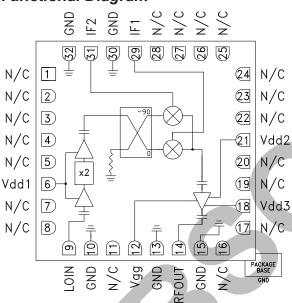


Typical Applications

The HMC815LC5 is ideal for:

- Point-to-Point and Point-to-Multi-Point Radios
- Military Radar, EW & ELINT
- Satellite Communications
- Sensors


Features

High Conversion Gain: 12 dB Sideband Rejection: -20 dBc 2 LO to RF Isolation: 10 dB

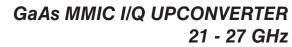
Output IP3: +27 dBm

32 Lead 5x5mm SMT Ceramic Package: 25mm²

Functional Diagram

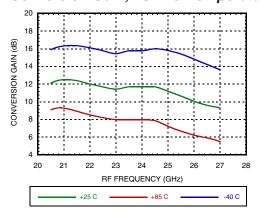
General Description

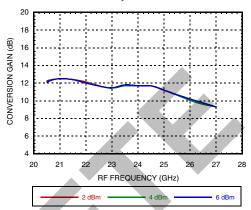
The HMC815LC5 is a compact GaAs MMIC I/Q upconverter in a leadless RoHS compliant SMT package. This device provides a small signal conversion gain of 12 dB and sideband rejection of -20 dBc. The HMC815LC5 utilizes a driver amplifier preceded by an I/Q mixer where the LO is driven by an active x2 multiplier. IF1 and IF2 mixer inputs are provided and an external 90° hybrid is needed to select the required sideband. The I/Q mixer topology reduces the need for filtering of the unwanted sideband. The HMC815LC5 is a much smaller alternative to hybrid style single sideband upconverter assemblies and it eliminates the need for wire bonding by allowing the use of surface mount manufacturing techniques.


Electrical Specifications,

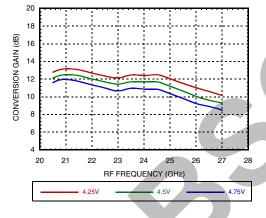
 $T_A = +25^{\circ}\text{C}$, IF = 2500 MHz, LO = +4 dBm, Vdd1, 2, 3 = +4.5V, Idd2 + Idd3 = 270 mA [1][3]

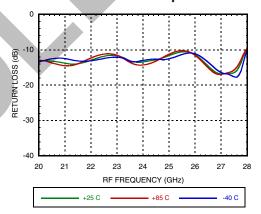
Parameter	Min.	Тур.	Max.	Units
Frequency Range, RF		21 - 27		GHz
Frequency Range, LO		10.5 - 14.5		GHz
Frequency Range, IF		DC - 3.75		GHz
Conversion Gain	7 12			dB
Sideband Rejection		-20		dBc
1 dB Compression (Output)	17	20		dBm
2 LO to RF Isolation	10			dB
2 LO to IF Isolation [2]		15		dB
IP3 (Output)		27		dBm
Supply Current Idd1		95	120	mA
Supply Current Idd2 + Idd3		270	300	mA

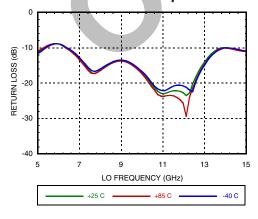

- [1] Unless otherwise noted all measurements performed with high side LO, IF = 2500 MHz and external 90° IF hybrid.
- [2] Data taken without external IF hybrid.
- [3] Adjust Vgg between -2 to 0V to achieve Idd2 + Idd3 = 270 mA Typical.

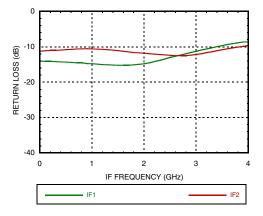


Data Taken as SSB Upconverter with External IF Hybrid, IF = 2500 MHz


Conversion Gain, LSB vs. Temperature

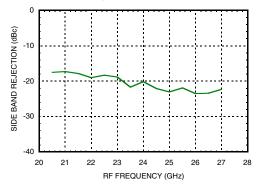

Conversion Gain, LSB vs. LO Drive


Conversion Gain, LSB vs. Vdd

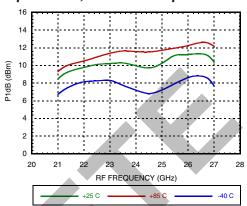

RF Return Loss vs. Temperature

LO Return Loss vs. Temperature

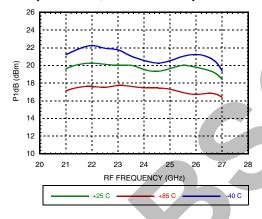
IF Return Loss [1]

