LT1490/LT1491

DESCRIPTIOn

The dual LT $^{\circledR} 1490$ and quad LT1491 op amps operate on all single and split supplies with a total voltage of 2 V to 44 V drawing only $40 \mu \mathrm{~A}$ of quiescent current per amplifier. These amplifiers are reverse supply protected; they draw no current for reverse supply up to 18 V . The input range of the LT1490/ LT1491 includes both supplies and the output swings to both supplies. Unlike most micropower op amps, the LT1490/ LT1491 can drive heavy loads; their rail-to-rail outputs drive 20mA. The LT1490/LT1491 are unity-gain stable and drive all capacitive loads up to $10,000 \mathrm{pF}$ when optional $0.22 \mu \mathrm{~F}$ and 150Ω compensation is used.
The LT1490/LT1491 have a unique input stage that operates and remains high impedance when above the positive supply. The inputs take 44V both differential and common mode even when operating on a 3 V supply. Built-in resistors protect the inputs for faults below the negative supply up to 22 V . There is no phase reversal of the outputfor inputs 22 V below V^{-}or 44 V above V^{-}, independent of V^{+}.

The LT1490 dual op amp is available in the 8-pin MSOP, SO and PDIP packages. The quad LT1491 is available in the 14-pin S0 and PDIP packages.
For new designs it is recommended that the LT1490A/ LT1491A be used instead of the LT1490/LT1491. See the LT1490A/LT1491A data sheet for details.

TYPICAL APPLICATION

ABSOLUTE MAXIMUM RATINGS (Note 1)

Total Supply Voltage (V^{+}to V^{-}) 44 V	Ju
Input Differential Voltage 44V	Specified Temperature Range (Note 3) .. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Input Current .. $\pm 25 \mathrm{~mA}$	Storage Temperature Range $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Output Short-Circuit Duration (Note 2)Continuous	Lead Temperature (Soldering, 10 sec)............... $300^{\circ} \mathrm{C}$

Junction Temperature.. 150º C
Specified Temperature Range (Note 3) .. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PACKAGE/ORDER INFORMATIOn (For new designs, use the LT1490A or LT1491A)

S8 PACKAGE 8-LEAD PLASTIC SO $\begin{aligned} & \mathrm{T}_{\text {JMAX }}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=250^{\circ} \mathrm{C} / \mathrm{W} \text { (MS8) } \\ & \mathrm{T}_{\text {JMAX }}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JAA}}=130^{\circ} \mathrm{C} / \mathrm{W} \text { (N8) } \\ & \left.\mathrm{T}_{\text {JMAX }}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=190^{\circ} \mathrm{C} / \mathrm{S} 8\right) \end{aligned}$	ORDER PART NUMBER	TOP VIEW	ORDER PART NUMBER
	LT1490CMS8	OUTA 1	
	LT1490CN8		LT1491CN
	LT1490CS8	+INA 3- ${ }^{\text {a }}$	LT1491CS
	LT1490IN8	$\mathrm{V}^{+} 4$	LT1491IN
	LT1490IS8		LT1491IS
	MS8 PART MARKING	OUT В $7 \square \square 8$ OUTC	
	LTBB	N PACKAGE S PACKAGE	
	S8 PART MARKING	$\mathrm{T}_{\mathrm{Jmax}}=150^{\circ} \mathrm{C}, \theta_{\mathrm{JA}}=11^{\circ} \mathrm{O} / \mathrm{W}(\mathrm{~N})$	
	1490 14901		

Consult factory for Military grade parts.

