

Picoamp Input Current, Microvolt Offset, Low Noise Op Amp

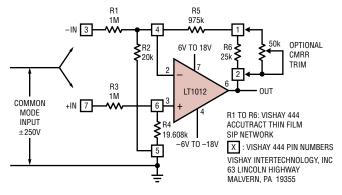
FEATURES

- OP-07 Type Performance: at 1/8th of OP-07's Supply Current at 1/20th of OP-07's Bias and Offset Currents
- Guaranteed Offset Voltage: 25μV Max
- Guaranteed Bias Current: 100pA Max
- Guaranteed Drift: 0.6µV/°C Max
- Low Noise, 0.1Hz to 10Hz: 0.5µV_{P-P}
- Guaranteed Low Supply Current: 500µA Max
- Guaranteed CMRR: 114dB MinGuaranteed PSRR: 114dB Min
- Guaranteed Operation at ±1.2V Supplies

APPLICATIONS

- Replaces OP-07 While Saving Power
- Precision Instrumentation
- Charge Integrators
- Wide Dynamic Range Logarithmic Amplifiers
- Light Meters
- Low Frequency Active Filters
- Thermocouple Amplifiers

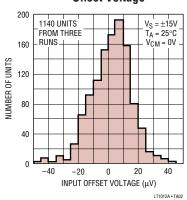
DESCRIPTION


The LT®1012 is an internally compensated universal precision operational amplifier which can be used in practically all precision applications. The LT1012 combines picoampere bias currents (which are maintained over the full –55°C to 125°C temperature range), microvolt offset voltage (and low drift with time and temperature), low voltage and current noise, and low power dissipation. The LT1012 achieves precision operation on two Ni-Cad batteries with 1mW of power dissipation. Extremely high common mode and power supply rejection ratios, practically unmeasurable warm-up drift, and the ability to deliver 5mA load current with a voltage gain of one million round out the LT1012's superb precision specifications.

The all around excellence of the LT1012 eliminates the necessity of the time consuming error analysis procedure of precision system design in many applications; the LT1012 can be stocked as the universal internally compensated precision op amp.

47, LTC and LT are registered trademarks of Linear Technology Corporation. Protected by U. S. patents 4,575,685 and 4,775,884

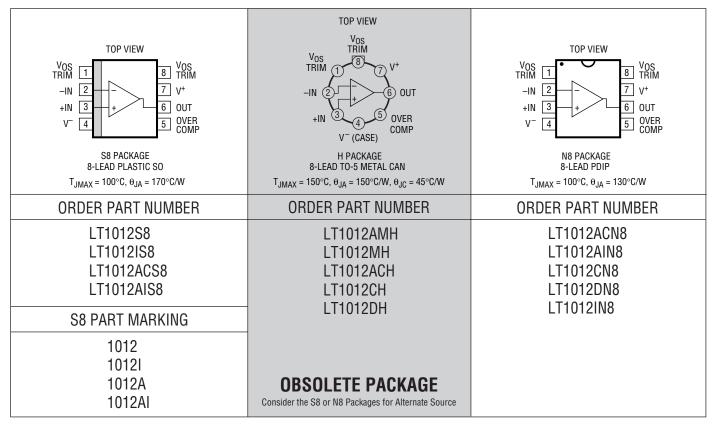
TYPICAL APPLICATION


 \pm 250V Common Mode Range Instrumentation Amplifier (A_V = 1)

COMMON MODE REJECTION RATIO = 74dB (RESISTOR LIMITED) WITH OPTIONAL TRIM = 130dB OUTPUT OFFSET (TRIMMABLE TO ZERO) = $500\mu V$ OUTPUT OFFSET DRIFT = $10\mu V/^{\circ}C$ INPUT RESISTANCE = 1M

LT1012A • TA01

Typical Distribution of Input Offset Voltage



ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage	±20V
Differential Input Current (Note 1)	±10mA
Input Voltage	±20V
Output Short Circuit Duration	Indefinite

Operating Temperature Range	
LT1012AM/LT1012M (OBSOLETE).	55°C to 125°C
LT1012I/LT1012AI	40°C to 85°C
LT1012AC/LT1012C	
LT1012D/LT1012S8	0°C to 70°C
Storage Temperature Range	65°C to 150°C
Lead Temperature (Soldering, 10 sec)	300°C

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS $V_S = \pm 15 V, \ V_{CM} = 0 V, \ T_A = 25 ^{\circ} C, \ unless \ otherwise \ noted.$