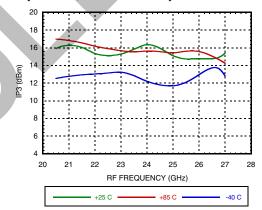


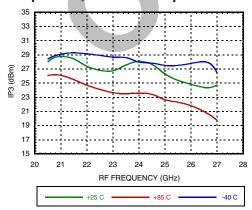
[1] Data taken without external IF hybrid

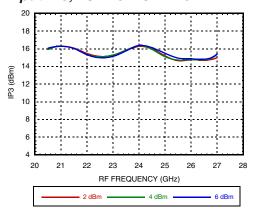


Data Taken as SSB Upconverter with External IF Hybrid, IF = 2500 MHz


Side Band Rejection

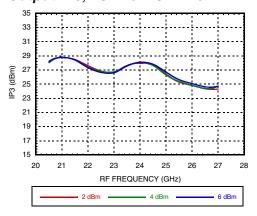

Input P1dB, LSB vs. Temperature

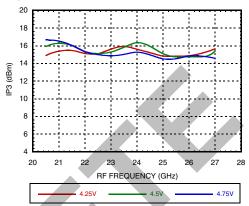

Output P1dB, LSB vs. Temperature


Input IP3, LSB vs. Temperature

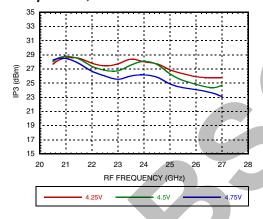
Output IP3, LSB vs. Temperature

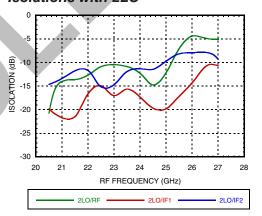
Input IP3, LSB vs. LO Drive

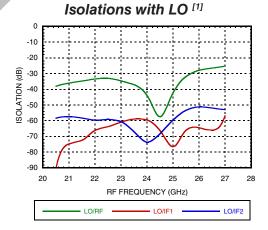




Data Taken as SSB Upconverter with External IF Hybrid, IF = 2500 MHz


Output IP3, LSB vs. LO Drive

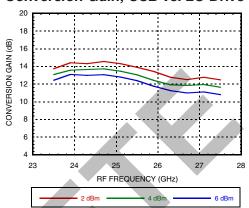

Input IP3, LSB vs. Vdd



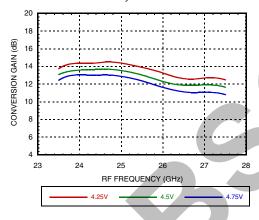
Output IP3, LSB vs. Vdd

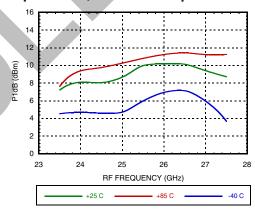
Isolations with 2LO [1]

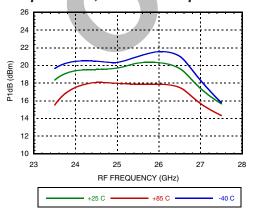
[1] Data taken without external IF hybrid



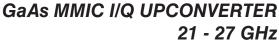
Data Taken as SSB Upconverter with External IF Hybrid, IF = 2500 MHz