ELECTRICAL CHARACTERSTICS The o denotes specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{S}=3 \mathrm{~V}, 0 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, 0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{O U T}=$ half supply, unless otherwise noted. (Note 3)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	LT1490 N Package $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	\bullet		220	$\begin{gathered} 800 \\ 1000 \\ 1100 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
		LT1490 S Package $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	\bullet		220	$\begin{gathered} 950 \\ 1200 \\ 1300 \end{gathered}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
		LT1491 N Package $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$			300	$\begin{aligned} & 1100 \\ & 1350 \\ & 1450 \\ & \hline \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
		LT1490CMS8 Package, LT1491 S Package $\begin{aligned} & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{A} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$	\bullet		350	$\begin{aligned} & 1450 \\ & 1650 \\ & 1750 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
Vos TC	Input Offset Voltage Drift	$\begin{aligned} & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \text { (Note 7) } \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \text { (Note 7) } \end{aligned}$	\bullet		$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$\mathrm{V}_{\text {CM }}=44 \mathrm{~V}$ (Note 4)	\bullet		0.2	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$n A$ $\mu \mathrm{~A}$
I_{B}	Input Bias Current	$\begin{aligned} & V_{C M}=44 \mathrm{~V}(\text { Note } 4) \\ & V_{S}=0 \mathrm{~V} \end{aligned}$	\bullet		$\begin{gathered} 4 \\ 4 \\ 0.1 \\ \hline \end{gathered}$	$\begin{gathered} \hline 8 \\ 10 \end{gathered}$	nA μA $n A$
	Input Noise Voltage	0.1 Hz to 10Hz			1		$\mu \mathrm{V}_{\text {P-P }}$

ELECTRICAL CHARACTERISTICS The • denotes specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{S}=3 \mathrm{~V}, 0 \mathrm{O} ; \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{OV} ; \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ half supply, unless otherwise noted. (Note 3)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
e_{n}	Input Noise Voltage Density	$\mathrm{f}=1 \mathrm{kHz}$			50		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current Density	$\mathrm{f}=1 \mathrm{kHz}$			0.03		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	Differential Common Mode, $\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to 44 V		$\begin{aligned} & 6 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline 17 \\ & 11 \end{aligned}$		$\begin{aligned} & \mathrm{M} \Omega \\ & \mathrm{M} \Omega \end{aligned}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			4.6			pF
	Input Voltage Range		\bullet	0		44	V
CMRR	Common Mode Rejection Ratio (Note 4)	$\begin{aligned} & V_{C M}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V} \text { to } 44 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & 84 \\ & 80 \end{aligned}$	$\begin{aligned} & 98 \\ & 98 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
