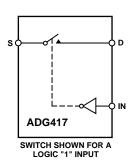


LC²MOS Precision Mini-DIP Analog Switch


ADG417

FEATURES

44 V Supply Maximum Ratings V_{SS} to V_{DD} Analog Signal Range Low On Resistance (<35 Ω) Ultralow Power Dissipation (<35 μ W) Fast Switching Times t_{ON} (160 ns max) t_{OFF} (100 ns max) Break-Before-Make Switching Action Plug-In Replacement for DG417

APPLICATIONS
Precision Test Equipment
Precision Instrumentation
Battery Powered Systems
Sample Hold Systems

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The ADG417 is a monolithic CMOS SPST switch. This switch is designed on an enhanced LC²MOS process that provides low power dissipation yet gives high switching speed, low on resistance and low leakage currents.

The on resistance profile of the ADG417 is very flat over the full analog input range ensuring excellent linearity and low distortion. The part also exhibits high switching speed and high signal bandwidth. CMOS construction ensures ultralow power dissipation making the parts ideally suited for portable and battery powered instruments.

The ADG417 switch, which is turned ON with a logic low on the control input, conducts equally well in both directions when ON and has an input signal range that extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked. The ADG417 exhibits break-before-make switching action for use in multiplexer applications. Inherent in the design is low charge injection for minimum transients when switching the digital input.

PRODUCT HIGHLIGHTS

- Extended Signal Range
 The ADG417 is fabricated on an enhanced LC²MOS process, giving an increased signal range that extends to the supply rails.
- 2. Ultralow Power Dissipation
- 3. Low Ron
- 4. Single Supply Operation
 For applications where the analog signal is unipolar, the ADG417 can be operated from a single rail power supply.
 The part is fully specified with a single +12 V power supply and will remain functional with single supplies as low as +5 V.

REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 1998

ADG417* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

DOCUMENTATION

Application Notes

 AN-1313: Configuring the AD5422 to Combine Output Current and Output Voltage to a Single Output Pin

Data Sheet

 ADG417: LC²MOS Precision Mini-DIP Analog Switch Data Sheet

REFERENCE MATERIALS \Box

Product Selection Guide

• Switches and Multiplexers Product Selection Guide

Technical Articles

- CMOS Switches Offer High Performance in Low Power, Wideband Applications
- Data-acquisition system uses fault protection
- Enhanced Multiplexing for MEMS Optical Cross Connects
- · Temperature monitor measures three thermal zones

DESIGN RESOURCES

- ADG417 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ADG417 EngineerZone Discussions.

SAMPLE AND BUY 🖵

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

ADG417—SPECIFICATIONS

 $\textbf{Dual Supply}^{1} \ \, (\textbf{V}_{DD} = +15 \ \textbf{V} \ \pm \ 10\%, \ \textbf{V}_{SS} = -15 \ \textbf{V} \ \pm \ 10\%, \ \textbf{V}_{L} = +5 \ \textbf{V} \ \pm \ 10\%, \ \textbf{GND} = 0 \ \textbf{V}, \ \textbf{unless otherwise noted})$

	B Version -40°C to		T Version -55°C to			
Parameter	+25°C	+85°C	+25°C	+125°C	Units	Test Conditions/Comments
ANALOG SWITCH						
Analog Signal Range		V_{SS} to V_{DD}		V_{SS} to V_{DD}	V	
R_{ON}	25		25		Ω typ	$V_D = \pm 12.5 \text{ V}, I_S = -10 \text{ mA}$
	35	45	35	45	Ω max	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
LEAKAGE CURRENTS						$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.1		± 0.1		nA typ	$V_D = \pm 15.5 \text{ V}, V_S = \mp 15.5 \text{ V};$
, ,	±0.25	±5	±0.25	±15	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.1		±0.1		nA typ	$V_D = \pm 15.5 \text{ V}, V_S = \mp 15.5 \text{ V};$
3 B ()	±0.25	±5	±0.25	±15	nA max	Test Circuit 2
Channel ON Leakage I _D , I _S (ON)	±0.1		± 0.1		nA typ	$V_S = V_D = \pm 15.5 \text{ V};$
	±0.4	±5	± 0.4	±30	nA max	Test Circuit 3
DIGITAL INPUTS						
Input High Voltage, V _{INH}		2.4		2.4	V min	
Input Low Voltage, V _{INL}		0.8		0.8	V max	
Input Current						
I _{INL} or I _{INH}		± 0.005		±0.005	μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		±0.5		±0.5	μA max	
DYNAMIC CHARACTERISTICS ²						
t _{ON}	100		100		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
	160	200	145	200	ns max	$V_S = \pm 10 \text{ V}$; Test Circuit 4
$t_{ m OFF}$	60		60		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
	100	150	100	150	ns max	$V_S = \pm 10 \text{ V}$; Test Circuit 4
Charge Injection	7		7		pC typ	$V_S = 0 V, R_L = 0 \Omega,$
						$C_L = 10 \text{ nF}$; Test Circuit 5
OFF Isolation	80		80		dB typ	$R_L = 50 \Omega$, $f = 1 MHz$;
						Test Circuit 6
C_{S} (OFF)	6		6		pF typ	
C_D (OFF)	6		6		pF typ	
$C_D, C_S (ON)$	55		55		pF typ	
POWER REQUIREMENTS						$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
$I_{ m DD}$	0.0001		0.0001		μA typ	$V_{IN} = 0 \text{ V or } 5 \text{ V}$
	1	2.5	1	2.5	μA max	
I_{SS}	0.0001		0.0001		μA typ	
	1	2.5	1	2.5	μA max	
${ m I_L}$	0.0001		0.0001		μA typ	$V_{L} = +5.5 \text{ V}$
	1	2.5	1	2.5	μA max	