SYMBOL	PARAMETER	CONDITIONS	LT1 MIN	012AM/	AC/AI Max	MIN L	T1012M TYP	/I MAX	MIN	T10120	C MAX	UNITS
V _{OS}	Input Offset Voltage	(Note 3)		8 20	25 90		8 20	35 90		10 25	50 120	μV μV
	Long Term Input Offset Voltage Stability			0.3			0.3			0.3		μV/month
I _{OS}	Input Offset Current	(Note 3)		15 25	100 150		15 25	100 150		20 30	150 200	pA pA
I _B	Input Bias Current	(Note 3)		±25 ±35	±100 ±150		±25 ±35	±100 ±150		±30 ±40	±150 ±200	pA pA
e _n	Input Noise Voltage	0.1Hz to 10Hz		0.5			0.5			0.5		μV _{P-P}
e _n	Input Noise Voltage Density	f ₀ = 10Hz (Note 4) f ₀ = 1000Hz (Note 5)		17 14	30 22		17 14	30 22		17 14	30 22	nV√Hz nV√Hz
i _n	Input Noise Current Density	f _{0 =} 10Hz		20			20			20		fA/√Hz
A _{VOL}	Large Signal Voltage Gain	$\begin{split} &V_{OUT}=\pm 12V,\ R_L\geq 10k\Omega\\ &V_{OUT}=\pm 10V,\ R_L\geq 2k\Omega \end{split}$	300 300	2000 1000		300 200	2000 1000		200 200	2000 1000		V/mV V/mV
CMRR	Common Mode Rejection Ratio	V _{CM} = ±13.5V	114	132		114	132		110	132		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 1.2V \text{ to } \pm 20V$	114	132		114	132		110	132		dB
	Input Voltage Range		±13.5	±14		±13.5	±14		±13.5	±14		V
V _{OUT}	Output Voltage Swing	$R_L = 10k\Omega$	±13	±14		±13	±14		±13	±14		V
	Slew Rate		0.1	0.2		0.1	0.2		0.1	0.2		V/µs
I _S	Supply Current	(Note 3)		370 380	500 600		380 380	600		380 380	600	μA μA

ELECTRICAL CHARACTERISTICS

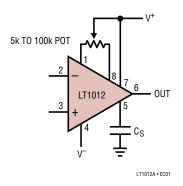
 V_S = $\pm\,15V,\,V_{CM}$ = 0V, T_A = 25°C, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	LT1012D TYP	MAX	MIN	LT1012S8 TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	(Note 3)		12 25	60		15 25	120 180	μV μV
	Long Term Input Offset Voltage Stability			0.3			0.4		μV/month
l _{os}	Input Offset Current	(Note 3)		20 30	150		50 60	280 380	pA pA
I _B	Input Bias Current	(Note 3)		±30 ±40	±150		±80 ±120	±300 ±400	pA pA
e _n	Input Noise Voltage	0.1Hz to 10Hz		0.5			0.5		μV _{P-P}
e _n	Input Noise Voltage Density	f ₀ = 10Hz (Note 5) f ₀ = 1000Hz (Note 5)		17 14	30 22		17 14	30 22	nV√Hz nV√Hz
i _n	Input Noise Current Density	f ₀ = 10Hz		20			20		fA/√Hz
A _{VOL}	Large-Signal Voltage Gain	$\begin{aligned} V_{0UT} &= \pm 12 V, R_L \geq 10 k \Omega \\ V_{0UT} &= \pm 10 V, R_L \geq 2 k \Omega \end{aligned}$	200 200	2000 1000		200 120	2000 1000		V/mV V/mV
CMRR	Common Mode Rejection Ratio	V _{CM} = ±13.5V	110	132		110	132		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 1.2 V \text{ to } \pm 20 V$	110	132		110	132		dB
	Input Voltage Range		±13.5	±14.0		±13.5	±14.0		V
V _{OUT}	Output Voltage Swing	$R_L = 10k\Omega$	±13	±14		±13	±14		V
	Slew Rate		0.1	0.2		0.1	0.2		V/µs
Is	Supply Current	(Note 3)		380	600		380	600	μА

