Data Sheet

FEATURES

Latch-up proof
2.8 pF off source capacitance

9 pF off drain capacitance
0.4 pC charge injection

Low on resistance: 160Ω typical
$\pm 9 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$ dual-supply operation
9 V to 40 V single-supply operation
48 V supply maximum ratings
Fully specified at $\pm 15 \mathrm{~V}, \pm 20 \mathrm{~V},+12 \mathrm{~V}$, and +36 V
V_{DD} to V_{ss} analog signal range
Human body model (HBM) ESD rating
$8 \mathbf{k V}$ input/output port to supplies
2 kV input/output port to input/output port
8 kV all other pins

APPLICATIONS

Automatic test equipment
Data acquisition
Instrumentation
Avionics
Audio and video switching
Communication systems

FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A 1 INPUT LOGIC.

Figure 1. ADG5233 TSSOP and LFCSP_WQ

SWITCHES SHOWN FOR A 1 INPUT LOGIC.
Figure 2. ADG5234 TSSOP and LFCSP_WQ

PRODUCT HIGHLIGHTS

1. Trench Isolation Guards Against Latch-Up.

A dielectric trench separates the P and N channel transistors thereby preventing latch-up even under severe overvoltage conditions.
2. Ultralow Capacitance and 0.4 pC Charge Injection.
3. Dual-Supply Operation.

For applications where the analog signal is bipolar, the ADG5233/ADG5234 can be operated from dual supplies up to $\pm 22 \mathrm{~V}$.
4. Single-Supply Operation.

For applications where the analog signal is unipolar, the ADG5233/ADG5234 can be operated from a single-rail power supply up to 40 V .
5. 3 V Logic-Compatible Digital Inputs.
$\mathrm{V}_{\mathrm{INH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {INL }}=0.8 \mathrm{~V}$.
6. No V_{L} Logic Power Supply Required.

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagrams 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
± 15 V Dual Supply 3
± 20 V Dual Supply 4
12 V Single Supply. 5
36 V Single Supply 6
REVISION HISTORY
8/15—Rev. C to Rev. D
Changes to Features Section 1
Changes to Table 1 3
Changes to Table 2 4
Changes to Table 3 5
Changes to Table 4 6
Changes to Table 7 9
Changes to Figure 20 Caption to Figure 22 Caption 14
Changes to Figure 23 Caption to Figure 25 Caption 15
Deleted Figure 20 and Figure 22; Renumbered Sequentially 15
Deleted Figure 24, Figure 26, and Figure 28 16
Deleted Figure 30 17
12/14—Rev. B to Rev. C
Changes to Features Section and Product Highlights Section 1
Changes to Table 1 3
Changes to Table 2 4
Changes to Table 3 6
Changes to Table 4 7
Change to Table 7 9
Changes to Figure 7 to Figure 12. 13
Changes to Figure 13 and Figure 14. 14
Changes to Figure 19, Figure 20 Caption, and Figure 22 Caption 15
Added Figure 21 and Figure 23; Renumbered Sequentially 15
Changes to Figure 24 Caption, Figure 26 Caption, and Figure 28 Caption 16
Added Figure 25, Figure 27, and Figure 28 16
Changes Figure 30 Caption 17
Added Figure 31 17
Changes to Figure 34 18
Continuous Current per Channel, Sx or Dx7
Absolute Maximum Ratings 9
ESD Caution 9
Pin Configurations and Function Descriptions 10
Typical Performance Characteristics. 12
Test Circuits 16
Terminology 18
Trench Isolation 19
Applications Information 20
Outline Dimensions 21
Ordering Guide 22
6/13-Rev. A to Rev. B
Added 20-Lead LFCSP Universal
Updated Outline Dimensions 21
Changes to Ordering Guide 22
3/12-Rev. 0 to Rev. A
Added 16-Lead LFCSP Universal
Changes to Ordering Guide 22
7/11—Revision 0: Initial Version