$\overline{\text { AVOL }}$	Large-Signal Voltage Gain	$\begin{aligned} & V_{S}=3 V, V_{0}=500 \mathrm{mV} \text { to } 2.5 \mathrm{~V}, R_{L}=10 \mathrm{~K} \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & 200 \\ & 133 \\ & 100 \end{aligned}$	1500		$\begin{aligned} & \hline \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
		$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{~V}_{0}=500 \mathrm{mV} \text { to } 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & 400 \\ & 250 \\ & 200 \\ & \hline \end{aligned}$	1500		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{L}$	Output Voltage Swing Low	$\begin{aligned} & V_{S}=3 \mathrm{~V}, \text { No Load } \\ & V_{S}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{SINK}}=5 \mathrm{~mA} \end{aligned}$	\bullet		$\begin{gathered} \hline 22 \\ 250 \end{gathered}$	$\begin{gathered} 50 \\ 450 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
		$\begin{aligned} & V_{S}=5 \mathrm{~V}, \mathrm{No}_{\mathrm{L}} \text { oad } \\ & V_{S}=5 \mathrm{~V}, I_{\text {SINK }}=5 \mathrm{~mA} \\ & V_{S}=5 \mathrm{~V}, I_{\text {SINK }}=10 \mathrm{~mA} \end{aligned}$			$\begin{gathered} \hline 22 \\ 250 \\ 330 \end{gathered}$	$\begin{gathered} \hline 50 \\ 500 \\ 500 \end{gathered}$	mV mV mV
$\overline{\mathrm{V}_{\mathrm{OH}}}$	Output Voltage Swing High	$\begin{aligned} & V_{S}=3 \mathrm{~V}, \text { No Load } \\ & V_{S}=3 \mathrm{~V}, I_{\text {SOURCE }}=5 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & \hline 2.95 \\ & 2.55 \end{aligned}$	$\begin{aligned} & 2.978 \\ & 2.6 \end{aligned}$		V
		$\begin{aligned} & V_{S}=5 \mathrm{~V}, \text { No Load } \\ & V_{S}=5 \mathrm{~V}, I_{\text {SOURCE }}=10 \mathrm{~mA} \end{aligned}$	\bullet	$\begin{aligned} & 4.95 \\ & 4.30 \end{aligned}$	$\begin{aligned} & 4.978 \\ & 4.6 \end{aligned}$		V
ISC	Short-Circuit Current (Note 2)	$\begin{aligned} & V_{S}=3 V, \text { Short to } G N D \\ & V_{S}=3 V \text {, Short to } V_{C C} \end{aligned}$		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 15 \\ & 30 \end{aligned}$		mA mA
		$\begin{aligned} & V_{S}=5 \mathrm{~V}, \text { Short to GND } \\ & V_{S}=5 \mathrm{~V} \text {, Short to } V_{C C} \end{aligned}$		$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$		mA
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}=2.5 \mathrm{~V}$ to 12.5V, $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{0}=1 \mathrm{~V}$	\bullet	84	98		dB
	Minimum Operating Supply Voltage		\bullet		2	2.5	V
	Reverse Supply Voltage	$\mathrm{I}_{\mathrm{S}}=-100 \mu \mathrm{~A}$ per Amplifier	\bullet	18	27		V
I_{S}	Supply Current per Amplifier (Note 5)		\bullet		40	$\begin{aligned} & \hline 50 \\ & 55 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
GBW	Gain Bandwidth Product (Note 4)	$\begin{aligned} & f=1 \mathrm{kHz} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{gathered} 110 \\ 100 \\ 90 \\ \hline \end{gathered}$	180		kHz kHz kHz
SR	Slew Rate (Note 6)	$\begin{aligned} & A_{V}=-1, R_{L}=\infty \\ & 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq T_{A} \leq 85^{\circ} \mathrm{C} \end{aligned}$	\bullet	$\begin{aligned} & 0.035 \\ & 0.031 \\ & 0.030 \end{aligned}$	0.06		$\begin{aligned} & \mathrm{V} / \mu \mathrm{S} \\ & \mathrm{~V} / \mu \mathrm{S} \\ & \mathrm{~V} / \mu \mathrm{S} \end{aligned}$