ELECTRICAL CHARACTERISTICS The ullet denotes the specifications which apply over the full operating temperature range of $-55^{\circ}\text{C} \leq T_A \leq 125^{\circ}\text{C}$ for LT1012AM and LT1012M, and $-40^{\circ}\text{C} \leq T_A \leq 85^{\circ}\text{C}$ for LT1012AI and LT1012I. $V_S = \pm 15V$, $V_{CM} = 0V$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN L	T1012AM/	AI MAX	MIN	LT1012M/ TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	(Note 3)	•		30 40	60 180		30 40	180 250	μV μV
	Average Temperature Coefficient of Input Offset Voltage		•		0.2	0.6		0.2	1.5	μV/°C
I _{OS}	Input Offset Current	(Note 3)	•		30 70	250 350		30 70	250 350	pA pA
	Average Temperature Coefficient of Input Offset Current		•		0.3	2.5		0.3	2.5	pA/°C
I _B	Input Bias Current	(Note 3)	•		±80 ±150	±600 ±800		±80 ±150	±600 ±800	pA pA
	Average Temperature Coefficient of Input Bias Current		•		0.6	6.0		0.6	6.0	pA/°C
A _{VOL}	Large-Signal Voltage Gain	$\begin{aligned} V_{OUT} &= \pm 12 V, \ R_L \geq 10 k \Omega \\ V_{OUT} &= \pm 10 V, \ R_L \geq 2 k \Omega \end{aligned}$	•	200 200	1000 600		150 100	1000 600		V/mV V/mV
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 13.5V$	•	110	128		108	128		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 1.5 V \text{ to } \pm 20 V$	•	110	126		108	126		dB
	Input Voltage Range		•	±13.5			±13.5			V
V _{OUT}	Output Voltage Swing	$R_L = 10k\Omega$	•	±13	±14		±13	±14		V
Is	Supply Current		•		400	650		400	800	μА

ELECTRICAL CHARACTERISTICS The ullet denotes the specifications which apply over the full operating temperature range of $0^{\circ}\text{C} \leq T_{A} \leq 70^{\circ}\text{C}$. $V_{S} = \pm 15\text{V}$, $V_{CM} = 0\text{V}$, unless otherwise noted.


SYMBOL	PARAMETER	CONDITIONS		MIN	LT1012AC Typ	MAX	MIN	LT1012C TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	(Note 3)	•		20 30	60 160		20 30	100 200	μV μV
	Average Temperature Coefficient of Input Offset Voltage		•		0.2	0.6		0.2	1.0	μV/°C
I _{OS}	Input Offset Current	(Note 3)	•		25 40	230 300		35 45	230 300	pA pA
	Average Temperature Coefficient of Input Offset Current		•		0.3	2.5		0.3	2.5	pA/°C
I _B	Input Bias Current	(Note 3)	•		±35 ±50	±230 ±300		±35 ±50	±230 ±300	pA pA
	Average Temperature Coefficient of Input Bias Current		•		0.3	2.5		0.3	2.5	pA/°C
A _{VOL}	Large-Signal Voltage Gain	$\begin{aligned} V_{OUT} &= \pm 12 V, R_L \geq 10 k \Omega \\ V_{OUT} &= \pm 10 V, R_L \geq 2 k \Omega \end{aligned}$	•	200 200	1500 1000		150 150	1500 800		V/mV V/mV
CMRR	Common Mode Rejection Ratio	V _{CM} = 13.5V	•	110	130		108	130		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 1.3 V \text{ to } \pm 20 V$	•	110	128		108	128		dB
	Input Voltage Range		•	±13.5			±13.5			V
V _{OUT}	Output Voltage Swing	$R_L = 10k\Omega$	•	±13	±14		±13	±14		V
I _S	Supply Current		•		400	600		400	800	μА

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range of $0^{\circ}C \le T_A \le 70^{\circ}C$. $V_S = \pm 15V$, $V_{CM} = 0V$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	LT1012D TYP	MAX	MIN	LT1012S8 TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	(Note 3)	•		25 40	140		30 45	200 270	μV μV
	Average Temperature Coefficient of Input Offset Voltage		•		0.3	1.7		0.3	1.8	μV/°C
I _{0S}	Input Offset Current	(Note 3)	•		35 45	380		60 80	380 500	pA pA
	Average Temperature Coefficient of Input Offset Current		•		0.35	4.0		0.4	4.0	pA/°C
I _B	Input Bias Current	(Note 3)	•		±50 ±65	±420		±100 ±150	±420 ±550	pA pA
	Average Temperature Coefficient of Input Bias Current		•		0.4	5.0		0.5	5.0	pA/°C
A _{VOL}	Large-Signal Voltage Gain	$\begin{aligned} V_{OUT} &= \pm 12 V, R_L \geq 10 k \Omega \\ V_{OUT} &= \pm 10 V, R_L \geq 2 k \Omega \end{aligned}$	•	150 150	1500 800		150 100	1500 800		V/mV V/mV
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 13.5V$	•	108	130		108	130		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 1.3 V \text{ to } \pm 20 V$	•	108	128		108	128		dB
	Input Voltage Range		•	±13.5			±13.5			V
$\overline{V_{OUT}}$	Output Voltage Swing	$R_L = 10k\Omega$	•	±13	±14		±13	±14		V
Is	Supply Current		•		400	800		400	800	μА