SPECIFICATIONS

± 15 V DUAL SUPPLY
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

ADG5233/ADG5234

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
POWER REQUIREMENTS	$\begin{aligned} & 45 \\ & 55 \\ & 0.001 \end{aligned}$		70	μA typ $\mu \mathrm{A}$ max μA typ	$\mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{S S}=-16.5 \mathrm{~V}$
ldo			Digital inputs $=0 \mathrm{~V}$ or V_{DD}		
Iss			Digital inputs $=0 \mathrm{~V}$ or V_{DD}		
			1	$\mu \mathrm{A}$ max	
$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$			$\pm 9 / \pm 22$	V min/V max	$\mathrm{GND}=0 \mathrm{~V}$

${ }^{1}$ Guaranteed by design; not subject to production test.

± 20 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-20 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
Channel-to-Channel Crosstalk	-87			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ see Figure 29
-3 dB Bandwidth	370			MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ;$ see Figure 32
Insertion Loss	-5.6			dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \\ & \text { see Figure } 32 \end{aligned}$
C_{s} (Off)	2.8			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$C_{\text {d }}$ (Off)	9			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{S}(\mathrm{On})$	13			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS					$\mathrm{V}_{\mathrm{DD}}=+22 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-22 \mathrm{~V}$
IdD	50			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
	70		110	$\mu \mathrm{A}$ max	
Iss	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
			1	$\mu \mathrm{A}$ max	
$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$			$\pm 9 / \pm 22$	V min/V max	GND $=0 \mathrm{~V}$

${ }^{1}$ Guaranteed by design; not subject to production test.
12 V SINGLE SUPPLY
$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
DYNAMIC CHARACTERISTICS ${ }^{1}$					
Transition Time, ttransition	165			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	215	260	300	ns max	$\mathrm{V}_{\mathrm{s}}=8 \mathrm{~V}$; see Figure 33
ton ($\overline{\mathrm{EN}}$)	200			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	245	305	350	ns max	$\mathrm{V}_{\mathrm{S}}=8 \mathrm{~V}$; see Figure 35
toff ($\overline{\mathrm{EN}}$)	130			ns typ	$\mathrm{RL}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	165	180	200	ns max	$\mathrm{V}_{\mathrm{s}}=8 \mathrm{~V}$; see Figure 35
Break-Before-Make Time Delay, to	85			ns typ	$\mathrm{RL}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
			45	$n \mathrm{nmin}$	$\mathrm{V}_{51}=\mathrm{V}_{52}=8 \mathrm{~V}$; see Figure 34
Charge Injection, Qinj	0			pC typ	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=6 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} \text {; } \\ & \text { see Figure } 36 \end{aligned}$
Off Isolation	-76			dB typ	$\mathrm{RL}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ see Figure 31
Channel-to-Channel Crosstalk	-87			dB typ	$\begin{aligned} & \mathrm{RL}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \\ & \text { see Figure } 29 \end{aligned}$
-3 dB Bandwidth	260			MHz typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ;$ see Figure 32
Insertion Loss	-9			dB typ	$\begin{aligned} & \mathrm{RL}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \\ & \text { see Figure } 32 \end{aligned}$
C_{s} (Off)	3			pF typ	$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
C_{D} (Off)	10			pF typ	$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{S}(\mathrm{On})$	14			pF typ	$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS					$\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}$
ldo	40			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
	50		65	$\mu \mathrm{A}$ max	
$V_{D D}$			9/40	V min/V max	$\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

${ }^{1}$ Guaranteed by design; not subject to production test.

