feATURES

- 3MHz Gain Bandwidth
- 200V/us Slew Rate
- $250 \mu \mathrm{~A}$ Supply Current per Amplifier
- C-Load ${ }^{\text {TM }}$ Op Amp Drives All Capacitive Loads
- Unity-Gain Stable
- Maximum Input Offset Voltage: $600 \mu \mathrm{~V}$
- Maximum Input Bias Current: 50nA
- Maximum Input Offset Current: 15nA
- Minimum DC Gain, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}: 30 \mathrm{~V} / \mathrm{mV}$
- Input Noise Voltage: $14 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Settling Time to 0.1%, 10 V Step: 700 ns
- Settling Time to 0.01%, 10V Step: $1.25 \mu \mathrm{~s}$
- Minimum Output Swing into $1 \mathrm{k}: \pm 13 \mathrm{~V}$
- Minimum Output Swing into 500Ω : $\pm 3.4 \mathrm{~V}$
- Specified at $\pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$
- Available in S0-8 Package
- LT1353 in Narrow Surface Mount Package

APPLICATIONS

- Battery-Powered Systems
- Wideband Amplifiers
- Buffers
- Active Filters
- Data Acquisition Systems
- Photodiode Amplifiers

Dual and Quad $250 \mu \mathrm{~A}, 3 \mathrm{MHz}, 200 \mathrm{~V} / \mu \mathrm{s}$ Operational Amplifiers

DESCRIPTIOn

The $\mathrm{LT}^{\circledR} 1352 / \mathrm{LT} 1353$ are dual and quad, very low power, high speed operational amplifiers with outstanding AC and DC performance. The amplifiers feature much lower supply current and higher slew rate than devices with comparable bandwidth. The circuit combines the slewing performance of a current feedback amplifier in a true operational amplifier with matched high impedance inputs. The high slew rate ensures that the large-signal bandwidth is not degraded. Each output is capable of driving a $1 \mathrm{k} \Omega$ load to $\pm 13 \mathrm{~V}$ with $\pm 15 \mathrm{~V}$ supplies and 2500Ω load to $\pm 3.4 \mathrm{~V}$ on $\pm 5 \mathrm{~V}$ supplies.

The LT1352/LT1353 are members of a family of fast, high performance amplifiers using this unique topology and employing Linear Technology Corporation's advanced complementary bipolar processing. For higher bandwidth devices with higher supply current see the LT1354 through LT1365 data sheets. Bandwidths of 12MHz, 25MHz,50MHz and 70 MHz are available with $1 \mathrm{~mA}, 2 \mathrm{~mA}, 4 \mathrm{~mA}$ and 6 mA of supply current per amplifier. Singles, duals and quads of each amplifier are available. The LT1352 is available in an 8 -lead S0 package. The LT1353 is offered in a 14-lead narrow surface mount package.
©T, LTC and LT are registered trademarks of Linear Technology Corporation.
C-Load is a trademark of Linear Technology Corporation.

TYPICAL APPLICATION

Large-Signal Response

LT1352/LT1353

ABSOLUTE MAXIMUM RATINGS

(Note 1)

Total Supply Voltage (V^{+}to V^{-}) 36V
Differential Input Voltage (Transient Only, Note 2) $\pm 10 \mathrm{~V}$ Input Voltage \qquad $\pm V_{S}$ Output Short-Circuit Duration (Note 3) \qquad . Indefinite
Operating Temperature Range \qquad $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Specified Temperature Range (Note 7) .. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Maximum Junction Temperature (See Below)

Plastic Package \qquad
Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) \qquad

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACT \in RISTICS $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cm}}=0 \mathrm{O}$ unless otherwise noted

