FEATURES

Two 1.6 GHz , differential clock inputs 5 programmable dividers, 1 to 32, all integers
3 independent 1.2 GHz LVPECL outputs
Additive output jitter 225 fs rms
2 independent 800 MHz/250 MHz LVDS/CMOS clock outputs
Additive output jitter: 275 fs rms
Serial control port
Space-saving 48-lead LFCSP

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard)
Military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$)
Controlled manufacturing baseline
1 assembly/test site
1 fabrication site
Enhanced product change notification
Qualification data available on request

APPLICATIONS

Low jitter, low phase noise clock distribution
Clocking high speed ADCs, DACs, DDSs, DDCs, DUCs, MxFEs Defense and aerospace applications

GENERAL DESCRIPTION

The AD9512-EP provides a multi-output clock distribution in a design that emphasizes low jitter and low phase noise to maximize data converter performance. Other applications with demanding phase noise and jitter requirements can also benefit from this device.

There are five independent clock outputs. Three outputs are LVPECL (1.2 GHz), and two are selectable as either LVDS (800 MHz) or CMOS (250 MHz) levels.

Each output has a programmable divider that can be bypassed or set to divide by any integer up to 32 . The phase of one clock output relative to another clock output can be varied by means of a divider phase select function that serves as a coarse timing adjustment.

Figure 1.

The AD9512-EP is ideally suited for data converter clocking applications where maximum converter performance is achieved by encode signals with subpicosecond jitter.
The AD9512-EP is available in a 48 -lead LFCSP and can be operated from a single 3.3 V supply. The temperature range is $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Additional application and technical information can be found in the AD9512 data sheet.

Note that the delay block element that exists in Channel 4 of the AD9512 standard product is not supported in this AD9512-EP version.

[^0]
TABLE OF CONTENTS

Features 1
Enhanced Product Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Clock Inputs 3
Clock Outputs 3
Timing Characteristics 4
Clock Output Phase Noise 5
REVISION HISTORY
11/2018—Rev. 0 to Rev. A
Changes to Figure 2 13
Updated Outline Dimensions 18
Changes to Ordering Guide 18
Clock Output Additive Time Jitter 8
Serial Control Port 10
FUNCTION Pin 10
SYNC STATUS Pin 11
Power 11
Absolute Maximum Ratings 12
Thermal Resistance 12
Pin Configuration and Function Descriptions 13
Typical Performance Characteristics 15
Outline Dimensions 18
Ordering Guide 18

[^1]
SPECIFICATIONS

The typical value is given for $\mathrm{V}_{\mathrm{S}}=3.3 \mathrm{~V} \pm 5 \% ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{SET}}=4.12 \mathrm{k} \Omega$, unless otherwise noted. Minimum and maximum values are given over full V_{s} and $\mathrm{T}_{\mathrm{A}}\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ variation.

CLOCK INPUTS

Table 1.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
CLOCK INPUTS (CLK1, CLK2) ${ }^{1}$					
Input Frequency	0		1.6	GHz	
Input Sensitivity		150^{2}		mV p-p	Jitter performance can be improved with higher slew rates (greater swing).
Input Level			2^{3}	$\checkmark \mathrm{p}$-p	Larger swings turn on the protection diodes and can degrade jitter performance.
Input Common-Mode Voltage, $\mathrm{V}_{\text {cm }}$	1.45	1.6	1.7	V	Self-biased; enables ac coupling; at full temperature range.
	1.5	1.6	1.7	V	At $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Input Common-Mode Range, $\mathrm{V}_{\text {CMR }}$	1.3		1.8	V	With 200 mV p-p signal applied; dc-coupled.
Input Sensitivity, Single-Ended		150		mV p-p	CLK2 ac-coupled; CLK2B ac bypassed to RF ground.
Input Resistance	4.0	4.8	5.6	$k \Omega$	Self-biased.
Input Capacitance		2		pF	

${ }^{1}$ CLK1 and CLK2 are electrically identical; each can be used as either differential or single-ended input.
${ }^{2}$ With a 50Ω termination, this is -12.5 dBm .
${ }^{3}$ With a 50Ω termination, this is +10 dBm .