36 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 4.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
DIGITAL INPUTS					
Input High Voltage, $\mathrm{V}_{\text {INH }}$			2.0	\checkmark min	
Input Low Voltage, $\mathrm{V}_{\text {INL }}$			0.8	V max	
Input Current, $\mathrm{l}_{\text {INL }}$ or $\mathrm{l}_{\mathrm{INH}}$	0.002			$\mu \mathrm{A}$ typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or V_{DD}
			± 0.1	$\mu \mathrm{A}$ max	
Digital Input Capacitance, $\mathrm{Cl}_{\text {IN }}$	3			pF typ	
DYNAMIC CHARACTERISTICS ${ }^{1}$					
Transition Time, ttransition	155			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	200	215	230	ns max	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}$; see Figure 33
ton ($\overline{\mathrm{EN}}$)	180			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	215	235	250	ns max	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}$; see Figure 35
toff ($\overline{\mathrm{EN}}$)	150			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	190	190	190	ns max	$\mathrm{V}_{\mathrm{S}}=18 \mathrm{~V}$; see Figure 35
Break-Before-Make Time Delay, to	50			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
			25	ns min	$\mathrm{V}_{51}=\mathrm{V}_{s 2}=18 \mathrm{~V}$; see Figure 34
Charge Injection, Qin	0.5			pC typ	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{R}_{\mathrm{s}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ;$ see Figure 36
Off Isolation	-76			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ see Figure 31
Channel-to-Channel Crosstalk	-87			dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; } \\ & \text { see Figure } 29 \end{aligned}$
-3 dB Bandwidth	275			MHz typ	$\mathrm{RL}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ;$ see Figure 32
Insertion Loss	-6.2			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ see Figure 32
C_{s} (Off)	2.8			pF typ	$\mathrm{V}_{\mathrm{S}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
C_{D} (Off)	9			pF typ	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{\text {S }}(\mathrm{On})$	13			pF typ	$\mathrm{V}_{\mathrm{s}}=18 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS Ido	80100				$\mathrm{V}_{\mathrm{DD}}=39.6 \mathrm{~V}$
				$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
			130	$\mu \mathrm{A}$ max	
$V_{D D}$			9/40	V min/V max	$\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\text {ss }}=0 \mathrm{~V}$

${ }^{1}$ Guaranteed by design; not subject to production test.

CONTINUOUS CURRENT PER CHANNEL, Sx OR Dx
Table 5. ADG5233

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit
CONTINUOUS CURRENT, Sx OR Dx				
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-15 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	24	16	11	mA maximum
LFCSP ($\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	42	26.5	15	mA maximum
$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-20 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	26	17	11	mA maximum
LFCSP ($\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	46	28	15	mA maximum
$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	17	12	7.7	mA maximum
LFCSP ($\theta_{\text {JA }}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	24	17	11	mA maximum
$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	25	17	11	mA maximum
LFCSP ($\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	45	28	15	mA maximum

Table 6. ADG5234

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125{ }^{\circ} \mathrm{C}$	Unit
CONTINUOUS CURRENT, Sx OR Dx				
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-15 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	21	15	10	mA maximum
LFCSP ($\theta_{\mathrm{JA}}=30.4{ }^{\circ} \mathrm{C} / \mathrm{W}$)	38	24	14	mA maximum
$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-20 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	22	15	10	mA maximum
LFCSP ($\theta_{\mathrm{JA}}=30.4{ }^{\circ} \mathrm{C} / \mathrm{W}$)	41	26	15	mA maximum
$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$				
TSSOP ($\theta_{\text {JA }}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	15	11	7	mA maximum
LFCSP ($\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	22	16	11	mA maximum
$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$				
TSSOP ($\theta_{\text {JA }}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	22	15	10	mA maximum
LFCSP ($\theta_{\mathrm{JA}}=30.4{ }^{\circ} \mathrm{C} / \mathrm{W}$)	40	26	15	mA maximum

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 7.

Parameter	Rating
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	48 V
VDD to GND	-0.3 V to +48 V
$V_{\text {ss }}$ to GND	+0.3 V to -48 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	$V_{S S}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or }$ 30 mA , whichever occurs first
Peak Current, Sx or Dx Pins ADG5233	76 mA (pulsed at 1 ms , 10% duty cycle maximum)
ADG5234	67 mA (pulsed at 1 ms , 10\% duty cycle maximum)
Continuous Current, Sx or Dx ${ }^{2}$	Data + 15\%
Temperature Range	
Operating	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Thermal Impedance, θ_{JA}	
16-Lead TSSOP (4-Layer Board)	$112.6^{\circ} \mathrm{C} / \mathrm{W}$
20-Lead TSSOP (4-Layer Board)	$143{ }^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP (4-Layer Board)	$30.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
20-Lead LFCSP (4-Layer Board)	$30.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature, Pb Free	$260(+0 /-5)^{\circ} \mathrm{C}$
Human Body Model (HBM) ESD	
Input/Output Port to Supplies	8 kV
Input/Output Port to Input/Output Port	2 kV
All Other Pins	8 kV