SYMBOL	PARAMETER	CONDITIONS	$V_{\text {SUPPLY }}$	MIN	TYP	MAX	UNITS
$\mathrm{V}_{0 S}$	Input Offset Voltage		$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.6 \\ & 0.8 \end{aligned}$	mV mV mV
$\underline{\text { IOS }}$	Input Offset Current		$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		5	15	nA
IB	Input Bias Current		$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		20	50	nA
e_{n}	Input Noise Voltage	$f=10 \mathrm{kHz}$	$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		14		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current	$\mathrm{f}=10 \mathrm{kHz}$	$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		0.5		$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	$V_{C M}= \pm 12 \mathrm{~V}$ Differential	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 15 \mathrm{~V} \end{aligned}$	300	$\begin{gathered} 600 \\ 20 \end{gathered}$		$\mathrm{M} \Omega$ $\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance		$\pm 15 \mathrm{~V}$		3		pF
	Positive Input Voltage Range		$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{array}{r} 12.0 \\ 2.5 \\ 0.5 \end{array}$	$\begin{array}{r} 13.5 \\ 3.5 \\ 1.0 \end{array}$		V V V
	Negative Input Voltage Range		$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \\ \hline \end{gathered}$		$\begin{array}{r} -13.5 \\ -3.5 \\ -1.0 \\ \hline \end{array}$	$\begin{array}{r} \hline-12.0 \\ -2.5 \\ -0.5 \\ \hline \end{array}$	V V
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{C M}= \pm 12 \mathrm{~V} \\ & V_{C M}= \pm 2.5 \mathrm{~V} \\ & V_{C M}= \pm 0.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 80 \\ & 78 \\ & 68 \\ & \hline \end{aligned}$	$\begin{aligned} & 94 \\ & 86 \\ & 77 \end{aligned}$		dB dB dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		90	106		dB
13523fa							

ELECTRICAL CHARACTGRISTICS $T_{A}=25^{\circ},, V_{c m}=0 v$ unless otherwise noted

SYMBOL	PARAMETER	CONDITIONS	$V_{\text {SUPPLY }}$	MIN	TYP	MAX	UNITS
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\text {OUT }}= \pm 12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \end{aligned}$	$\begin{gathered} \hline \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 40 \\ & 30 \\ & 20 \\ & 30 \\ & 25 \\ & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & \hline 80 \\ & 60 \\ & 40 \\ & 60 \\ & 50 \\ & 30 \\ & 40 \\ & \hline \end{aligned}$		V / mV V/mV V / mV V / mV V / mV V / mV V/mV
$V_{\text {OUT }}$	Output Swing	$\begin{aligned} & R_{L}=5 \mathrm{k}, \mathrm{~V}_{I N}= \pm 10 \mathrm{mV} \\ & R_{\mathrm{L}}=2 \mathrm{k}, V_{I N}= \pm 10 \mathrm{mV} \\ & R_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~V}_{I N}= \pm 10 \mathrm{mV} \\ & R_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~V}_{\text {IN }}= \pm 10 \mathrm{mV} \\ & R_{L}=500 \Omega \Omega V_{I N}= \pm 10 \mathrm{mV} \\ & R_{\mathrm{L}}=5 \mathrm{k}, V_{I N}= \pm 10 \mathrm{mV} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{array}{r} 13.5 \\ 13.4 \\ 13.0 \\ 3.5 \\ 3.4 \\ 1.3 \end{array}$	$\begin{array}{r} 14.0 \\ 13.8 \\ 13.4 \\ 4.0 \\ 3.8 \\ 1.7 \end{array}$		$\pm V$ $\pm V$ $\pm V$ $\pm V$ $\pm V$ $\pm V$
IOUT	Output Current	$\begin{aligned} & V_{\text {OUT }}= \pm 13 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 3.4 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{array}{r} 13.0 \\ 6.8 \\ \hline \end{array}$	$\begin{array}{r} \hline 13.4 \\ 7.6 \\ \hline \end{array}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \hline \end{aligned}$
ISC	Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}= \pm 3 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	30	45		mA
SR	Slew Rate	$A_{V}=-1, R_{L}=5 k($ Note 4)	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 120 \\ 30 \end{gathered}$	$\begin{gathered} 200 \\ 50 \end{gathered}$		V/ $\mu \mathrm{s}$ V/us
	Full-Power Bandwidth	10V Peak (Note 5) 3V Peak (Note 5)	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \hline \end{gathered}$		$\begin{aligned} & 3.2 \\ & 2.6 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \hline \end{aligned}$
GBW	Gain Bandwidth	$f=200 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 2.0 \\ & 1.8 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.7 \\ & 2.5 \\ & \hline \end{aligned}$		MHz MHz MHz
t_{r}, t_{f}	Rise Time, Fall Time	$A_{V}=1,10 \%$ to $90 \%, 0.1 \mathrm{~V}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 46 \\ & 53 \end{aligned}$		ns
	Overshoot	$A_{V}=1,0.1 \mathrm{~V}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 13 \\ & 16 \end{aligned}$		\%
	Propagation Delay	$50 \% \mathrm{~V}_{\text {IN }}$ to $50 \% \mathrm{~V}_{\text {OUT }}, 0.1 \mathrm{~V}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 41 \\ & 52 \end{aligned}$		ns
$\mathrm{t}_{\text {s }}$	Settling Time	$\begin{aligned} & \text { 10V Step, } 0.1 \%, A_{V}=-1 \\ & 10 \mathrm{~V} \text { Step, } 0.01 \%, A_{V}=-1 \\ & 5 \mathrm{~V} \text { Step, } 0.1 \%, A_{V}=-1 \\ & 5 \mathrm{~V} \text { Step, } 0.01 \%, A_{V}=-1 \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{array}{r} 700 \\ 1250 \\ 950 \\ 1400 \end{array}$		ns ns ns ns
R_{0}	Output Resistance	$A_{V}=1, \mathrm{f}=20 \mathrm{kHz}$	$\pm 15 \mathrm{~V}$		1.5		Ω
	Channel Separation	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	$\pm 15 \mathrm{~V}$	101	120		dB
I_{S}	Supply Current	Each Amplifier Each Amplifier	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 250 \\ & 230 \end{aligned}$	$\begin{aligned} & 320 \\ & 300 \end{aligned}$	$\mu \mathrm{A}$