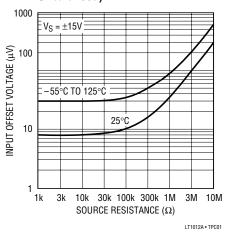
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: Differential input voltages greater than 1V will cause excessive current to flow through the input protection diodes unless limiting resistance is used.

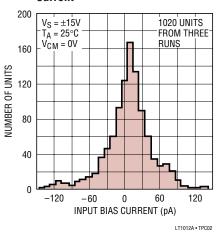
Note 3: These specifications apply for $V_{MIN} \le V_S \le \pm 20V$ and $-13.5V \le V_{CM} \le 13.5V$ (for $V_S = \pm 15V$). $V_{MIN} = \pm 1.2V$ at $25^{\circ}C$, $\pm 1.3V$ from $0^{\circ}C$ to $70^{\circ}C$, $\pm 1.5V$ from $-55^{\circ}C$ to $125^{\circ}C$.

Note 4: 10Hz noise voltage density is sample tested on every lot. Devices 100% tested at 10Hz are available on request.

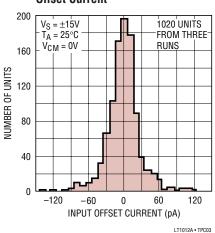
Note 5: This parameter is tested on a sample basis only.

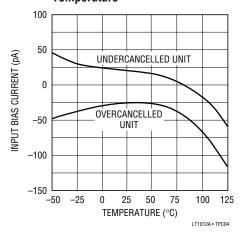

Optional Offset Nulling and Overcompensation Circuits

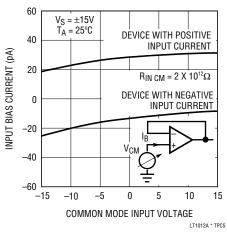
Input offset voltage can be adjusted over a $\pm 800 \mu V$ range with a 5k to 100k potentiometer.

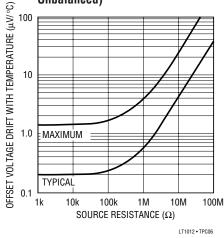

The LT1012 is internally compensated for unity gain stability. The overcompensation capacitor, C_S , can be used to improve capacitive load handling capability, to narrow noise bandwidth, or to stabilize circuits with gain in the feedback loop.

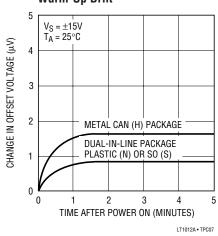
TYPICAL PERFORMANCE CHARACTERISTICS

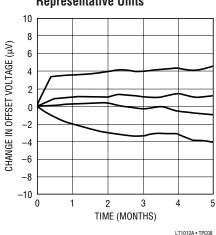

Offset Voltage vs Source Resistance (Balanced or Unbalanced)

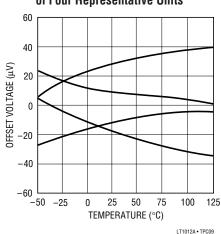

Typical Distribution of Input Bias Current


Typical Distribution of Input Offset Current

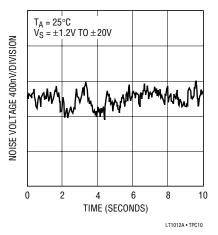

Input Bias Current vs Temperature


Input Bias Current Over Common Mode Range

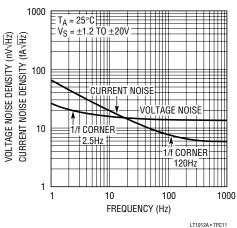

Offset Voltage Drift vs Source Resistance (Balanced or Unbalanced)