ELECTRICAL CHARACTERISTICS The e denotes specifications which apply over the full operating temperature

 range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}_{0 U T}=0 \mathrm{~V}$, unless otherwise noted. (Note 3)| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {OS }}$ | Input Offset Voltage | LT1490 N, S Package $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$
 $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ | \bullet | | 250 | $\begin{aligned} & 1200 \\ & 1400 \\ & 1500 \end{aligned}$ | $\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$ |
| | | LT1491 N Package $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ | \bullet | | 350 | $\begin{aligned} & 1250 \\ & 1500 \\ & 1600 \end{aligned}$ | $\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$ |
| | | LT1490CMS8 Package, LT1491 S Package $\begin{aligned} & 0^{\circ} \mathrm{C} \leq T_{A} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | | 400 | $\begin{aligned} & 1600 \\ & 1850 \\ & 1950 \end{aligned}$ | $\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$ |
| $\mathrm{V}_{\text {OS }}$ TC | Input Offset Voltage Drift | $\begin{aligned} & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \text { (Note 7) } \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \text { (Note 7) } \end{aligned}$ | | | $\begin{aligned} & 3 \\ & 3 \end{aligned}$ | $\begin{aligned} & \hline 6 \\ & 6 \end{aligned}$ | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
 $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| Ios | Input Offset Current | | \bullet | | 0.2 | 0.8 | nA |
| I_{B} | Input Bias Current | | \bullet | | 4 | 8 | nA |
| | Input Noise Voltage | 0.1 Hz to 10Hz | | | 1 | | $\mu \mathrm{V}_{\text {P-P }}$ |
| $\underline{e_{n}}$ | Input Noise Voltage Density | $\mathrm{f}=1 \mathrm{kHz}$ | | | 50 | | $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ |
| i_{n} | Input Noise Current Density | $\mathrm{f}=1 \mathrm{kHz}$ | | | 0.03 | | $\mathrm{pA} / \sqrt{\mathrm{Hz}}$ |
| $\mathrm{R}_{\text {IN }}$ | Input Resistance | Differential
 Common Mode, $\mathrm{V}_{\mathrm{CM}}=-15 \mathrm{~V}$ to 14 V | | 6 | $\begin{gathered} 17 \\ 15000 \end{gathered}$ | | $\mathrm{M} \Omega$ |
| $\mathrm{C}_{\text {IN }}$ | Input Capacitance | | | | 4.6 | | pF |
| | Input Voltage Range | | \bullet | -15 | | 29 | V |
| CMRR | Common Mode Rejection Ratio | $\mathrm{V}_{\mathrm{CM}}=-15 \mathrm{~V}$ to 29V | \bullet | 80 | 98 | | dB |
| AVOL | Large-Signal Voltage Gain | $\begin{aligned} & V_{0}= \pm 14 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | $\begin{aligned} & 100 \\ & 75 \\ & 50 \end{aligned}$ | 250 | | $\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$ |
| V_{0} | Output Voltage Swing | $\begin{aligned} & \text { No Load } \\ & \mathrm{I}_{\text {OUT }}= \pm 5 \mathrm{~mA} \\ & \mathrm{I}_{\text {OUT }}= \pm 10 \mathrm{~mA} \end{aligned}$ | \bullet | $\begin{aligned} & \pm 14.9 \\ & \pm 14.5 \\ & \pm 14.5 \end{aligned}$ | $\begin{aligned} & \pm 14.978 \\ & \pm 14.750 \\ & \pm 14.670 \end{aligned}$ | | V V V |
| $I_{S C}$ | Short-Circuit Current (Note 2) | Short to GND $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ | \bullet | $\begin{aligned} & \pm 20 \\ & \pm 15 \\ & \pm 10 \end{aligned}$ | ± 25 | | mA mA mA |
| PSRR | Power Supply Rejection Ratio | $\mathrm{V}_{S}= \pm 1.25 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$ | \bullet | 88 | 98 | | dB |
| IS | Supply Current per Amplifier | | \bullet | | 50 | $\begin{aligned} & 70 \\ & 85 \end{aligned}$ | $\mu \mathrm{A}$ $\mu \mathrm{A}$ |
| GBW | Gain Bandwidth Product | $\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | $\begin{aligned} & 125 \\ & 110 \\ & 100 \end{aligned}$ | 200 | | kHz kHz kHz |
| SR | Slew Rate | $\begin{aligned} & A_{V}=-1, \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{0}= \pm 10 \mathrm{~V}, \\ & \text { Measure at } \mathrm{V}_{0}= \pm 5 \mathrm{~V} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{aligned}$ | \bullet | $\begin{aligned} & 0.0375 \\ & \\ & 0.0330 \\ & 0.0300 \end{aligned}$ | 0.07 | | V/ $\mu \mathrm{S}$
 V/us
 V/us |

Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.
Note 2: A heat sink may be required to keep the junction temperature below absolute maximum. This depends on the power supply voltage and how many amplifiers are shorted.
Note 3: The LT1490C/LT1491C are guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LT1490C/LT1491C are designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but are not tested or QA sampled at these temperatures.

The LT1490I/LT1491I are guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Note 4: $\mathrm{V}_{S}=5 \mathrm{~V}$ limits are guaranteed by correlation to $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$ and $V_{S}= \pm 15 \mathrm{~V}$ tests.
Note 5: $\mathrm{V}_{S}=3 \mathrm{~V}$ limits are guaranteed by correlation to $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ and $V_{S}= \pm 15 \mathrm{~V}$ tests.
Note 6: Guaranteed by correlation to slew rate at $\mathrm{V}_{S}= \pm 15 \mathrm{~V}$ and GBW at $V_{S}=3 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ tests.
Note 7: This parameter is not 100% tested.