$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=\mathrm{OV}$ unless otherwise noted

SYMBOL	PARAMETER	CONDITIONS	V $_{\text {SUPPLY }}$	MIN	TYP	MAX
$V_{\text {OS }}$	Input Offset Voltage		$\pm 15 \mathrm{~V}$		0.8	mV
			$\pm 5 \mathrm{~V}$		0.8	mV
			$\pm 2.5 \mathrm{~V}$		1.0	mV
	Input $V_{\text {OS Drift }}$	(Note 6)	$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	3	8	$\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
$I_{\text {OS }}$	Input Offset Current		$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		20	nA
I_{B}	Input Bias Current		$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		75	nA

LT1352/LT1353

ELECTRICL CHPRACTERISTCS $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ unless otherwise noted

SYMBOL	PARAMETER	CONDITIONS	$V_{\text {SUPPLY }}$	MIN	TYP	MAX	UNITS
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{C M}= \pm 12 \mathrm{~V} \\ & V_{C M}= \pm 2.5 \mathrm{~V} \\ & V_{C M}= \pm 0.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 78 \\ & 77 \\ & 67 \end{aligned}$			dB dB dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		89			dB
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{\text {OUT }}= \pm 12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, R_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 25 \\ & 20 \\ & 20 \\ & 15 \\ & 10 \\ & 15 \end{aligned}$			V / mV V / mV
V OUT	Output Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k}, \mathrm{~V}_{\text {IN }}= \pm 10 \mathrm{mV} \\ & R_{\mathrm{L}}=2 \mathrm{k}, \mathrm{~V}_{\text {IN }}= \pm 10 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~V}_{\text {IN }}= \pm 10 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~V}_{\text {IN }}= \pm 10 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{~V}_{\text {IN }}= \pm 10 \mathrm{mV} \\ & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k}, \mathrm{~V}_{\text {IN }}= \pm 10 \mathrm{mV} \\ & \hline \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{array}{r} 13.4 \\ 13.3 \\ 12.0 \\ 3.4 \\ 3.3 \\ 1.2 \end{array}$			$\begin{aligned} & \pm V \\ & \pm V \end{aligned}$
IOUT	Output Current	$\begin{aligned} & \mathrm{V}_{\text {OUT }}= \pm 12 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}= \pm 3.3 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{array}{r} \hline 12.0 \\ 6.6 \end{array}$			$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
ISC	Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}= \pm 3 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	24			mA
SR	Slew Rate	$A_{V}=-1, R_{L}=5 \mathrm{k}$ (Note 4)	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{array}{r} 100 \\ 21 \end{array}$			$\mathrm{V} / \mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$
GBW	Gain Bandwidth	$f=200 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.6 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
	Channel Separation	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	$\pm 15 \mathrm{~V}$	100			dB
Is	Supply Current	Each Amplifier Each Amplifier	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$			$\begin{aligned} & 350 \\ & 330 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$