NOTES

Specifications subject to change without notice.

-2- REV. A

 $^{^1}Temperature$ ranges are as follows: B Version: –40 °C to +85 °C; T Version: –55 °C to +125 °C.

²Guaranteed by design, not subject to production test.

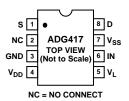
$Single\ Supply^{1}\ (v_{DD}=+12\ V\ \pm\ 10\%,\ V_{SS}=0\ V,\ V_{L}=+5\ V\ \pm\ 10\%,\ GND=0\ V,\ unless\ otherwise\ noted)$

	В	Version -40°C to	T Ve	ersion -55°C to		
Parameter	+25°C	+85°C	+25°C	+125°C	Units	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range R _{ON}	40	0 to V_{DD}	40	0 to V_{DD}	V Ω typ	$V_D = +3 \text{ V}, +8.5 \text{ V}, I_S = -10 \text{ mA}$
		60		70	Ω max	$V_{\rm DD} = +10.8 \text{ V}$
LEAKAGE CURRENT						V _{DD} = +13.2 V
Source OFF Leakage I _S (OFF)	±0.1 ±0.25	±5	±0.1 ±0.25	±15	nA typ nA max	$V_D = 12.2 \text{ V/1 V}, V_S = 1 \text{ V/12.2 V};$ Test Circuit 2
Drain OFF Leakage I_D (OFF)	±0.1		±0.1		nA typ	$V_D = 12.2 \text{ V/1 V}, V_S = 1 \text{ V/12.2 V};$
Channel ON Leakage I_D , I_S (ON)	±0.25 ±0.1 ±0.4	±5 ±5	±0.25 ±0.1 ±0.4	±15 ±30	nA max nA typ nA max	Test Circuit 2 $V_S = V_D = 12.2 \text{ V/1 V};$ Test Circuit 3
DIGITAL INPUTS	20.1		20.1		III III III	rest direction
Input High Voltage, V_{INH} Input Low Voltage, V_{INL}		2.4 0.8		2.4 0.8	V min V max	
Input Current		0.0		0.0	Villux	
I _{INL} or I _{INH}		±0.005 ±0.5		±0.005 ±0.5	μΑ typ μΑ max	$V_{IN} = V_{INL}$ or V_{INH}
DYNAMIC CHARACTERISTICS ²						
t_{ON}	180	250	180	250	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_S = +8 V$; Test Circuit 4
$t_{ m OFF}$	85	110	85	110	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_S = +8 V$; Test Circuit 4
Charge Injection	11		11		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega,$ $C_L = 10 \text{ nF}; \text{ Test Circuit 5}$
OFF Isolation	80		80		dB typ	$R_L = 50 \Omega$, $f = 1 MHz$; Test Circuit 6
C _s (OFF)	13		13		pF typ	Test Shear 9
C_D (OFF)	13		13		pF typ	
$C_D, C_S (ON)$	65		65		pF typ	
POWER REQUIREMENTS						$V_{\rm DD} = +13.2 \text{ V}$
I_{DD}	0.0001		0.0001		μA typ	$V_{IN} = 0 \text{ V or } 5 \text{ V}$
T	1	2.5	1	2.5	μA max	V - 155V
$ m I_L$	0.0001	2.5	0.0001	2.5	μΑ typ μΑ max	$V_{L} = +5.5 \text{ V}$

NOTES

Specifications subject to change without notice.

