, so the short-circuit current limit is set around 50 mA to prevent damage to the device. Attention must be paid to keep the junction temperature of the IC below the absolute maximum rating of $150^{\circ} \mathrm{C}$ (refer to the Power Dissipation section) when the output is in continuous short circuit. The output of the amplifier has reverse-biased diodes connected to each supply. If the output is forced beyond either supply, unlimited current will flow through these diodes. If the current is transient and limited to several hundred milliamperes, no damage will occur to the device.

Overdrive Protection

When the input voltage exceeds the power supplies, two pair of crossing diodes, D1 to D4, will prevent the output from reversing polarity. If the input voltage exceeds either power supply by 700 mV , diode D1/D2 or D3/D4 will turn on to keep the output at the proper polarity. For the phase reversal protection to perform properly, the input current must be limited to less than 5mA. If the amplifier

APPLICATIONS INFORMATION

is severely overdriven, an external resistor should be used to limit the overdriven current.

The LT6220/LT6221/LT6222's input stages are also protected against a large differential input voltage of 1.4 V or higher by a pair of back-to-back diodes, D5/D8, to prevent the emitter-base breakdown of the input transistors. The current in these diodes should be limited to less than 10 mA when they are active. The worse-case differential input voltage usually occurs when the input is driven while the output is shorted to ground in a unity-gain configuration. In addition, the amplifier is protected against ESD strikes up to 3 kV on all pins by a pair of protection diodes on each pin that are connected to the power supplies as shown in Figure 1.

Capacitive Load

The LT6220/LT6221/LT6222 are optimized for high bandwidth, low power and precision applications. They can drive a capacitive load up to 100 pF in a unity-gain configuration and more for higher gain. When driving a
larger capacitive load, a resistor of 10Ω to 50Ω should be connected between the output and the capacitive load to avoid ringing or oscillation. The feedback should still be taken from the output so that the resistor will isolate the capacitive load to ensure stability. Graphs on capacitive loads show the transient response of the amplifier when driving capacitive load with specified series resistors.

Feedback Components

When feedback resistors are used to set up gain, care must be taken to ensure that the pole formed by the feedback resistors and the total capacitance at the inverting input does not degrade stability. For instance, the LT6220/ LT6221/LT6222, set up with a noninverting gain of 2, two 5 k resistors and a capacitance of 5 pF (part plus PC board), will probably oscillate. The pole is formed at 12.7 MHz that will reduce phase margin by 52 degrees when the crossover frequency of the amplifier is around 10 MHz . A capacitor of 10 pF or higher connecting across the feedback resistor will eliminate any ringing or oscillation.

TYPICAL APPLICATIONS

Stepped-Gain Photodiode Amplifier

The circuit of Figure 2 is a stepped gain transimpedance photodiode amplifier. At low signal levels, the circuit has a high $100 \mathrm{k} \Omega$ gain, but at high signal levels the circuit automatically and smoothly changes to a low $3.2 \mathrm{k} \Omega$ gain. The benefit of a stepped gain approach is that it maximizes dynamic range, which is very useful on limited supplies. Put another way, in order to get $100 \mathrm{k} \Omega$ sensitivity and still handle a 1 mA signal level without resorting to gain reduction, the circuit would need a 100V negative voltage supply.
The operation of the circuit is quite simple. At low photodiode currents (below $10 \mu \mathrm{~A}$) the output and inverting input of the op amp will be no more than 1 V below ground. The LT1634 in parallel with R3 and Q2 keep a constant current though Q2 of about $20 \mu \mathrm{~A}$. R4 maintains quiescent current through the LT1634 and pulls Q2's emitter above ground,
so Q1 is reverse biased and no current flows through R2. So for small signals, the only feedback path is R1 (and C1) and the circuit is a simple transimpedance amplifier with $100 \mathrm{k} \Omega$ gain.

Figure 2. Stepped-Gain Photodiode Amplifier

LT6220/LT6221/LT6222

TYPICAL APPLICATIONS

As the signal level increases though, the output of the op amp goes more negative. At $12.5 \mu \mathrm{~A}$ of photodiode current, the $100 \mathrm{k} \Omega$ gain dictates that the LT6220 output will be about 1.25 V below ground. However, at that point the emitter of Q2 will be at ground, and the base of Q1 will be 1 V below ground. Thus, Q1 turns on and photodiode current starts to flow through R2. The transimpedance gain is therefore now reduced to $\mathrm{R} 1 \| \mathrm{R} 2$, or about $3.1 \mathrm{k} \Omega$. The circuit response is shown in Figure 3. Note the smooth transition between the two operating gains, as well as the linearity.

Figure 3. Stepped-Gain Photodiode Amplifier Response

Single 3V Supply, 1MHz, 4th Order Butterworth Filter

The circuit shown in Figure 4 makes use of the low voltage operation and the wide bandwidth of the LT6221 to create a DC accurate 1MHz 4th order lowpass filter powered from a 3 V supply. The amplifiers are configured in the inverting mode for the lowest distortion and the output can swing rail-to-rail for maximum dynamic range. Figure 5 displays the frequency response of the filter. Stopband attenuation is greater than 100 dB at 50 MHz .