TYPICAL PGRFORMANCG CHARACTERISTICS

TYPICAL PGRFORmANCE CHARACTERISTICS

Gain Bandwidth Product and
Phase Margin vs Supply Voltage

1490/91 G13

Gain Bandwidth Product
vs Temperature

1490/91 G11

1490/91 G12

PSRR vs Frequency

Gain Bandwidth Product and
Phase Margin vs Load Resistance

Output Impedance vs Frequency

TYPICAL PGRFORMANCG CHARACTERISTICS

APPLICATIONS InFORMATION

Supply Voltage

The positive supply pin of the LT1490/LT1491 should be bypassed with a small capacitor (about $0.01 \mu \mathrm{~F}$) within an inch of the pin. When driving heavy loads an additional $4.7 \mu \mathrm{~F}$ electrolytic capacitor should be used. When using split supplies, the same is true for the negative supply pin.
The LT1490/LT1491 are protected against reverse battery voltages up to 18 V . In the event a reverse battery condition occurs, the supply current is less than 1 nA .

The LT1490/LT1491 can be shut down by removing V ${ }^{+}$. In this condition the input bias current is less than 0.1 nA , even if the inputs are 44 V above the negative supply.

When operating the LT1490/LT1491 on total supplies of 30 V or more, the supply must not be brought up faster than $1 \mu \mathrm{~s}$. This is especially true if low ESR bypass capacitors are used. A series RLC circuit is formed from the supply lead inductance and the bypass capacitor. 5Ω of resistance in the supply or the bypass capacitor will dampen the tuned circuit enough to limit the rise time.

Inputs

The LT1490/LT1491 have two input stages, NPN and PNP (see the Simplified Schematic), resulting in three distinct operating regions as shown in the Input Bias Current vs Common Mode typical performance curve.
For input voltages about 0.8 V or more below V^{+}, the PNP input stage is active and the input bias current is typically -4 nA . When the input voltage is about 0.5 V or less from V^{+}, the NPN input stage is operating and the input bias current is typically 18 nA . Increases in temperature will cause the voltage at which operation switches from the PNP stage to the NPN stage to move towards V^{+}. The input offset voltage of the NPN stage is untrimmed and is typically $600 \mu \mathrm{~V}$.
A Schottky diode in the collector of each NPN transistor of the NPN input stage allows the LT1490/LT1491 to operate with either or both of its inputs above V^{+}. At about 0.3 V above V^{+}the NPN input transistor is fully saturated and the input bias current is typically $4 \mu \mathrm{~A}$ at room temperature. The input offset voltage is typically $700 \mu \mathrm{~V}$ when operating above V^{+}. The LT1490/LT1491 will operate with its inputs 44 V above V^{-}regardless of V^{+}.

The inputs are protected against excursions as much as 22 V below V^{-}by an internal 1 k resistor in series with each input and a diode from the input to the negative supply. There is no output phase reversal for inputs up to 22 V below V^{-}. There are no clamping diodes between the inputs and the maximum differential input voltage is 44 V .

Output

The output voltage swing of the LT1490/LT1491 is affected by input overdrive as shown in the typical performance curves. When monitoring voltages within 100 mV of either rail, gain should be taken to keep the output from clipping.

The output of the LT1490/LT1491 can be pulled up to 18 V beyond V^{+}with less than 1 nA of leakage current, provided that V^{+}is less than 0.5 V .

The normally reverse-biased substrate diode from the output to V^{-}will cause unlimited currents to flow when the output is forced below V^{-}. If the current is transient and limited to 100 mA , no damage will occur.

The LT1490/LT1491 is internally compensated to drive at least 200pF of capacitance under any output loading conditions. A $0.22 \mu \mathrm{~F}$ capacitor in series with a 150Ω resistor between the output and ground will compensate these amplifiers for larger capacitive loads, up to 10,000pF, at all output currents.