[^0]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.
Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 3. ADG5233 TSSOP Pin Configuration

Figure 4. ADG5233 LFCSP_WQ Pin Configuration

Table 8. ADG5233 Pin Function Descriptions

Pin No.			
TSSOP	LFCSP_WQ	Mnemonic	Description
1	15	VDD	Most Positive Power Supply Potential.
2	16	S1A	Source Terminal 1A. This pin can be an input or an output.
3	1	D1	Drain Terminal 1. This pin can be an input or an output.
4	2	S1B	Source Terminal 1B. This pin can be an input or an output.
5	3	S2B	Source Terminal 2B. This pin can be an input or an output.
6	4	D2	Drain Terminal 2. This pin can be an input or an output.
7	5	S2A	Source Terminal 2A. This pin can be an input or an output.
8	6	IN2	Logic Control Input 2.
9	7	IN3	Logic Control Input 3.
10	8	S3A	Source Terminal 3A. This pin can be an input or an output.
11	9	D3	Drain Terminal 3. This pin can be an input or an output.
12	10	S3B	Source Terminal 3B. This pin can be an input or an output. 13
	11	Vost Negative Power Supply Potential. In single-supply applications, this pin can be connected to	
14	12	EN	ground. Active Low Digital Input. When high, the device is disabled and all switches are off. When low, INx logic inputs determine the on switches.
15	13	IN1	Logic Control Input 1.
16	14	GND	Ground (0 V) Reference.

Table 9. ADG5233 Truth Table

$\overline{\mathbf{E N}}$	$\mathbf{I N x}$	SxA	SxB
1	X^{1}	Off	Off
0	0	Off	On
0	1	On	Off

[^1]

Figure 5. ADG5234 TSSOP Pin Configuration

NOTES

1. EXPOSED PAD TIED TO SUBSTRATE, $\mathrm{V}_{\text {SS }}$.
Figure 6. ADG5234 LFCSP_WQ Pin Configuration

Table 10. ADG5234 Pin Function Descriptions

Pin No.			
TSSOP	LFCSP_WQ	Mnemonic	Description
1	19	IN1	Logic Control Input 1.
2	20	S1A	Source Terminal 1A. This pin can be an input or an output.
3	1	D1	Drain Terminal 1. This pin can be an input or an output.
4	2	S1B	Source Terminal 1B. This pin can be an input or an output.
5	3	VSS	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to
		ground.	
6	4	GND	Ground (0 V) Reference.
7	5	S2B	Source Terminal 2B. This pin can be an input or an output.
8	6	D2	Drain Terminal 2. This pin can be an input or an output.
9	7	S2A	Source Terminal 2A. This pin can be an input or an output.
10	8	IN2	Logic Control Input 2.
11	9	IN3	Logic Control Input 3.
12	10	S3A	Source Terminal 3A. This pin can be an input or an output.
13	11	D3	Drain Terminal 3. This pin can be an input or an output.
14	12	S3B	Source Terminal 3B. This pin can be an input or an output.
15	N/A	NC	No Connect. This pin is open.
16	13	VDD	Most Positive Power Supply Potential.
17	14	S4B	Source Terminal 4B. This pin can be an input or an output.
18	15	D4	Drain Terminal 4. This pin can be an input or an output.
19	16	S4A	Source Terminal 4A. This pin can be an input or an output.
20	17	IN4	Logic Control Input 4.
N/A	18	EN	Active Low Digital Input. When high, the device is disabled and all switches are off. When low, INx
		Iogic inputs determine the on switches.	
N/A	21	EP	Exposed Pad. The exposed pad is connected internally. For increased reliability of the solder joints