Warm-Up Drift

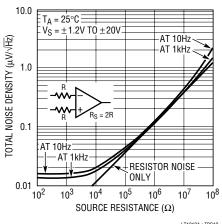
Long Term Stability of Four **Representative Units**



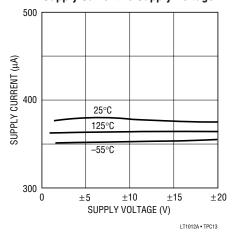
Offset Voltage Drift with Temperature of Four Representative Units



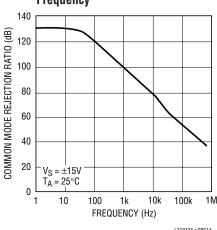
TYPICAL PERFORMANCE CHARACTERISTICS


0.1Hz to 10Hz Noise

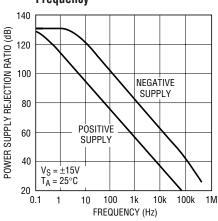
Noise Spectrum

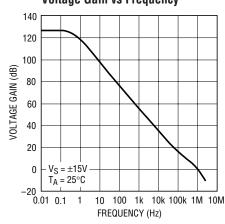


Total Noise vs Source Resistance

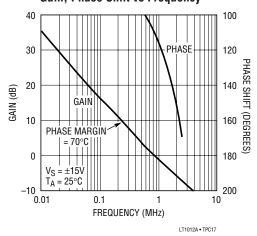


LT1012A • TPC12

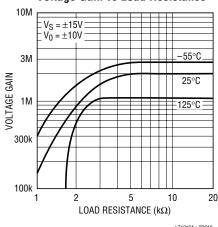

Supply Current vs Supply Voltage



Power Supply Rejection vs Frequency

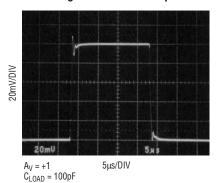

LT1012A • TPC15

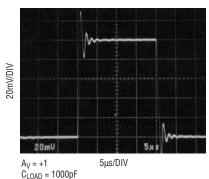
Voltage Gain vs Frequency



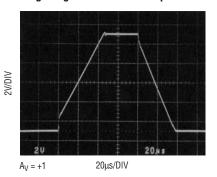
LT1012A • TPC16

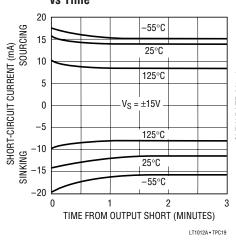
Gain, Phase Shift vs Frequency

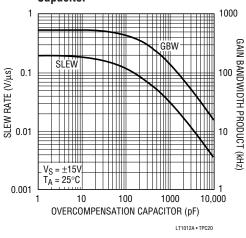

Voltage Gain vs Load Resistance

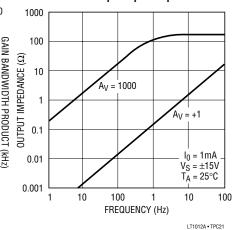

LT1012A • TPC18

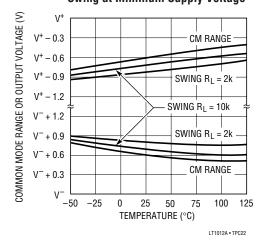
TYPICAL PERFORMANCE CHARACTERISTICS

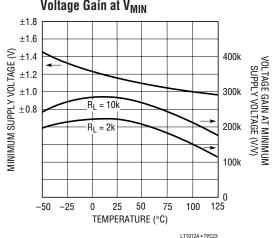

Small-Signal Transient Response


Small-Signal Transient Response


Large-Signal Transient Response


Output Short-Circuit Current vs Time

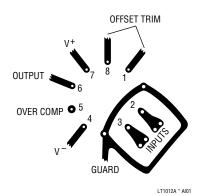

Slew Rate, Gain Bandwidth Product vs Overcompensation Capacitor


Closed-Loop Output Impedance

Common Mode Range and Voltage Swing at Minimum Supply Voltage

Minimum Supply Voltage, Voltage Gain at V_{MIN}

APPLICATIONS INFORMATION


The LT1012 may be inserted directly into OP-07, LM11, 108A or 101A sockets with or without removal of external frequency compensation or nulling components. The LT1012 can also be used in 741, LF411, LF156 or OP-15 applications provided that the nulling circuitry is removed.