Figure 5. Frequency Response of Filter

Differential-In/Differential-Out Amplifier

The circuit of Figure 6 shows the LT6222 applied as a buffered differential-in differential-out amplifier with a gain of 2. Op amps A and B are configured as simple unity-gain buffers, offering high input impedance to upstream circuitry. Resistors R1 and R2 perform an averaging function on the common mode input voltage and R3 attenuates it by a factor of $2 / 3$ and references it to the voltage source $\mathrm{V}_{\text {OCM }}$. The resultant voltage, $\mathrm{V}_{\mathrm{MID}}=2 / 3 \cdot \mathrm{~V}_{\text {ICM }}$, is placed at the noninverting inputs of op amps C and D . The other four resistors set gains of +3 from the noninverting input and -2 through the inverting path. Thus the output voltage of the upper path is:

$$
\begin{aligned}
- \text { OUT } & =3 \bullet\left(2 / 3 \bullet V_{\text {ICM }}+1 / 3 \bullet V_{\text {OCM }}\right)-2 \\
& \bullet\left(V_{\text {ICM }}+V_{\text {DIFF }} / 2\right) \\
& =2 V_{\text {ICM }}+V_{\text {OCM }}-2 V_{\text {ICM }}-V_{\text {DIFF }} \\
& =V_{\text {OCM }}-V_{\text {DIFF }}
\end{aligned}
$$

Figure 4. 3V, 1MHz, 4th Order Butterworth Filter

LT6220/LT6221/LT6222

TYPICAL APPLICATIONS

and the output of the lower path is:

$$
\begin{aligned}
+ \text { OUT } & =3 \cdot\left(2 / 3 \cdot V_{\text {ICM }}+1 / 3 \cdot V_{\text {OCM }}\right)-2 \\
& \bullet\left(V_{\text {ICM }}-V_{\text {DIFF/ }}\right) \\
& =2 V_{\text {ICM }}+V_{\text {OCM }}-2 V_{\text {ICM }}+V_{\text {DIFF }} \\
& =V_{\text {OCM }}+V_{\text {DIFF }}
\end{aligned}
$$

Note that the input common mode voltage does not appear in the output as either a common mode or a difference mode term. However the voltage $V_{\text {OCM }}$ does appear in the output terms, and with the same polarity, so it sets up the output DC level. Also, the differential input voltage $V_{\text {DIFF }}$ appears fully at both outputs with opposite polarity,
giving rise to the effective differential gain of 2. Calculations show that using 1% resistors gives worst-case input common mode feedthrough better than -31 dB , whether looking at the output common mode or difference mode. Considering the 6dB of gain, worst-case common mode rejection ratio is 37 dB . (Remember this is assuming 1% resistors. Of course, this can be improved with more precise resistors.) Results achieved on the bench with typical 1% resistors showed 67 dB of CMRR at low frequency and 40 dB CMRR at 1 MHz . Gains other than 2 can be achieved by setting R3 $=\alpha \bullet(\mathrm{R} 1| | \mathrm{R} 2)$, $\mathrm{R} 5=\alpha \bullet \mathrm{R} 4$ and $\mathrm{R} 7=\alpha \bullet \mathrm{R} 6$ where gain $=\alpha$.

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

DD Package
8-Lead Plastic DFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1698 Rev C)

LT6220/LT6221/LT6222

PACKAGE DESCRIPTION
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.
S5 Package
5-Lead Plastic TSOT-23
(Reference LTC DWG \# 05-08-1635)

1. DIMENSIONS ARE IN MILLIMETERS
2. DRAWING NOT TO SCALE
3. DIMENSIONS ARE INCLUSIVE OF PLATING
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR
5. MOLD FLASH SHALL NOT EXCEED 0.254 mm
6. JEDEC PACKAGE REFERENCE IS MO-193

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

S8 Package

8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610 Rev G)

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

GN Package
16-Lead Plastic SSOP (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1641 Rev B)

REVISION HISTORY (Revision history begins at Rev B)

REV	DATE	DESCRIPTION	PAGE NUMBER
B	05/14	Added $\mathrm{V}_{\text {Out }}$ information to Typical Application.	1
		Updated the Order Information table.	2
C	05/15	Updated Order Information table to reflect Specified Temperature Range	2

LT6220/LT6221/LT6222

TYPICAL APPLICATION

Figure 6. Buffered Gain of 2 Differential-In/Differential-Out Amplifier

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1498/LT1499	Dual/Quad 10MHz, 6V/us Rail-to-Rail Input/ Output C Load Op Amps	High DC Accuracy, $475 \mu \mathrm{~V} \mathrm{~V}_{\text {OS(MAX) }}$ Max Supply Current 2.2mA/Amp, Wide Supply Range, 2.2V to 30 V
LT1800/LT1801/LT1802	Single/Dual/Quad 80MHz, 25V/us, Low Power Rail-to-Rail Input/Output Precision Op Amps	$350 \mu \mathrm{~V} \mathrm{~V}_{\text {OS(MAX) }}$, $250 \mathrm{nA} \mathrm{I}_{\text {BIAS(MAX) }}$, Max Supply Current $2 \mathrm{~mA} / \mathrm{Amp}$
LT1803/LT1804/LT1805	Single/Dual/Quad 85MHz, 100V/us Rail-to-Rail Input/Output Op Amps	$2 \mathrm{mV} \mathrm{V}_{\text {OS(MAX) }}$, Max Supply Current 3mA/Amp
LT1806/LT1807	Single/Dual 325MHz, 140V/ μ s Rail-to-Rail Input/ Output Op Amps	High DC Accuracy, $550 \mu \mathrm{~V} \mathrm{~V}_{\text {OS(MAX) }}$ Max Low Noise $3.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Low Distortion -80dBc at 5MHz, Power Down (LT1806)
LT1809/LT1810	Single/Dual 180MHz, Rail-to-Rail Input/Output Op Amps	$350 \mathrm{~V} /$ us Slew Rate, Low Distortion -90dBc at 5 MHz , Power Down (LT1809)

[^0]: $\boldsymbol{\mathcal { Y }}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.