CLOCK OUTPUTS

Table 2.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
LVPECL CLOCK OUTPUTS OUT0, OUT1, OUT2; Differential Output Frequency Output High Voltage (V $\mathrm{V}_{\text {он }}$) Output Low Voltage (Vol) Output Differential Voltage (Vod)	$\begin{aligned} & V_{s}-1.22 \\ & V_{s}-2.10 \\ & 660 \end{aligned}$	$\begin{aligned} & V_{s}-0.98 \\ & V_{s}-1.80 \\ & 810 \end{aligned}$	$\begin{aligned} & 1200 \\ & V_{s}-0.93 \\ & V_{s}-1.67 \\ & 965 \end{aligned}$	MHz V V mV	$\begin{aligned} & \text { Termination }=50 \Omega \text { to } V_{s}-2 V \\ & \text { Output level } 0 \times 3 \mathrm{D}(0 \times 3 \mathrm{E})(0 \times 3 F)[3: 2]=10 \mathrm{~b} \\ & \text { See Figure } 10 \end{aligned}$
LVDS CLOCK OUTPUTS OUT3, OUT4; Differential Output Frequency Differential Output Voltage (VOD) Delta Vod Output Offset Voltage (Vos) Delta Vos Short-Circuit Current (IsA, IsB)	$\begin{aligned} & 250 \\ & \\ & 1.05 \\ & 1.125 \end{aligned}$	$\begin{aligned} & 360 \\ & \\ & 1.23 \\ & 1.23 \\ & \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & 800 \\ & 450 \\ & 25 \\ & 1.375 \\ & 1.375 \\ & 25 \\ & 24 \end{aligned}$	MHz mV mV V V mV mA	Termination $=100 \Omega$ differential; default Output level 0×40 (0×41)[2:1] $=01 \mathrm{~b}$ 3.5 mA termination current See Figure 11 At full temperature range $\text { At }-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}$ Output shorted to GND
CMOS CLOCK OUTPUTS OUT3, OUT4 Output Frequency Output Voltage High (Vон) Output Voltage Low (VoL)	Vs - 0.1		$\begin{aligned} & 250 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	Single-ended measurements; B outputs: inverted, termination open With 5 pF load each output; see Figure 12 At 1 mA load At 1 mA load