Conversion Gain, USB vs. Temperature

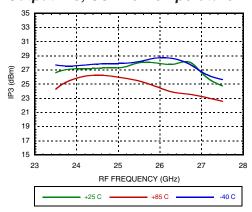

Conversion Gain, USB vs. LO Drive

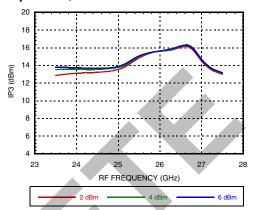

Conversion Gain, USB vs. Vdd

Input P1dB, USB vs. Temperature

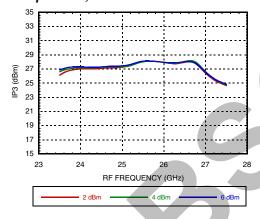

Output P1dB, USB vs. Temperature

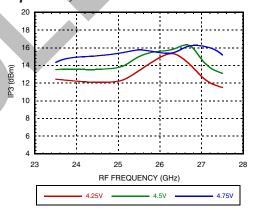
Input IP3, USB vs. Temperature

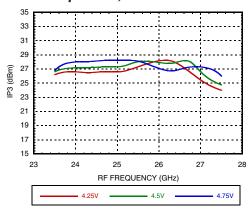




□ Data Taken as SSB Upconverter with External IF Hybrid, IF = 2500 MHz

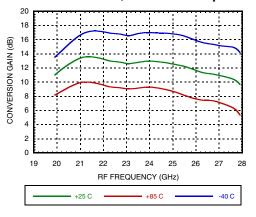

Output IP3, USB vs. Temperature

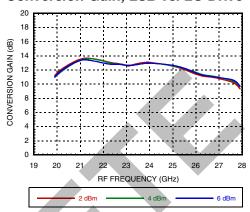

Input IP3, USB vs. LO Drive


Output IP3, USB vs. LO Drive

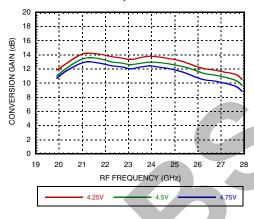
Input IP3, USB vs. Vdd

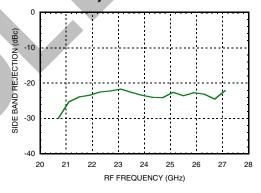
Output IP3, USB vs. Vdd

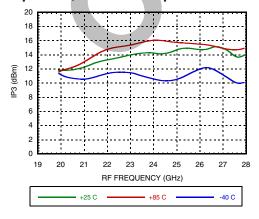


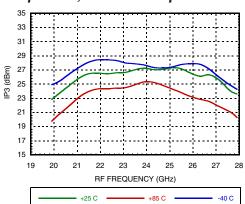


Data Taken as SSB Upconverter with External IF Hybrid, IF = 100 MHz


Conversion Gain, LSB vs. Temperature

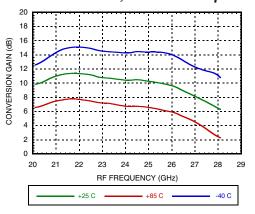

Conversion Gain, LSB vs. LO Drive

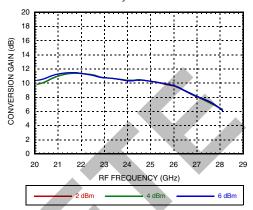

Conversion Gain, LSB vs. Vdd


Sideband Rejection

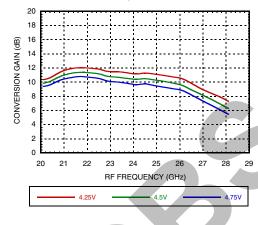
Input IP3, LSB vs. Temperature

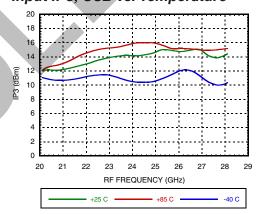
Output IP3, LSB vs. Temperature

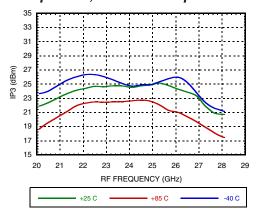




Data Taken as SSB Upconverter with External IF Hybrid, IF = 100 MHz

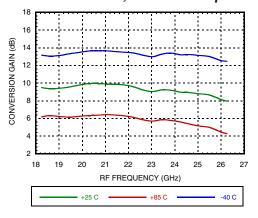

Conversion Gain, USB vs. Temperature

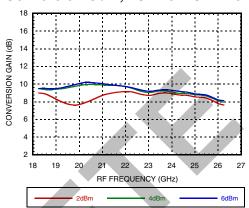

Conversion Gain, USB vs. LO Drive


Conversion Gain, USB vs. Vdd

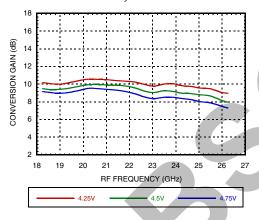
Input IP3, USB vs. Temperature

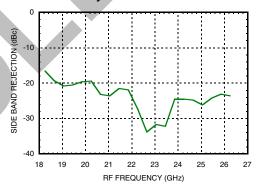
Output IP3, USB vs. Temperature

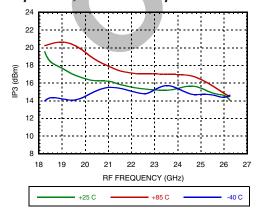


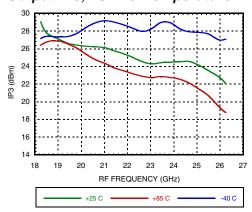