Table 11. ADG5234 Truth Table

$\mathbf{I N x}$	SxA	SxB
0	Off	On
1	On	Off

Figure 7. On Resistance as a Function of $V_{S}, V_{D}(\pm 20$ V Dual Supply)

Figure 8. On Resistance as a Function of $V_{S}, V_{D}(\pm 15$ V Dual Supply)

Figure 9. On Resistance as a Function of V_{S}, V_{D} (12 V Single Supply)

Figure 10. On Resistance as a Function of V_{S}, V_{D} (36 V Single Supply)

Figure 11. On Resistance as a Function of $V_{s}\left(V_{D}\right)$ for Different Temperatures, ± 15 V Dual Supply

Figure 12. On Resistance as a Function of $V_{s}\left(V_{D}\right)$ for Different Temperatures, ± 20 V Dual Supply

Figure 13. On Resistance as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, 12 V Single Supply

Figure 14. On Resistance as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, 36 V Single Supply

Figure 15. Leakage Currents as a Function of Temperature, ± 15 V Dual Supply

Figure 16. Leakage Currents as a Function of Temperature, ± 20 V Dual Supply

Figure 17. Leakage Currents as a Function of Temperature, 12 V Single Supply

Figure 18. Leakage Currents as a Function of Temperature, 36 V Single Supply

Figure 19. Off Isolation vs. Frequency, ± 15 V Dual Supply

Figure 20. Crosstalk vs. Frequency, ± 15 V Dual Supply

Figure 21. Charge Injection vs. Source Voltage, Source to Drain

Figure 22. ACPSRR vs. Frequency, ± 15 V Dual Supply

Figure 23. Bandwidth

Figure 24. $t_{\text {tRANsition }}$ Times vs. Temperature

Figure 25. Capacitance vs. Source Voltage, ± 15 V Dual Supply

TEST CIRCUITS

Figure 26. On Leakage

Figure 27. On and Off Leakage On and Off Leakage (ADG5234 TSSOP)

Figure 28. On Resistance

Figure 29. Channel-to-Channel Crosstalk

Figure 30. Off Leakage

Figure 31. Off Isolation

Figure 32. Bandwidth

Figure 33. Switching Timing

Figure 34. Break-Before-Make Delay, t_{D}

Figure 35. Enable Delay, $t_{\text {ON }}(\overline{E N}), t_{\text {OFF }}(\overline{E N})$

Figure 36. Charge Injection

TERMINOLOGY

IdD

Idd represents the positive supply current.
Iss
Iss represents the negative supply current.
V_{D}, V_{s}
V_{D} and V_{s} represent the analog voltage on Terminal Dx and Terminal Sx , respectively.
Ron
Ron is the ohmic resistance between Terminal Dx and Terminal Sx.
Δ Ron
Δ Ron represents the difference between the Ron of any two channels.
$\mathrm{Refat}_{\text {(on) }}$
The difference between the maximum and minimum value of on resistance as measured over the specified analog signal range is represented by $\mathrm{R}_{\mathrm{flat} \text { (on). }}$.

I_{s} (Off)

I_{s} (Off) is the source leakage current with the switch off.
I_{D} (Off)
I_{D} (Off) is the drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}(\mathrm{On}), \mathrm{If}_{\mathrm{s}}(\mathrm{On})$
$\mathrm{I}_{\mathrm{D}}(\mathrm{On})$ and $\mathrm{Is}_{\mathrm{s}}(\mathrm{On})$ represent the channel leakage currents with the switch on.
$\mathrm{V}_{\text {int }}$
$\mathrm{V}_{\text {INL }}$ is the maximum input voltage for Logic 0 .
$\mathrm{V}_{\text {INH }}$
$\mathrm{V}_{\mathrm{INH}}$ is the minimum input voltage for Logic 1 .
$\mathrm{I}_{\mathrm{INL}}, \mathrm{I}_{\mathrm{INH}}$
$\mathrm{I}_{\text {INL }}$ and $\mathrm{I}_{\text {INH }}$ represent the low and high input currents of the digital inputs.
C_{D} (Off)
C_{D} (Off) represents the off switch drain capacitance, which is measured with reference to ground.
C_{s} (Off)
C_{s} (Off) represents the off switch source capacitance, which is measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{\mathrm{s}}(\mathrm{On})$
$\mathrm{C}_{\mathrm{D}}(\mathrm{On})$ and $\mathrm{C}_{S}(\mathrm{On})$ represent on switch capacitances, which are measured with reference to ground.
C_{IN}
C_{IN} represents digital input capacitance.
ton $^{(\overline{\mathrm{EN}})}$
ton (EN) represents the delay time between the 50% and 90% points of the digital input and switch on condition.
$\mathbf{t o f f}^{\mathbf{~ (E N})}$
toff $(\overline{\mathrm{EN}})$ represents the delay time between the 50% and 90% points of the digital input and switch off condition.
$\mathbf{t}_{\text {TRansition }}$
Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