$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ unless otherwise noted (Note 7)

SYMBOL	PARAMETER	CONDITIONS	$\mathrm{V}_{\text {SUPPLY }}$	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage		$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$			$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.2 \end{aligned}$	mV mV mV
	Input $\mathrm{V}_{\text {OS }}$ Drift	(Note 6)	$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		3	8	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Ios	Input Offset Current		$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$			50	nA
IB	Input Bias Current		$\pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$			100	nA
CMRR	Common Mode Rejection Ratio	$\begin{aligned} & V_{\text {CM }}= \pm 12 \mathrm{~V} \\ & V_{\text {CM }}= \pm 2.5 \mathrm{~V} \\ & V_{\text {CM }}= \pm 0.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{aligned} & 76 \\ & 76 \\ & 66 \\ & \hline \end{aligned}$			dB dB dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 2.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		87			dB
AVOL	Large-Signal Voltage Gain	$\begin{aligned} & V_{\text {OUT }}= \pm 12 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \\ & \mathrm{~V}_{\text {OUT }}= \pm 1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{array}{r} 20 \\ 15 \\ 15 \\ 10 \\ 8 \\ 10 \end{array}$			V / mV V / mV

ELECTRICAL CHARACTERISTICS $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ unless otherwise noted (Note 7)

SYMBOL	PARAMETER	CONDITIONS	$V_{\text {SUPPLY }}$	MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {OUT }}$	Output Swing	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=5 \mathrm{k}, \mathrm{~V}_{\text {IN }}= \pm 10 \mathrm{mV} \\ & R_{\mathrm{L}}=2 \mathrm{k}, \mathrm{~V}_{I N}= \pm 10 \mathrm{mV} \\ & R_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~V}_{I N}= \pm 10 \mathrm{mV} \\ & R_{\mathrm{L}}=1 \mathrm{k}, \mathrm{~V}_{\text {IN }}= \pm 10 \mathrm{mV} \\ & R_{L}=500 \Omega \Omega, V_{I N}= \pm 10 \mathrm{mV} \\ & R_{\mathrm{L}}=5 \mathrm{k}, \mathrm{~V}_{I N}= \pm 10 \mathrm{mV} \end{aligned}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 5 \mathrm{~V} \\ \pm 2.5 \mathrm{~V} \end{gathered}$	$\begin{array}{r} \hline 13.3 \\ 13.2 \\ 10.0 \\ 3.3 \\ 3.2 \\ 1.1 \end{array}$			$\pm V$ $\pm V$ $\pm V$ $\pm V$ $\pm V$ $\pm V$
IOUT	Output Current	$\begin{array}{\|l} \hline V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ \mathrm{~V}_{\text {OUT }}= \pm 3.2 \mathrm{~V} \\ \hline \end{array}$	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{array}{r} 10.0 \\ 6.4 \end{array}$			$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
ISC	Short-Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}= \pm 3 \mathrm{~V}$	$\pm 15 \mathrm{~V}$	20			mA
SR	Slew Rate	$A_{V}=-1, R_{L}=5 k$ (Note 4)	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 50 \\ & 15 \\ & \hline \end{aligned}$			$\begin{aligned} & \mathrm{V} / \mu \mathrm{S} \\ & \mathrm{~V} / \mu \mathrm{S} \end{aligned}$