AD9512-EP

TIMING CHARACTERISTICS

Table 3.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
LVPECL Output Rise Time, $t_{\text {RP }}$ Output Fall Time, t_{FP}		$\begin{aligned} & 130 \\ & 130 \\ & \hline \end{aligned}$	$\begin{aligned} & 180 \\ & 180 \end{aligned}$	$\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \\ & \hline \end{aligned}$	Termination $=50 \Omega$ to $\mathrm{V}_{\mathrm{s}}-2 \mathrm{~V}$ Output level 0x3D (0x3E) (0x3F)[3:2] = 10b 20% to 80%, measured differentially 80% to 20%, measured differentially
PROPAGATION DELAY, tPECL, CLK-TO-LVPECL OUT ${ }^{1}$ Divide $=$ Bypass Divide $=2$ to 32 Variation with Temperature	$\begin{aligned} & 320 \\ & 335 \\ & 360 \\ & 375 \end{aligned}$	$\begin{aligned} & 490 \\ & 490 \\ & 545 \\ & 545 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 635 \\ & 635 \\ & 695 \\ & 695 \end{aligned}$	ps ps ps ps $\mathrm{ps} /{ }^{\circ} \mathrm{C}$	At full temperature range At $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ At full temperature range At $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
OUTPUT SKEW, LVPECL OUTPUTS OUT1 to OUT0 on Same Device, $\mathrm{t}_{\text {skp }}{ }^{2}$ OUT1 to OUT2 on Same Device, $\mathrm{t}_{\text {skp }}{ }^{2}$ OUT0 to OUT2 on Same Device, tskp ${ }^{2}$ All LVPECL OUT Across Multiple Devices, $\mathrm{t}_{\text {skP_AB }}{ }^{3}$ Same LVPECL OUT Across Multiple Devices, $\mathrm{t}_{\text {KKP_AB }}{ }^{3}$	$\begin{aligned} & 70 \\ & 15 \\ & 45 \end{aligned}$	$\begin{aligned} & 100 \\ & 45 \\ & 65 \end{aligned}$	$\begin{aligned} & 140 \\ & 80 \\ & 90 \\ & 275 \\ & 130 \end{aligned}$	$\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \\ & \mathrm{Ps} \\ & \mathrm{ps} \\ & \mathrm{ps} \end{aligned}$	
LVDS Output Rise Time, t_{RL} Output Fall Time, $t_{\text {fL }}$		$\begin{aligned} & 200 \\ & 210 \end{aligned}$	$\begin{aligned} & 350 \\ & 350 \end{aligned}$	$\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \\ & \hline \end{aligned}$	Termination $=100 \Omega$ differential Output level $0 \times 40(0 \times 41)$ [2:1] $=01 \mathrm{~b}$ 3.5 mA termination current 20% to 80%, measured differentially 80% to 20%, measured differentially
```PROPAGATION DELAY, tlvos, CLK-TO-LVDS OUT OUT3 to OUT4 Divide = Bypass Divide = 2 to 32 Variation with Temperature```	$\begin{aligned} & 0.97 \\ & 0.99 \\ & 1.02 \\ & 1.04 \end{aligned}$	$\begin{aligned} & 1.33 \\ & 1.33 \\ & 1.38 \\ & 1.38 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 1.59 \\ & 1.59 \\ & 1.64 \\ & 1.64 \end{aligned}$	ns   ns ns ns $\mathrm{ps} /{ }^{\circ} \mathrm{C}$	At full temperature range At $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$   At full temperature range At $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
OUTPUT SKEW, LVDS OUTPUTS   OUT3 to OUT4 on Same Device, $\mathrm{tskv}^{2}$   All LVDS OUTs Across Multiple Devices, tskv_AB ${ }^{3}$   Same LVDS OUT Across Multiple Devices, tskv_A 3	-85		$\begin{aligned} & +270 \\ & 450 \\ & 325 \end{aligned}$	$\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \\ & \mathrm{ps} \end{aligned}$	
CMOS   Output Rise Time, $\mathrm{t}_{\mathrm{R}}$ Output Fall Time, tfc		$\begin{aligned} & 681 \\ & 646 \end{aligned}$	$\begin{aligned} & 865 \\ & 992 \end{aligned}$	$\begin{aligned} & \text { ps } \\ & \text { ps } \end{aligned}$	$\begin{aligned} & \text { B outputs are inverted; termination = open } \\ & 20 \% \text { to } 80 \% ; C_{\text {LOAD }}=3 \mathrm{pF} \\ & 80 \% \text { to } 20 \% ; \text { CLOAD }^{2}=3 \mathrm{pF} \\ & \hline \end{aligned}$
PROPAGATION DELAY, tcmos, CLK-TO-CMOS OUT ${ }^{1}$   Divide $=$ Bypass   Divide $=2$ to 32   Variation with Temperature	$\begin{aligned} & 1.0 \\ & 1.02 \\ & 1.05 \\ & 1.07 \end{aligned}$	$\begin{aligned} & 1.39 \\ & 1.39 \\ & 1.44 \\ & 1.44 \\ & 1 \end{aligned}$	$\begin{aligned} & 1.71 \\ & 1.71 \\ & 1.76 \\ & 1.76 \end{aligned}$	ns ns ns ns $\mathrm{ps} /{ }^{\circ} \mathrm{C}$	At full temperature range At $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$   At full temperature range At $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