Although the OP-97 is a copy of the LT1012, the LT1012 directly replaces and upgrades OP-97 applications. The LT1012C and D have lower offset voltage and drift than the OP-97F. The LT1012A has lower supply current than the OP-97A/E. In addition, all LT1012 grades guarantee operation at $\pm 1.2V$ supplies.

Achieving Picoampere/Microvolt Performance

In order to realize the picoampere/microvolt level accuracy of the LT1012, proper care must be exercised. For example, leakage currents in circuitry external to the op amp can significantly degrade performance. High quality insulation should be used (e.g. Teflon, Kel-F); cleaning of all insulating surfaces to remove fluxes and other residues will probably be required. Surface coating may be necessary to provide a moisture barrier in high humidity environments.

Board leakage can be minimized by encircling the input circuitry with a guard ring operated at a potential close to that of the inputs: in inverting configurations the guard ring should be tied to ground, in non-inverting connections to the inverting input at Pin 2. Guarding both sides of the printed circuit board is required. Bulk leakage reduction depends on the guard ring width. Nanoampere level leakage into the offset trim terminals can affect offset voltage and drift with temperature.

Microvolt level error voltages can also be generated in the external circuitry. Thermocouple effects caused by temperature gradients across dissimilar metals at the contacts to the input terminals can exceed the inherent drift of the amplifier. Air currents over device leads should be minimized, package leads should be short, and the two input leads should be as close together as possible and maintained at the same temperature.

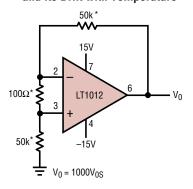
Noise Testing

For application information on noise testing and calculations, please see the LT1008 data sheet.

Frequency Compensation

The LT1012 can be overcompensated to improve capacitive load handling capability or to narrow noise bandwidth. In many applications, the feedback loop around the amplifier has gain (e.g. logarithmic amplifiers); overcompensation can stabilize these circuits with a single capacitor.

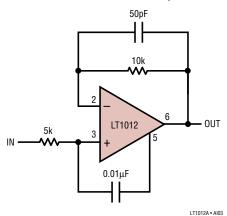
The availability of the compensation terminal permits the use of feedforward frequency compensation to enhance slew rate. The voltage follower feedforward scheme bypasses the amplifier's gain stages and slews at nearly $10V/\mu s$.

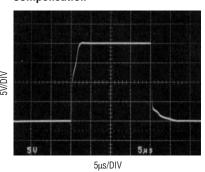

The inputs of the LT1012 are protected with back-to-back diodes. Current limiting resistors are not used, because the leakage of these resistors would prevent the realization of picoampere level bias currents at elevated temperatures. In the voltage follower configuration, when the input is driven by a fast, large signal pulse (>1V), the input protection diodes effectively short the output to the input during slewing, and a current, limited only by the output short-circuit protection will flow through the diodes.

The use of a feedback resistor, as shown in the voltage follower feedforward diagram, is recommended because this resistor keeps the current below the short-circuit limit, resulting in faster recovery and settling of the output.

LINEAR TECHNOLOGY

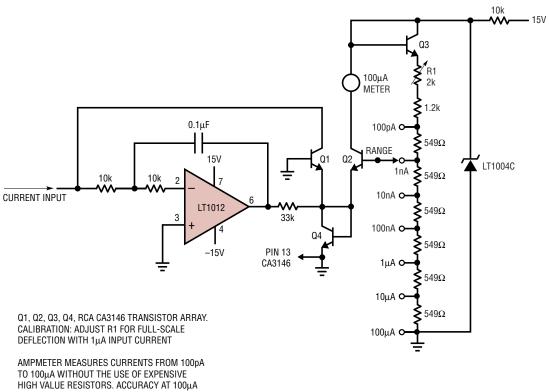
APPLICATIONS INFORMATION


Test Circuit for Offset Voltage and its Drift with Temperature


*RESISTORS MUST HAVE LOW THERMOELECTRIC POTENTIAL

LT1012A • AI02

Follower Feedforward Compensation



Pulse Response of Feedforward Compensation

TYPICAL APPLICATIONS

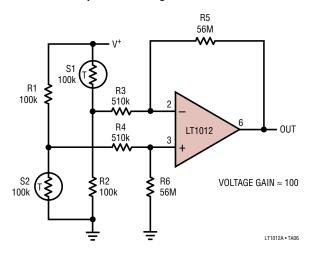
Ampmeter with Six Decade Range

TO 100μA WITHOUT THE USE OF EXPENSIVE HIGH VALUE RESISTORS. ACCURACY AT 100μA IS LIMITED BY THE OFFSET VOLTAGE BETWEEN Q1 AND Q2 AND, AT 100μA, BY THE INVERTING BIAS CURRENT OF THE LT1012