Data Taken as SSB Upconverter with External IF Hybrid, IF = 3750 MHz


Conversion Gain, LSB vs. Temperature

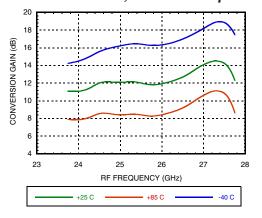

Conversion Gain, LSB vs. LO Drive

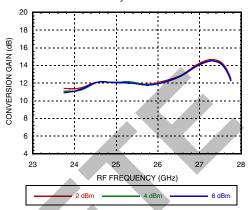

Conversion Gain, LSB vs. Vdd


Sideband Rejection

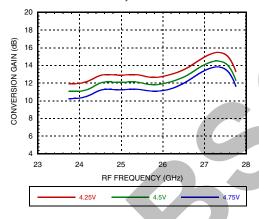
Input IP3, LSB vs. Temperature

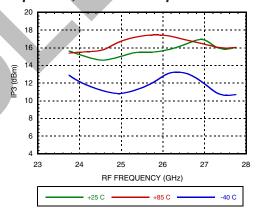
Output IP3, LSB vs. Temperature

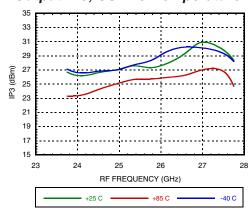




Data Taken as SSB Upconverter with External IF Hybrid, IF = 3750 MHz


Conversion Gain, USB vs. Temperature


Conversion Gain, USB vs. LO Drive


Conversion Gain, USB vs. Vdd

Input IP3, USB vs. Temperature

Output IP3, USB vs. Temperature

MxN Spurious Outputs [1][2]

	nLO			
mIF	0	1	2	3
0	XX	38	6	23
1	66	38	0	38
2	59	44	50	59
3	86	80	58	XX

IF = 2.5 GHz @ -10 dBm LO = 11 GHz @ 4 dBm

MxN Spurious Outputs [1][2]

		nLO			
mIF	0	1	2	3	
0	xx	35	9	24	
1	71	37	0	38	
2	58	44	42	65	
3	92	79	56	XX	

IF = 2.5 GHz @ -10 dBm LO = 11.25 GHz @ 4 dBm

MxN Spurious Outputs [1][2]

	nLO			
mIF	0	1	2	3
0	XX	36	15	26
1	XX	42	0	47
2	61	53	72	77
3	XX	76	57	xx

IF = 2.5 GHz @ -10 dBm LO = 11.5 GHz @ 4 dBm

MxN Spurious Outputs [1][3]

			nLO			
	mIF	0	1	2	3	
	-3	XX	XX	61	84	
l	-2	59	92	46	63	
	-1	XX	74	0	54	
	0	xx	31	9	26	

IF = 2.5 GHz @ -10 dBm LO = 11.75 GHz @ 4 dBm

MxN Spurious Outputs [1][2]

		nl	_0	
mIF	0	1	2	3
0	xx	31	9	26
1	xx	42	0	65
2	59	62	53	XX
3	xx	83	57	xx

IF = 2.5 GHz @ -10 dBm LO = 11.75 GHz @ 4 dBm

MxN Spurious Outputs [1][3]

	nLO			
mIF	0	1	2	3
0	XX	28	9	31
1	xx	44	0	61
2	60	62	57	хх
3	XX	86	57	xx

IF = 2.5 GHz @ -10 dBm LO = 12 GHz @ 4 dBm

^[1] Data taken without external IF hybrid

^[2] All values in dBc below RF power level (2LO + IF) USB

^[3] All values in dBc below RF power level (2LO - IF) LSB

MxN Spurious Outputs [1][3]