OUTPUT SKEW, CMOS OUTPUTS OUT3 to OUT4 on Same Device, $\mathrm{tskc}^{2}$ All CMOS OUT Across Multiple Devices, tskc_AB 3 Same CMOS OUT Across Multiple Devices, $\mathrm{t}_{\text {SKC_AB }}{ }^{3}$	-140	+145	$\begin{aligned} & +300 \\ & 650 \\ & 500 \end{aligned}$	$\begin{aligned} & \text { ps } \\ & \text { ps } \\ & \text { ps } \end{aligned}$	
LVPECL-TO-LVDS OUT Output Skew, tskP_v	0.73	0.92	1.14	ns	Everything the same; different logic type LVPECL to LVDS on same device
LVPECL-TO-CMOS OUT Output Skew, tskp c	0.87	1.14	1.43	ns	Everything the same; different logic type LVPECL to CMOS on same device


Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
LVDS-TO-CMOS OUT   Output Skew, tsk__					Everything the same; different logic type   LVDS to CMOS on same device

${ }^{1}$ The measurements are for CLK1. For CLK2, add approximately 25 ps .
${ }^{2}$ This is the difference between any two similar delay paths within a single device operating at the same voltage and temperature.
${ }^{3}$ This is the difference between any two similar delay paths across multiple devices operating at the same voltage and temperature.

## CLOCK OUTPUT PHASE NOISE

Table 4.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
CLK1-TO-LVPECL ADDITIVE PHASE NOISE					
CLK1 $=622.08 \mathrm{MHz}$, OUT $=622.08 \mathrm{MHz}$					Input slew rate $>1 \mathrm{~V} / \mathrm{ns}$
Divide Ratio = 1					
at 10 Hz Offset		-125		$\mathrm{dBc} / \mathrm{Hz}$	
at 100 Hz Offset		-132		$\mathrm{dBc} / \mathrm{Hz}$	
at 1 kHz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
at 10 kHz Offset		-148		$\mathrm{dBc} / \mathrm{Hz}$	
at 100 kHz Offset		-153		$\mathrm{dBc} / \mathrm{Hz}$	
>1 MHz Offset		-154		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=622.08 \mathrm{MHz}$, OUT $=155.52 \mathrm{MHz}$					
Divide Ratio $=4$					
at 10 Hz Offset		-128		$\mathrm{dBc} / \mathrm{Hz}$	
at 100 Hz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
at 1 kHz Offset		-148		$\mathrm{dBc} / \mathrm{Hz}$	
at 10 kHz Offset		-155		$\mathrm{dBc} / \mathrm{Hz}$	
at 100 kHz Offset		-161		$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset		-161		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=622.08 \mathrm{MHz}$, OUT $=38.88 \mathrm{MHz}$					
Divide Ratio $=16$					
at 10 Hz Offset		-135		$\mathrm{dBc} / \mathrm{Hz}$	
at 100 Hz Offset		-145		$\mathrm{dBc} / \mathrm{Hz}$	
at 1 kHz Offset		-158		$\mathrm{dBc} / \mathrm{Hz}$	
at 10 kHz Offset		-165		$\mathrm{dBc} / \mathrm{Hz}$	
at 100 kHz Offset		-165		$\mathrm{dBc} / \mathrm{Hz}$	
>1 MHz Offset		-166		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=491.52 \mathrm{MHz}$, OUT $=61.44 \mathrm{MHz}$					
Divide Ratio $=8$					
at 10 Hz Offset		-131		$\mathrm{dBc} / \mathrm{Hz}$	
at 100 Hz Offset		-142		$\mathrm{dBc} / \mathrm{Hz}$	
at 1 kHz Offset		-153		$\mathrm{dBc} / \mathrm{Hz}$	
at 10 kHz Offset		-160		$\mathrm{dBc} / \mathrm{Hz}$	
at 100 kHz Offset		-165		$\mathrm{dBc} / \mathrm{Hz}$	
$>1 \mathrm{MHz}$ Offset		-165		$\mathrm{dBc} / \mathrm{Hz}$	
CLK1 $=491.52 \mathrm{MHz}$, OUT $=245.76 \mathrm{MHz}$					
Divide Ratio $=2$					
at 10 Hz Offset		-125		$\mathrm{dBc} / \mathrm{Hz}$	
at 100 Hz Offset		-132		$\mathrm{dBc} / \mathrm{Hz}$	
at 1 kHz Offset		-140		$\mathrm{dBc} / \mathrm{Hz}$	
at 10 kHz Offset		-151		$\mathrm{dBc} / \mathrm{Hz}$	
at 100 kHz Offset		-157		$\mathrm{dBc} / \mathrm{Hz}$	
>1 MHz Offset		-158		$\mathrm{dBc} / \mathrm{Hz}$	



Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
CLK1 $=245.76 \mathrm{MHz}$, OUT $=122.88 \mathrm{MHz}$					
Divide Ratio $=2$					
at 10 Hz Offset		-118		$\mathrm{dBc} / \mathrm{Hz}$	
at 100 Hz Offset		-127		$\mathrm{dBC} / \mathrm{Hz}$	
at 1 kHz Offset		-137		$\mathrm{dBc} / \mathrm{Hz}$	
at 10 kHz Offset		-147		$\mathrm{dBC} / \mathrm{Hz}$	
at 100 kHz Offset		-154		$\mathrm{dBC} / \mathrm{Hz}$	