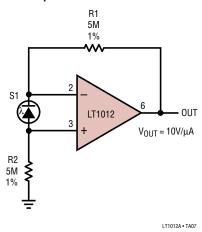
LT1012A • TA03

LINEAR

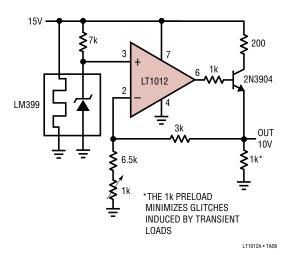
TYPICAL APPLICATIONS


Saturated Standard Cell Amplifier

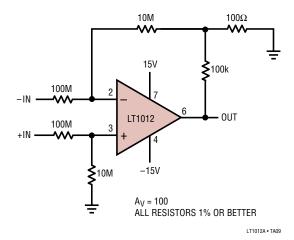
THE TYPICAL 30pA BIAS CURRENT OF THE LT1012 WILL DEGRADE THE STANDARD CELL BY ONLY 1ppm/YEAR. NOISE IS A FRACTION OF A ppm. UNPROTECTED GATE MOSFET ISOLATES STANDARD CELL ON POWER DOWN

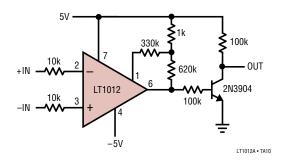

LT1012A • TA05

Amplifier for Bridge Transducers

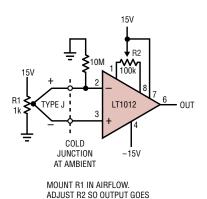


TYPICAL APPLICATIONS


Amplifier for Photodiode Sensor

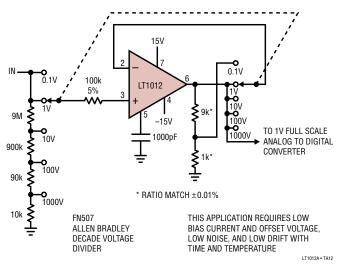

Buffered Reference for A-to-D Converters

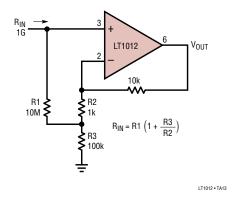
Instrumentation Amplifier with ±100V Common Mode Range



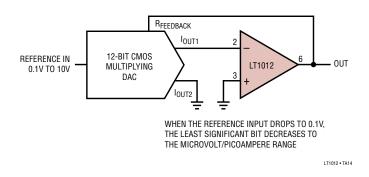
Low Power Comparator with < 10 µV Hysteresis