	nLO			
mIF	0	1	2	3
-3	xx	xx	60	85
-2	61	xx	47	77
-1	80	79	0	64
0	xx	28	9	35

IF = 2.5 GHz @ -10 dBm LO = 12.25 GHz @ 4 dBm

MxN Spurious Outputs [1][3]

		nLO			
mIF	0	1	2	3	
-3	88	XX	56	xx	
-2	60	93	51	86	
-1	71	71	0	69	
0	XX	28	4	34	

IF = 2.5 GHz @ -10 dBm LO = 12.75 GHz @ 4 dBm

MxN Spurious Outputs [1][3]

	nLO			
mIF	0	1	2	3
-3	89	XX	55	72
-2	61	96	46	72
-1	71	83	0	70
0	хх	38	7	29

IF = 2.5 GHz @ -10 dBm LO = 13.25 GHz @ 4 dBm

MxN Spurious Outputs [1][3]

	nLO			
mIF	0	1	2	3
-3	xx	XX	54	XX
-2	62	XX	63	79
-1	XX	30	6	XX
0	xx	31	6	xx

IF = 2.5 GHz @ -10 dBm LO = 13.75 GHz @ 4 dBm

MxN Spurious Outputs [1][3]

	nLO			
mIF	0	1	2	3
-3	xx	xx	54	XX
-2	62	82	42	73
-1	73	57	0	xx
0	xx	20	-3	xx

IF = 2.5 GHz @ -10 dBm LO = 14.25 GHz @ 4 dBm

MxN Spurious Outputs [1][3]

	nLO			
mIF	0	1	2	3
-3	xx	XX	53	xx
-2	61	55	0	74
-1	65	55	0	xx
0	xx	16	-3	xx

IF = 2.5 GHz @ -10 dBm LO = 14.75 GHz @ 4 dBm

^[1] Data taken without external IF hybrid

^[2] All values in dBc below RF power level (2LO + IF) USB

^[3] All values in dBc below RF power level (2LO - IF) LSB

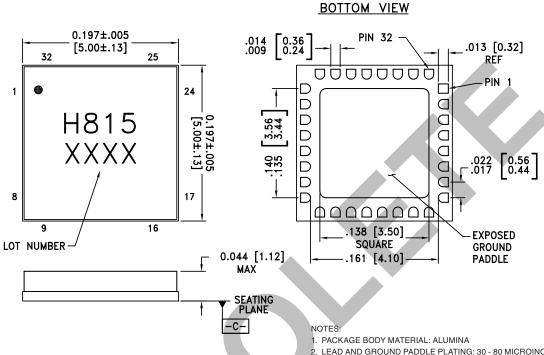
Absolute Maximum Ratings

5.5V	
-3V to 0V	
20 dBm	
+13 dBm	
170 °C	
1.82 W	
46.7 °C/W	
-65 to +150 °C	
-55 to +85 °C	
Class 0, Passed 150V	

Harmonics of LO @ RF Output

LO From (CUI)	nLO Spur @ IF Port			
LO Freq. (GHz)	1	2	3	
11.00	38	6	23	
11.25	35	9	24	
11.50	36	15	26	
11.75	31	9	26	
12.00	28	9	31	
12.25	28	9	35	
12.75	28	4	34	
13.25	38	7	29	
13.75	30	6	xx	
14.24	20	-3	xx	
14.75	16	-3	XX	

LO Power = +4 dBm

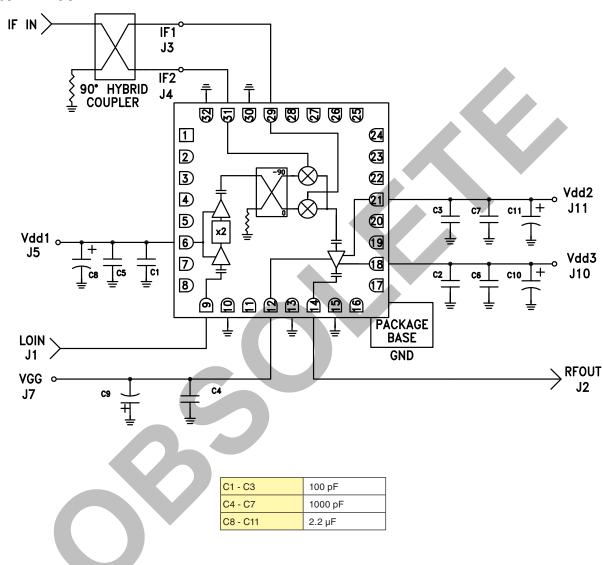

All values in dBc below input LO level measured at RF port.