at 1 MHz Offset		-156		$\mathrm{dBC} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-158		$\mathrm{dBC} / \mathrm{Hz}$	
CLK1-TO-CMOS ADDITIVE PHASE NOISE					
CLK1 $=245.76 \mathrm{MHz}$, OUT $=245.76 \mathrm{MHz}$					
Divide Ratio = 1					
at 10 Hz Offset		-110		$\mathrm{dBC} / \mathrm{Hz}$	
at 100 Hz Offset		-121		$\mathrm{dBC} / \mathrm{Hz}$	
at 1 kHz Offset		-130		$\mathrm{dBC} / \mathrm{Hz}$	
at 10 kHz Offset		-140		$\mathrm{dBC} / \mathrm{Hz}$	
at 100 kHz Offset		-145		$\mathrm{dBC} / \mathrm{Hz}$	
at 1 MHz Offset		-149		$\mathrm{dBC} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-156		$\mathrm{dBC} / \mathrm{Hz}$	
CLK1 $=245.76 \mathrm{MHz}$, OUT $=61.44 \mathrm{MHz}$					
Divide Ratio $=4$					
at 10 Hz Offset		-122		$\mathrm{dBC} / \mathrm{Hz}$	
at 100 Hz Offset		-132		$\mathrm{dBC} / \mathrm{Hz}$	
at 1 kHz Offset		-143		$\mathrm{dBC} / \mathrm{Hz}$	
at 10 kHz Offset		-152		$\mathrm{dBC} / \mathrm{Hz}$	
at 100 kHz Offset		-158		$\mathrm{dBC} / \mathrm{Hz}$	
at 1 MHz Offset		-160		$\mathrm{dBC} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-162		$\mathrm{dBC} / \mathrm{Hz}$	
CLK1 $=78.6432 \mathrm{MHz}$, OUT $=78.6432 \mathrm{MHz}$					
Divide Ratio = 1					
at 10 Hz Offset		-122		$\mathrm{dBC} / \mathrm{Hz}$	
at 100 Hz Offset		-132		$\mathrm{dBC} / \mathrm{Hz}$	
at 1 kHz Offset		-140		$\mathrm{dBC} / \mathrm{Hz}$	
at 10 kHz Offset		-150		$\mathrm{dBC} / \mathrm{Hz}$	
at 100 kHz Offset		-155		$\mathrm{dBC} / \mathrm{Hz}$	
at 1 MHz Offset		-158		$\mathrm{dBC} / \mathrm{Hz}$	
$>10 \mathrm{MHz}$ Offset		-160		$\mathrm{dBC} / \mathrm{Hz}$	
CLK1 $=78.6432 \mathrm{MHz}$, OUT $=39.3216 \mathrm{MHz}$					
Divide Ratio $=2$					
at 10 Hz Offset		-128		$\mathrm{dBC} / \mathrm{Hz}$	
at 100 Hz Offset		-136		$\mathrm{dBC} / \mathrm{Hz}$	
at 1 kHz Offset		-146		$\mathrm{dBC} / \mathrm{Hz}$	
at 10 kHz Offset		-155		$\mathrm{dBC} / \mathrm{Hz}$	
at 100 kHz Offset		-161		$\mathrm{dBc} / \mathrm{Hz}$	
>1 MHz Offset		-162		$\mathrm{dBc} / \mathrm{Hz}$	

## CLOCK OUTPUT ADDITIVE TIME JITTER

Table 5.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
LVPECL OUTPUT ADDITIVE TIME JITTER					
CLK1 $=622.08 \mathrm{MHz}$		40		fs rms	$\mathrm{BW}=12 \mathrm{kHz}$ to $20 \mathrm{MHz}(\mathrm{OC}-12)$
Any LVPECL (OUT0 to OUT2) $=622.08 \mathrm{MHz}$ Divide Ratio = 1					
CLK1 $=622.08 \mathrm{MHz}$		55		fs rms	$\mathrm{BW}=12 \mathrm{kHz}$ to $20 \mathrm{MHz}(\mathrm{OC}-3)$
Any LVPECL (OUT0 to OUT2) $=155.52 \mathrm{MHz}$ Divide Ratio $=4$					
CLK1 $=400 \mathrm{MHz}$		215		fs rms	Calculated from SNR of ADC method; $\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{in}}=170 \mathrm{MHz}$
Any LVPECL (OUT0 to OUT2) $=100 \mathrm{MHz}$ Divide Ratio = 4					
CLK1 $=400 \mathrm{MHz}$		215		fs rms	Calculated from SNR of ADC method; $\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$
Any LVPECL (OUT0 to OUT2) $=100 \mathrm{MHz}$					
Divide Ratio $=4$					
Other LVPECL $=100 \mathrm{MHz}$					Interferer(s)
Both LVDS (OUT3, OUT4) $=100 \mathrm{MHz}$					Interferer(s)
CLK1 $=400 \mathrm{MHz}$		222		fs rms	Calculated from SNR of ADC method; $\mathrm{fc}_{\mathrm{c}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{in}}=170 \mathrm{MHz}$
Any LVPECL (OUT0 to OUT2) $=100 \mathrm{MHz}$					
Divide Ratio = 4					
Other LVPECL $=50 \mathrm{MHz}$					Interferer(s)
Both LVDS (OUT3, OUT4) $=50 \mathrm{MHz}$					Interferer(s)
CLK1 $=400 \mathrm{MHz}$		225		fs rms	Calculated from SNR of ADC method; $\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{in}}=170 \mathrm{MHz}$
Any LVPECL (OUT0 to OUT2) $=100 \mathrm{MHz}$					
Divide Ratio = 4					
Other LVPECL $=50 \mathrm{MHz}$					Interferer(s)
Both CMOS (OUT3, OUT4) $=50 \mathrm{MHz}$ (B Outputs Off)					Interferer(s)
$\text { CLK1 }=400 \mathrm{MHz}$		225		fs rms	Calculated from SNR of ADC method; $\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$
Any LVPECL (OUT0 to OUT2) $=100 \mathrm{MHz}$					
Divide Ratio = 4					
Other LVPECL $=50 \mathrm{MHz}$					Interferer(s)