Distortion

There are two main contributors of distortion in op amps: output crossover distortion as the output transitions from sourcing to sinking current and distortion caused by nonlinear common mode rejection. Of course, if the op amp is operating inverting there is no common mode induced distortion. When the LT1490 switches between input stages there is significant nonlinearity in the CMRR. Lower load resistance increases the output crossover distortion, but has no effect on the input stage transition distortion. For lowest distortion the LT1490/LT1491 should be operated single supply, with the output always sourcing current and with the input voltage swing between ground and ($\mathrm{V}^{+}-0.8 \mathrm{~V}$). See the Typical Performance Characteristics curves.

1

APPLICATIONS InFORMATION

Gain

The open-loop gain is almost independent of load when the output is sourcing current. This optimizes perfor-
mance in single supply applications where the load is returned to ground. The typical performance photo of Open-Loop Gain for various loads shows the details.

TYPICAL APPLICATIONS

Square Wave Oscillator

$f=\frac{1}{2 R C}$
$V_{\text {OUT }}=5 V_{\text {P-P }}$ WITH 5V SUPPLY
$I_{S}=200 \mu \mathrm{~A}$
AT $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{R}=50 \mathrm{k}, \mathrm{C}=1 \mathrm{nF}$
OUTPUT IS 5 kHz SLEW LIMITED TRIANGLE WAVE

Optional Output Compensation for Capacitive Loads Greater Than 200pF

SIMPLIFIED SCHEmATIC

9

PACKACE DESCRIPTO日 Dimensions in inches (millimeters) unless otherwise noted.

> MS Package
> 8-Lead Plastic MSOP
> (LTC DWG \# 05-08-1660)

N8 Package
8-Lead PDIP (Narrow 0.300)
(LTC DWG \# 05-08-1510)

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254 mm)

S8 Package
8-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG \# 05-08-1610)

FLASH SHALL NOT EXCEED 0.010" (0.254 mm) PER SIDE

PACKAGE DESCRIPTIOn Dimensions in inches (millimeters) unless otherwise noted. $^{\text {a }}$

S Package
14-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG \# 05-08-1610)

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

TYPICAL APPLICATION

Ring-Tone Generator

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1078/LT1079	Dual/Quad 55 A Max, Single Supply, Precision Op Amps	Input/Output Common Mode Includes Ground, $70 \mu \mathrm{~V} \mathrm{~V}_{\mathrm{OS}(\mathrm{MAX})}$ and $2.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Drift (Max), 200kHz GBW, $0.07 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate
LTC1152	Rail-to-Rail Input, Rail-to-Rail Output, Zero-Drift Amplifier	High DC Accuracy, $10 \mu \mathrm{~V} \mathrm{~V}_{0 S}$ (max), $100 \mathrm{nV} /{ }^{\circ} \mathrm{C}, 1 \mathrm{MHz} \mathrm{GBW}$, 1V/ $\mu \mathrm{s}$ Slew Rate, Supply Current 2.2 mA (Max), Single Supply, Can Be Configured for C-Load ${ }^{\text {TM }}$ Operation
LT1178/LT1179	Dual/Quad 17رA Max, Single Supply, Precison Op Amps	Input/Output Common Mode Includes Ground, $70 \mu \mathrm{~V} \mathrm{~V}_{\text {OS(MAX) }}$ and $4 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Drift (Max), 85 kHz GBW, $0.04 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate
LT1366/LT1367	Dual/Quad Precision, Rail-to-Rail Input and Output Op Amps	$475 \mu \mathrm{~V} \mathrm{~V}_{\text {OS(MAX) }}, 500 \mathrm{~V} / \mathrm{mV} \mathrm{AVOL}(\mathrm{MIIN})$, 400 kHz GBW
LT1490A/LT1491A	Dual/Quad Micropower Rail-to-Rail Precision Op Amps	$500 \mu \mathrm{~V} \mathrm{~V}_{\text {OS(MAX) }}$, Improved Version of the LT1490/LT1491

C-Load is a trademark of Linear Technology Corporation.