Outline Drawing

- 2. LEAD AND GROUND PADDLE PLATING: 30 80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKLE
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND

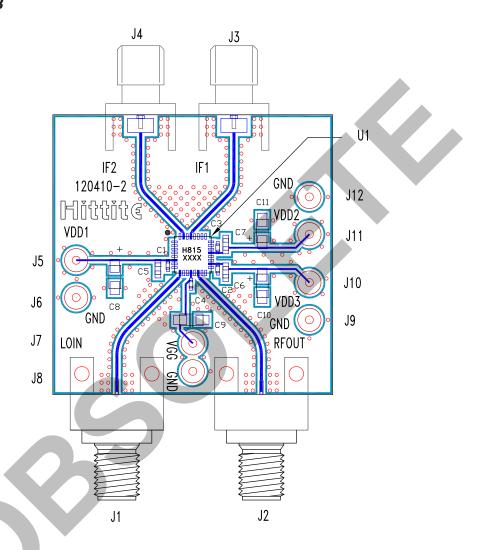
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC815LC5	Alumina, White	Gold over Nickel	MSL3 ^[1]	H815 XXXX


^[1] Max peak reflow temperature of 260 °C

^{[2] 4-}Digit lot number XXXX

Typical Application

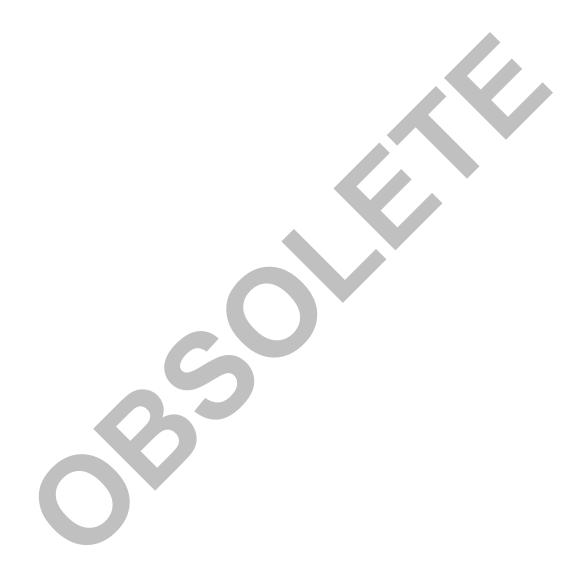

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1 - 5, 7, 8, 11, 16, 17, 19, 20, 22 - 28	N/C	No connection required. The pins are not connected inter- nally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
6	Vdd1	Power supply voltage for x2 multiplier. See application circuit for required external components.	OVdd1
9	LOIN	This pin is AC coupled and matched to 50 Ohms.	LOINO—
10, 13, 15, 30, 32	GND	These pins and package bottom must be connected to RF/DC ground.	→ GND —
12	Vgg	Gate control for RF amplifier, please follow "MMIC Amplifier Biasing Procedure" application note. See application circuit for required external components.	Vgg
14	RFOUT	This pin is AC coupled and matched to 50 Ohms.	— —○ RFOUT
18, 21	Vdd3, Vdd2	Power supply voltage for RF amplifier. See application circuit for required external components.	Vdd3,2
29	IF1	Differential IF input pins. For applications not requiring operation to DC, an off chip DC blocking capacitor should	IF1,IF2 O
31	IF2	be used. For operation to DC this pin must not source/sink more than 3mA of current or part non function and possible part failure will result.	

Evaluation PCB

List of Materials for Evaluation PCB 120412 [1]

Item	Description	
J1, J2	PCB Mount 2.99mm Connector	
J3, J4	PCB Mount SMA Connector	
J5 - J12	DC Pin	
C1 - C3	100 pF Capacitor, 0402 Pkg.	
C4	1000 pF Capacitor, 0402 Pkg.	
C5 - C7	1000 pF Capacitor, 0603 Pkg.	
C8 - C11	2.2 µF Tantalum Capacitor Case A	
U1	HMC815LC5 Upconverter	
PCB [2]	120410 Evaluation Board	


[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Arlon 25FR, FR4 or Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