Both CMOS (OUT3, OUT4) = 50 MHz (B Outputs On)					Interferer(s)
LVDS OUTPUT ADDITIVE TIME JITTER					
CLK1 $=400 \mathrm{MHz}$		264		fs rms	Calculated from SNR of ADC method; $\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$
LVDS (OUT3) $=100 \mathrm{MHz}$					
Divide Ratio $=4$					
CLK1 $=400 \mathrm{MHz}$		319		fs rms	Calculated from SNR of ADC method; $\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$
LVDS (OUT4) $=100 \mathrm{MHz}$					
Divide Ratio $=4$					
CLK1 $=400 \mathrm{MHz}$		395		fs rms	Calculated from SNR of ADC method; $\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$
LVDS (OUT3) $=100 \mathrm{MHz}$					
Divide Ratio $=4$					
LVDS (OUT4) $=50 \mathrm{MHz}$					Interferer(s)
All LVPECL $=50 \mathrm{MHz}$					Interferer(s)


Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
CLK1 $=400 \mathrm{MHz}$		395		fs rms	Calculated from SNR of ADC method; $\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$
LVDS (OUT4) $=100 \mathrm{MHz}$					
Divide Ratio $=4$					
LVDS (OUT3) $=50 \mathrm{MHz}$					Interferer(s)
All LVPECL $=50 \mathrm{MHz}$					Interferer(s)
CLK1 $=400 \mathrm{MHz}$		367		fs rms	Calculated from SNR of ADC method; $\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{iN}}=170 \mathrm{MHz}$
LVDS (OUT3) $=100 \mathrm{MHz}$					
Divide Ratio $=4$					
CMOS (OUT4) $=50 \mathrm{MHz}$ (B Outputs Off)					Interferer(s)
All LVPECL $=50 \mathrm{MHz}$					Interferer(s)
CLK1 $=400 \mathrm{MHz}$		367		fs rms	Calculated from SNR of ADC method; $\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{is}}=170 \mathrm{MHz}$
LVDS (OUT4) $=100 \mathrm{MHz}$					
Divide Ratio $=4$					
CMOS (OUT3) $=50 \mathrm{MHz}$ (B Outputs Off)					Interferer(s)
All LVPECL $=50 \mathrm{MHz}$					Interferer(s)
CLK1 $=400 \mathrm{MHz}$		548		fs rms	Calculated from SNR of ADC method; $\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$
LVDS (OUT3) $=100 \mathrm{MHz}$					
Divide Ratio $=4$					
CMOS (OUT4) $=50 \mathrm{MHz}$ (B Outputs On)					Interferer(s)
All LVPECL $=50 \mathrm{MHz}$					Interferer(s)
CLK1 $=400 \mathrm{MHz}$		548		fs rms	Calculated from SNR of ADC method; $\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$
LVDS (OUT4) $=100 \mathrm{MHz}$					
Divide Ratio $=4$					
CMOS (OUT3) $=50 \mathrm{MHz}$ (B Outputs On)					Interferer(s)
All LVPECL $=50 \mathrm{MHz}$					Interferer(s)
CMOS OUTPUT ADDITIVE TIME JITTER					
CLK1 $=400 \mathrm{MHz}$		275		fs rms	Calculated from SNR of ADC method; $\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$
Both CMOS (OUT3, OUT4) $=100 \mathrm{MHz}$ (B Output On) Divide Ratio = 4					
CLK1 $=400 \mathrm{MHz}$		400		fs rms	Calculated from SNR of ADC method; $\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{in}}=170 \mathrm{MHz}$
CMOS (OUT3) $=100 \mathrm{MHz}$ (B Output On)					
Divide Ratio $=4$					
All LVPECL $=50 \mathrm{MHz}$					Interferer(s)
LVDS (OUT4) $=50 \mathrm{MHz}$					Interferer(s)
CLK1 $=400 \mathrm{MHz}$		374		fs rms	Calculated from SNR of ADC method; $\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$
CMOS (OUT3) $=100 \mathrm{MHz}$ (B Output On)					
Divide Ratio $=4$					
All LVPECL $=50 \mathrm{MHz}$					Interferer(s)
CMOS (OUT4) $=50 \mathrm{MHz}$ (B Output Off)					Interferer(s)
CLK1 $=400 \mathrm{MHz}$		555		fs rms	Calculated from SNR of ADC method; $\mathrm{f}_{\mathrm{C}}=100 \mathrm{MHz}$ with $\mathrm{A}_{\mathrm{IN}}=170 \mathrm{MHz}$
CMOS (OUT3) $=100 \mathrm{MHz}$ (B Output On)					
Divide Ratio $=4$					
All LVPECL $=50 \mathrm{MHz}$					Interferer(s)
CMOS (OUT4) $=50 \mathrm{MHz}$ (B Output On)					Interferer(s)

## AD9512-EP

## SERIAL CONTROL PORT

Table 6.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
CSB, SCLK (INPUTS)   Input Logic 1 Voltage Input Logic 0 Voltage Input Logic 1 Current Input Logic 0 Current Input Capacitance	2.0	110 2	$0.8$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \mathrm{pF} \end{aligned}$	CSB and SCLK have $30 \mathrm{k} \Omega$ internal pull-down resistors