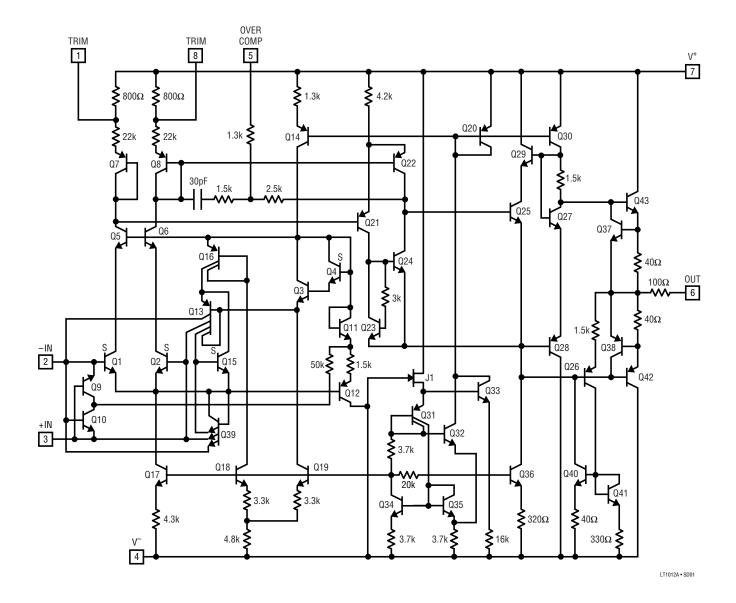
TYPICAL APPLICATIONS

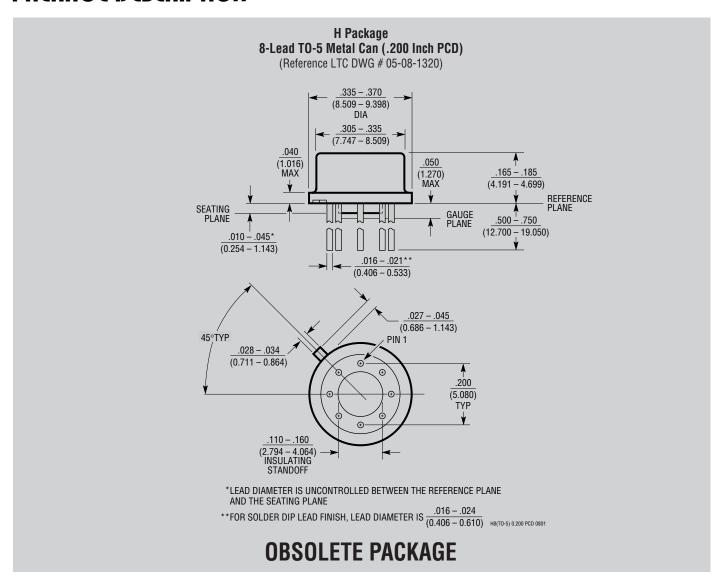

Air Flow Detector


HIGH WHEN AIRFLOW STOPS

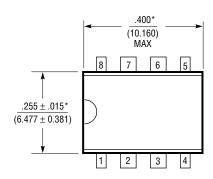
LT1012A • TA11

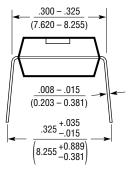

Input Amplifier for 4.5 Digit Voltmeter

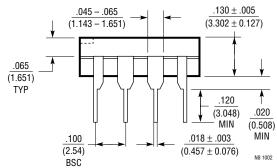

Resistor Multiplier


"No Trims" 12-Bit Multiplying DAC Output Amplifier

SCHEMATIC DIAGRAM

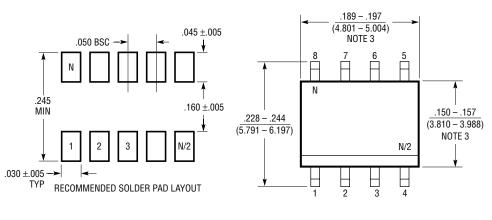

PACKAGE DESCRIPTION

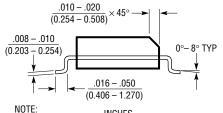


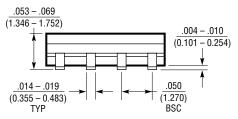

PACKAGE DESCRIPTION

N8 Package 8-Lead PDIP (Narrow .300 Inch)

(Reference LTC DWG # 05-08-1510)

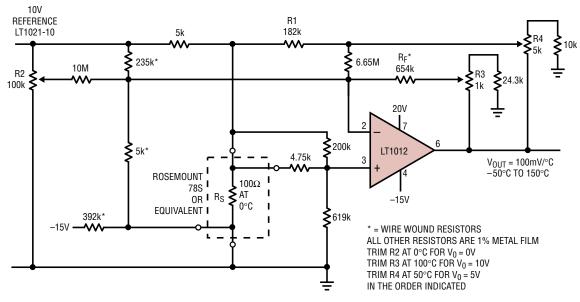

NOTE:


NOTE:
1. DIMENSIONS ARE INCHES
MILLIMETERS
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)


PACKAGE DESCRIPTION

S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch)

(Reference LTC DWG # 05-08-1610)


NOTE:
1. DIMENSIONS IN (MILLIMETERS)
2. DRAWING NOT TO SCALE

2. DRAWING NOT TO SCALE
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

S08 0502

TYPICAL APPLICATION

Kelvin-Sensed Platinum Temperature Sensor Amplifier

POSITIVE FEEDBACK (R1) LINEARIZES THE INHERENT PARABOLIC NONLINEARITY OF THE PLATINUM SENSOR AND REDUCES ERRORS FROM 1.2°C TO 0.004°C OVER THE -50°C TO 150°C RANGE

LT1012A • TA04