t_{D}

$t_{\text {D }}$ represents the off time measured between the 80% point of both switches when switching from one address state to another.

Off Isolation

Off isolation is a measure of unwanted signal coupling through an off channel.

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

Crosstalk

Crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

Bandwidth is the frequency at which the output is attenuated by 3 dB .

On Response

On response is the frequency response of the on switch.

AC Power Supply Rejection Ratio (ACPSRR)

ACPSRR is a measure of the ability of a part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of $0.62 \mathrm{~V} \mathrm{p-p}$. The ratio of the amplitude of the signal on the output to the amplitude of the modulation is the ACPSRR.

TRENCH ISOLATION

In the ADG5233/ADG5234, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction isolated switches, are eliminated, and the result is a completely latch-up proof switch.
In junction isolation, the N and P wells of the PMOS and NMOS transistors form a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode can become forward-biased. A silicon controlled rectifier (SCR) type circuit is formed by the two transistors causing a significant amplification of the current that, in turn, leads to latch-up. With trench isolation, this diode is removed, and the result is a latch-up proof switch.

Figure 37. Trench Isolation

ADG5233/ADG5234

APPLICATIONS INFORMATION

The low capacitance latch-up immune family of switches and multiplexers provide a robust solution for instrumentation, industrial, automotive, aerospace, and other harsh environments that are prone to latch-up, which is an undesirable high current state that can lead to device failure and persists until the power supply is turned off.

The ADG5233/ADG5234 high voltage switches allow singlesupply operation from 9 V to 40 V and dual supply operation from $\pm 9 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$.

OUTLINE DIMENSIONS

Figure 38. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.

Figure 39. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ] $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body, Very Very Thin Quad (CP-16-17)
Dimensions shown in millimeters

Figure 40. 20-Lead Thin Shrink Small Outline Package [TSSOP]
($R U-20$)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-wGGD.

Figure 41. 20-LEAD LEAD FRAME CHIP SCALE PACKAGE [LFCSP_WQ]

$$
4 \mathrm{~mm} \times 4 \mathrm{~mm} \text { BODY, VERY VERY THIN QUAD }
$$

(CP-20-8)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Description	$\overline{\text { EN }}$ Pin	Package Option
ADG5233BRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package $[$ TSSOP $]$	Yes	RU-16
ADG5233BRUZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package $[$ TSSOP $]$	Yes	RU-16
ADG5233BCPZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	Yes	CP-16-17
ADG5234BRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Lead Thin Shrink Small Outline Package $[T S S O P]$	No	RU-20
ADG5234BRUZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Lead Thin Shrink Small Outline Package $[$ TSSOP $]$	No	RU-20
ADG5234BCPZ-RL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	20-Lead Lead Frame Chip Scale Package [LFCSP_WQ $]$	Yes	CP-20-8

${ }^{1} Z=$ RoHS Compliant Part.

[^0]: ${ }^{1}$ Overvoltages at the $\mathrm{INx}, \mathrm{Sx}$, and Dx pins are clamped by internal diodes. Limit current to the maximum ratings given.
 ${ }^{2}$ See Table 5 and Table 6.

[^1]: ${ }^{1} \mathrm{X}$ is don't care.