SDIO (WHEN INPUT) Input Logic 1 Voltage Input Logic 0 Voltage Input Logic 1 Current Input Logic 0 Current Input Capacitance	2.0	$\begin{aligned} & 10 \\ & 10 \\ & 2 \end{aligned}$	0.8	V   V   nA   nA   pF	
SDIO, SDO (OUTPUTS) Output Logic 1 Voltage Output Logic 0 Voltage	2.7		0.4	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	
TIMING   Clock Rate (SCLK, 1/tscık)   Pulse Width High, tpwh   Pulse Width Low, tpw SDIO to SCLK Setup, tos SCLK to SDIO Hold, toh SCLK to Valid SDIO and SDO, tov CSB to SCLK Setup and Hold, $\mathrm{t}_{\mathrm{s}}, \mathrm{t}_{\mathrm{H}}$ CSB Minimum Pulse Width High, tpwH	16 16 2 1 6 2 3		25	MHz   ns	

## FUNCTION PIN

Table 7.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
INPUT CHARACTERISTICS					The FUNCTION pin has a $30 \mathrm{k} \Omega$ internal pull-down resistor. This pin is normally held high. Do not let input float.
Logic 1 Voltage	2.0			V	
Logic 0 Voltage			0.8	V	
Logic 1 Current		110		$\mu \mathrm{A}$	
Logic 0 Current			1	$\mu \mathrm{A}$	
Capacitance		2		pF	
RESET TIMING					
Pulse Width Low	50			ns	
SYNC TIMING					
Pulse Width Low	1.5			High speed clock cycles	High speed clock is CLK1 or CLK2, whichever is being used for distribution.

## SYNC STATUS PIN

Table 8.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
OUTPUT CHARACTERISTICS					
$\quad$ Output Voltage High (VoH)	2.7			V	
Output Voltage Low (VoL)			0.4	V	

## POWER

Table 9.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
POWER-UP DEFAULT MODE POWER DISSIPATION		550	600	mW	Power-up default state; does not include power dissipated in output load resistors. No clock.
POWER DISSIPATION			800	mW	All outputs on. Three LVPECL outputs at 800 MHz , two CMOS out at 62 MHz ( 5 pF load). Does not include power dissipated in external resistors.
			850	mW	All outputs on. Three LVPECL outputs at 800 MHz , two CMOS out at 125 MHz ( 5 pF load). Does not include power dissipated in external resistors.
Full Sleep Power-Down		35	60	mW	Maximum sleep is entered by setting $0 \times 0 \mathrm{~A}[1: 0]=01 \mathrm{~b}$ and $0 \times 58[4]=1$ b. This powers off all band gap references. Does not include power dissipated in terminations.
Power-Down (PDB)		60	80	mW	Set FUNCTION pin for PDB operation by setting $0 \times 58[6: 5]=11 \mathrm{~b}$. Pull PDB low. Does not include power dissipated in terminations.
POWER DELTA					
CLK1, CLK2 Power-Down	10	15	25	mW	
Divider, DIV 2 to 32 to Bypass	23	27	33	mW	For each divider.
LVPECL Output Power-Down (PD2, PD3)	50	65	75	mW	For each output. Does not include dissipation in termination (PD2 only).
LVDS Output Power-Down	80	92	110	mW	For each output.
CMOS Output Power-Down (Static)	56	70	85	mW	For each output. Static (no clock).
CMOS Output Power-Down (Dynamic)	115	150	190	mW	For each CMOS output, single-ended. Clocking at 62 MHz with 5 pF load.
CMOS Output Power-Down (Dynamic)	125	165	210	mW	For each CMOS output, single-ended. Clocking at 125 MHz with 5 pF load.

## ABSOLUTE MAXIMUM RATINGS

Table 10.

Parameter	With   Respect   to	Rating
VS	GND	-0.3 V to +3.6 V
DSYNC/DSYNCB	GND	-0.3 V to $\mathrm{V}_{\mathrm{s}}+0.3 \mathrm{~V}$
RSET	GND	-0.3 V to $\mathrm{V}_{\mathrm{s}}+0.3 \mathrm{~V}$
CLK1, CLK1B, CLK2, CLK2B	GND	-0.3 V to $\mathrm{V}_{\mathrm{s}}+0.3 \mathrm{~V}$
CLK1	CLK1B	-1.2 V to +1.2 V
CLK2	CLK2B	-1.2 V to +1.2 V
SCLK, SDIO, SDO, CSB	GND	-0.3 V to $\mathrm{V}_{\mathrm{s}}+0.3 \mathrm{~V}$
OUT0, OUT1, OUT2, OUT3,	GND	-0.3 V to $\mathrm{V}_{\mathrm{s}}+0.3 \mathrm{~V}$
$\quad$ OUT4		
FUNCTION	GND	-0.3 V to $\mathrm{V}_{\mathrm{s}}+0.3 \mathrm{~V}$
SYNC STATUS	GND	-0.3 V to $\mathrm{V}_{\mathrm{s}}+0.3 \mathrm{~V}$
Junction Temperature		$150^{\circ} \mathrm{C}$
Storage Temperature Range		$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (10 sec)		$300^{\circ} \mathrm{C}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

## THERMAL RESISTANCE

Table 11. Thermal Resistance ${ }^{1}$

Package Type	$\theta_{\mathrm{JA}}$	Unit