GBW	Gain Bandwidth	$f=200 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$	$\begin{aligned} & \pm 15 \mathrm{~V} \\ & \pm 5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.4 \end{aligned}$			$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
	Channel Separation	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$	$\pm 15 \mathrm{~V}$	99			dB
IS	Supply Current	Each Amplifier Each Amplifier	$\begin{gathered} \pm 15 \mathrm{~V} \\ \pm 5 \mathrm{~V} \end{gathered}$			$\begin{aligned} & 380 \\ & 350 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: Differential inputs of $\pm 10 \mathrm{~V}$ are appropriate for transient operation only, such as during slewing. Large, sustained differential inputs will cause excessive power dissipation and may damage the part. See Input Considerations in the Applications Information section of this data sheet for more details.
Note 3: A heat sink may be required to keep the junction temperature below absolute maximum when the output is shorted indefinitely.
Note 4: Slew rate is measured between $\pm 8 \mathrm{~V}$ on the output with $\pm 12 \mathrm{~V}$
input for $\pm 15 \mathrm{~V}$ supplies and $\pm 2 \mathrm{~V}$ on the output with $\pm 3 \mathrm{~V}$ input for $\pm 5 \mathrm{~V}$ supplies.
Note 5: Full-power bandwidth is calculated from the slew rate measurement: $\operatorname{FPBW}=($ Slew Rate $) / 2 \pi V_{p}$.
Note 6: This parameter is not 100% tested.
Note 7: The LT1352C/LT1353C are guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LT1352C/LT1353C are designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but are not tested or QA sampled at these temperatures. The LT1352I/LT1353I are guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

TYPICAL PGRFORMANCE CHARACTERISTICS

Supply Current vs Supply Voltage and Temperature

1352/53 G01

Input Common Mode Range vs Supply Voltage

Input Bias Current vs Input Common Mode Voltage

TYPICAL PGRFORMANCG CHARACTERISTICS

1352/53 G04

1352/53 G07

1352/53 G10

Input Noise Spectral Density

1352/53 G05
Output Voltage Swing vs Supply Voltage

1352/53 G08
Settling Time vs Output Step (Noninverting)

Open-Loop Gain vs Resistive Load

LOAD RESISTANCE (Ω)
1352/53 G06

Output Voltage Swing vs Load Current

1352/53 G09

Settling Time vs Output Step

 (Inverting)

TYPICAL PGRFORMANCE CHARACTERISTICS

Gain Bandwidth and Phase Margin vs Temperature

52/53 G16
Gain Bandwidth and Phase Margin vs Supply Voltage

1352/53 G19

Output Impedance vs Frequency

Frequency Response vs Supply Voltage ($A_{V}=1$)

1352/53 G17
Power Supply Rejection Ratio vs Frequency

1352/53 G20

Frequency Response vs Capacitive Load

Frequency Response
vs Supply Voltage ($A_{V}=-1$)

1352/53 G18

Common Mode Rejection Ratio vs Frequency

1352/53 G21

TYPICAL PGRFORMAOCE CHARACTERISTICS

Total Harmonic Distortion vs Frequency

1352/53 G25

1352/53 G23

Undistorted Output Swing vs Frequency ($\pm 15 \mathrm{~V}$)

Slew Rate vs Input Level

1352/53 G24

Undistorted Output Swing vs Frequency ($\pm 5 \mathrm{~V}$)

1352/53 G27

TYPICAL PGRFORMANCE CHARACTERISTICS

Large-Signal Transient
($A_{V}=1$)

Small-Signal Transient
($A_{V}=-1$)

Large-Signal Transient ($A_{V}=-1$)

Small-Signal Transient
($A_{V}=-1, C_{L}=1000 \mathrm{pF}$)

Large-Signal Transient
($A_{V}=1, C_{L}=10,000 \mathrm{pF}$)

APPLICATIONS INFORMATION

Layout and Passive Components

The LT1352/LT1353 amplifiers are easy to use and tolerant of less than ideal layouts. For maximum performance (for example, fast 0.01% settling) use a ground plane, short lead lengths and RF-quality bypass capacitors ($0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$). For high drive current applications use low ESR bypass capacitors ($1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ tantalum).
The parallel combination of the feedback resistor and gain setting resistor on the inverting input can combine with the input capacitance to form a pole which can cause peaking or even oscillations. Iffeedback resistors greater than 10k are used, a parallel capacitor of value, $C_{F}>$ $\left(R_{G}\right)\left(C_{I N} / R_{F}\right)$, should be used to cancel the input pole and optimize dynamic performance. For applications where the DC noise gain is one and a large feedback resistor is used, C_{F} should be greater than or equal to C_{IN}. An example would be an I-to-V converter as shown in the Typical Applications section.

Capacitive Loading

The LT1352/LT1353 are stable with any capacitive load. As the capacitive load increases, both the bandwidth and phase margin decrease so there will be peaking in the frequency domain and in the transient response. Graphs of Frequency Response vs Capacitive Load, Capacitive Load Handling and the transient response photos clearly show these effects.

Input Considerations

Each of the LT1352/LT1353 inputs is the base of an NPN and a PNP transistor whose base currents are of opposite polarity and provide first-order bias current cancellation. Because of variation in the matching of NPN and PNP beta, the polarity of the input bias current can be positive or negative. The offset current does not depend on NPN/PNP beta matching and is well controlled. The use of balanced source resistance at each input is recommended for

APPLLCATIONS INFORMATION

applications where DC accuracy must be maximized. The inputs can withstand transient differential input voltages up to 10 V without damage and need no clamping or source resistance for protection. Differential inputs, however, generate large supply currents (tens of mA) as required for high slew rates. If the device is used with sustained differential inputs, the average supply current will increase, excessive power dissipation will result and the part may be damaged. The part should not be used as a comparator, peak detector or other open-loop application with large, sustained differential inputs. Under normal, closed-loop operation, an increase of power dissipation is only noticeable in applications with large slewing outputs and is proportional to the magnitude of the differential input voltage and the percent of time that the inputs are apart. Measure the average supply current for the application in order to calculate the power dissipation.

Circuit Operation

The LT1352/LT1353 circuit topology is a true voltage feedback amplifier that has the slewing behavior of a current feedback amplifier. The operation of the circuit can be understood by referring to the Simplified Schematic.

The inputs are buffered by complementary NPN and PNP emitter followers which drive R1, a 1 k resistor. The input voltage appears across the resistor generating currents which are mirrored into the high impedance node and compensation capacitor C_{\top}. Complementary followers form an output stage which buffers the gain node from the load. The output devices Q19 and Q22 are connected to form a composite PNP and a composite NPN.

The bandwidth is set by the input resistor and the capacitance on the high impedance node. The slew rate is determined by the current available to charge the high impedance node capacitance. This current is the differential input voltage divided by R1, so the slew rate is proportional to the input. Highest slew rates are therefore seen in the lowest gain configurations. For example, a 10 V output step in a gain of 10 has only a 1 V input step whereas the same output step in unity gain has a 10 times greater
input step. The graph Slew Rate vs Input Level illustrates this relationship. In higher gain configurations the largesignal performance and the small-signal performance both look like a single pole response.

Capacitive load compensation is provided by the R_{C}, C_{C} network which is bootstrapped across the output stage. When the amplifier is driving a light load the network has no effect. When driving a capacitive load (or a low value resistive load) the network is incompletely bootstrapped and adds to the compensation at the high impedance node. The added capacitance slows down the amplifier and a zero is created by the RC combination, both of which improve the phase margin. The design ensures that even for very large load capacitances, the total phase lag can never exceed 180 degrees (zero phase margin) and the amplifier remains stable.