CP-48-13	28.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Thermal impedance measurements were taken on a 4-layer board in still air, in accordance with EIA/JESD51-7.

## ESD CAUTION

	ESD (electrostatic discharge) sensitive device.   Charged devices and circuit boards can discharge   without detection. Although this product features   patented or proprietary protection circuitry, damage   may occur on devices subjected to high energy ESD.   Therefore, proper ESD precautions should be taken to   avoid performance degradation or loss of functionality.

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



## NOTES

1. DNC = DO NOT CONNECT TO THIS PIN.
2. THE EXPOSED PADDLE ON THIS PACKAGE IS AN ELECTRICAL CONNECTION AS WELL AS A THERMAL ENHANCEMENT. FOR THE DEVICE TO FUNCTION PROPERLY, THE PADDLE MUST BE ATTACHED TO GROUND, GND.

Figure 2. Pin Configuration
Table 12. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	DSYNC	Detect Sync. Used for multichip synchronization.
2	DSYNCB	Detect Sync Complement. Used for multichip synchronization.
$3,4,6,9,18$,	VS	Power Supply (3.3 V).
$22,23,25,28$,		
$29,32,33,36$,		
$39,40,44,47$,		
48		
5	DNC	Do Not Connect. Do not connect to this pin.
7	CLK2	Clock Input.
8	CLK2B	Complementary Clock Input. Used in conjunction with CLK2.
10	CLK1	Clock Input.
11	CLK1B	Complementary Clock Input. Used in conjunction with CLK1.
12	FUNCTION	Multipurpose Input. Can be programmed as a reset (RESETB), sync (SYNCB), or power-down (PDB) pin.
13	SYNC STATUS	Output Used to Monitor the Status of Multichip Synchronization.
14	SCLK	Serial Data Clock.
15	SDIO	Serial Data I/O.
16	SDO	Serial Data Output.
17	CSB	Serial Port Chip Select.
$19,24,37$,	GND	Ground.
$38,43,46$		
20	OUT2B	Complementary LVPECL Output.
21	OUT2	LVPECL Output.
26	OUT1B	Complementary LVPECL Output.
27	OUT1	LVPECL Output.
30	OUT4B	Complementary LVDS/Inverted CMOS Output.
31	OUT4	LVDS/CMOS Output.
34	OUT3B	Complementary LVDS/Inverted CMOS Output.

\(\left.\begin{array}{l|l|l}\hline Pin No. \& Mnemonic \& Description <br>
\hline 35 \& OUT3 \& LVDS/CMOS Output. <br>
41 \& OUTOB \& Complementary LVPECL Output. <br>

42 \& OUTO \& LVPECL Output.\end{array}\right]\)| Current Set Resistor to Ground. Nominal value $=4.12 \mathrm{k} \Omega$. |
| :--- |
| 45 |

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 3. Power vs. Frequency-LVPECL, LVDS


Figure 4. CLK1 Smith Chart (Evaluation Board)


Figure 5. Power vs. Frequency-LVPECL, CMOS


Figure 6. CLK2 Smith Chart (Evaluation Board)


Figure 7. LVPECL Differential Output at 800 MHz


Figure 8. LVDS Differential Output at 800 MHz


Figure 9. CMOS Single-Ended Output at 250 MHz with 10 pF Load


Figure 10. LVPECL Differential Output Swing vs. Frequency


Figure 11. LVDS Differential Output Swing vs. Frequency


Figure 12. CMOS Single-Ended Output Swing vs. Frequency and Load


Figure 13. Additive Phase Noise—LVPECL DIV1, 245.76 MHz Distribution Section Only


Figure 14. Additive Phase Noise—LVDS DIV1, 245.76 MHz


Figure 15. Additive Phase Noise—CMOS DIV1, 245.76 MHz


Figure 16. Additive Phase Noise—LVPECL DIV1, 622.08 MHz


Figure 17. Additive Phase Noise—LVDS DIV2, 122.88 MHz


Figure 18. Additive Phase Noise-CMOS DIV4, 61.44 MHz

## AD9512-EP

## OUTLINE DIMENSIONS



COMPLIANT TO JEDEC STANDARDS MO-220-WKKD-4.
Figure 19. 48-Lead Lead Frame Chip Scale Package [LFCSP]
$7 \mathrm{~mm} \times 7 \mathrm{~mm}$ Body and 0.75 mm Package Height
(CP-48-13)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
AD9512UCPZ-EP	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 -Lead Lead Frame Chip Scale Package [LFCSP]	CP-48-13
AD9512UCPZ-EP-R7	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 -Lead Lead Frame Chip Scale Package [LFCSP]	CP-48-13

${ }^{1} Z=$ RoHS Compliant Part.


[^0]:    One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2012-2018 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

[^1]:    3/2012-Revision 0: Initial Version