Power Dissipation

The LT1352/LT1353 combine high speed and large output drive in small packages. Because of the wide supply voltage range, it is possible to exceed the maximum junction temperature of $150^{\circ} \mathrm{C}$ under certain conditions. Maximum junction temperature T_{j} is calculated from the ambient temperature T_{A} and power dissipation P_{D} as follows:

$$
\begin{aligned}
& \text { LT1352CN8: } T_{J}=T_{A}+\left(P_{D}\right)\left(130^{\circ} \mathrm{C} / \mathrm{W}\right) \\
& \text { LT1352CS8: } T_{J}=T_{A}+\left(P_{D}\right)\left(190^{\circ} \mathrm{C} / \mathrm{W}\right) \\
& \text { LT1353CS: } \quad T_{J}=T_{A}+\left(P_{D}\right)\left(150^{\circ} \mathrm{C} / \mathrm{W}\right)
\end{aligned}
$$

Worst-case power dissipation occurs at the maximum supply current and when the output voltage is at $1 / 2$ of either supply voltage (or the maximum swing if less than $1 / 2$ supply voltage). For each amplifier $\mathrm{P}_{\mathrm{D}(\operatorname{MAX})}$ is:

$$
\begin{aligned}
P_{D(\text { MAX })}= & \left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)\left(I_{\mathrm{S}(\mathrm{MAX})}\right)+\left(\mathrm{V}^{+} / 2\right)^{2} / R_{\mathrm{L}} \text { or } \\
& \left(\mathrm{V}^{+}-\mathrm{V}^{-}\right)\left(I_{\mathrm{S}(\mathrm{MAX})}\right)+\left(\mathrm{V}^{+}-\mathrm{V}_{\text {MAX }}\right)\left(\mathrm{I}_{\text {MAX }}\right)
\end{aligned}
$$

Example: LT1353 in S 14 at $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$, $V_{\text {OUT }}= \pm 5 \mathrm{~V}(\pm 10 \mathrm{~mA})$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{D}(\mathrm{MAX})}=(30 \mathrm{~V})(380 \mu \mathrm{~A})+(15 \mathrm{~V}-5 \mathrm{~V})(10 \mathrm{~mA})=111 \mathrm{~mW} \\
& \mathrm{~T}_{\mathrm{J}}=85^{\circ} \mathrm{C}+(4)(111 \mathrm{~mW})\left(150^{\circ} \mathrm{C} / \mathrm{W}\right)=152^{\circ} \mathrm{C}
\end{aligned}
$$

sImPLIFIED SCHEmATIC

TYPICAL APPLICATIONS

400kHz Photodiode Preamp with 10kHz Highpass Loop

PACKAGE DESCRIPTION

N8 Package
8-Lead PDIP (Narrow . 300 Inch)
(Reference LTC DWG \# 05-08-1510)

NOTE:

1. DIMENSIONS ARE $\frac{\text { INCHES }}{\text { MILLIMETERS }}$
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED . 010 INCH (0.254 mm)

13

S8 Package

8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

PACKAGG DESCRIPTION

S Package

14-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

NOTE:

1. DIMENSIONS IN $\frac{\text { NLCHES }}{\text { (MILLIMETERS) }}$
2. DRAWING NOT TO SCALE
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS

MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15 mm)

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

TYPICAL APPLICATIONS

20kHz, 4th Order Butterworth Filter

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1351	$250 \mu \mathrm{~A}, 3 \mathrm{MHz}, 200 \mathrm{~V} / \mu \mathrm{s} \mathrm{Op} \mathrm{Amp}$	Good DC Precision, C-Load Stable, Power Saving Shutdown
LT1354/55/56	Single/Dual/Quad 1mA, 12MHz, 400V/ $/ \mathrm{ss}$ Op Amp	Good DC Precision, Stable with All Capacitive Loads