Table I. Truth Table


Logic	Switch Condition		
0	ON		
1	OFF		

ORDERING GUIDE

Model	Temperature Range	Package Options*	
ADG417BN	-40°C to +85°C	N-8	
ADG417BR	-40°C to +85°C	SO-8	

^{*}N = Plastic DIP, SO = 0.15" Small Outline IC (SOIC).

PIN CONFIGURATION DIP/SOIC

REV. A -3-

¹Temperature ranges are as follows: B Version: −40°C to +85°C; T Version: −55°C to +125°C.

²Guaranteed by design, not subject to production test.

ADG417

Plastic Package, Power	Dissipation400 mW
θ_{JA} , Thermal Impeda	ance 100°C/W
Lead Temperature,	Soldering (10 sec) +260°C
SOIC Package, Power	Dissipation 400 mW
θ_{JA} , Thermal Impeda	ance
Lead Temperature,	Soldering
Vapor Phase (60 s	ec) +215°C
Infrared (15 sec)	+220°C

NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

CAUTION

TEDMINOI OCV

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG417 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TERMINOLOGY		$V_{D}(V_{S})$	Analog voltage on terminals D, S.	
	V_{DD}	Most positive power supply potential.	C _S (OFF)	"OFF" switch source capacitance.
	V_{SS}	Most negative power supply potential in dual	C _D (OFF)	"OFF" switch drain capacitance.
		supplies. In single supply applications, it	C_D , C_S (ON)	"ON" switch capacitance.
	$V_{\rm L}$	may be connected to GND. Logic power supply (+5 V).	t_{ON}	Delay between applying the digital control
	GND	Ground (0 V) reference.		input and the output switching on.
	S	Source terminal. May be an input or an	t _{OFF}	Delay between applying the digital control
		output.	V_{INL}	input and the output switching off. Maximum input voltage for logic "0."
	D	Drain terminal. May be an input or an	V _{INH}	Minimum input voltage for logic "1."
		output.	I _{INL} (I _{INH})	Input current of the digital input.
	IN	Logic control input.	Charge Injection	A measure of the glitch impulse transferred
	R_{ON}	Ohmic resistance between D and S.	σ,	from the digital input to the analog output
	$I_S(OFF)$	Source leakage current with the switch		during switching.
		"OFF."	Off Isolation	A measure of unwanted signal coupling
	I_D (OFF)	Drain leakage current with the switch		through an "OFF" channel.
		"OFF."	I_{DD}	Positive supply current.
	$I_D, I_S(ON)$	Channel leakage current with the switch	I_{SS}	Negative supply current.
		"ON."	I_L	Logic supply current.

²Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

Typical Performance Characteristics—ADG417

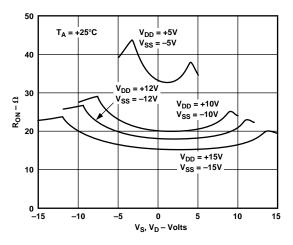


Figure 1. R_{ON} as a Function of V_D (V_S): Dual Supply Voltage

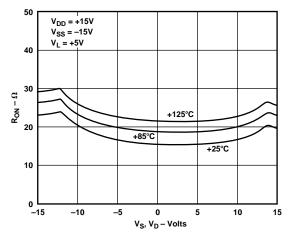


Figure 2. R_{ON} as a Function of V_D (V_S) for Different Temperatures

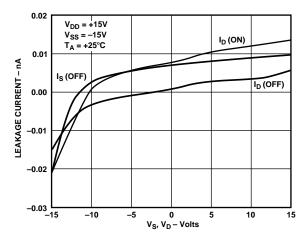


Figure 3. Leakage Currents as a Function of $V_S(V_D)$

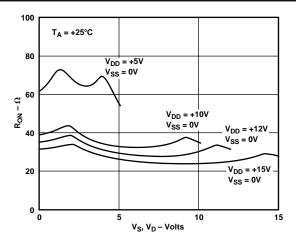


Figure 4. R_{ON} as a Function of V_D (V_S): Single Supply Voltage

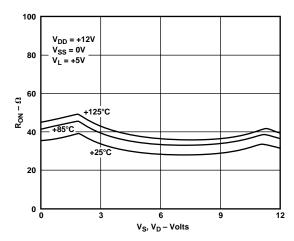


Figure 5. R_{ON} as a Function of V_D (V_S) for Different Temperatures

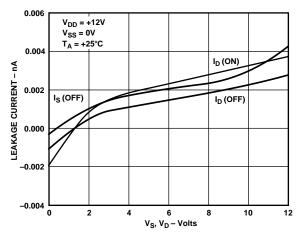


Figure 6. Leakage Currents as a Function of $V_S(V_D)$

REV. A -5-

ADG417

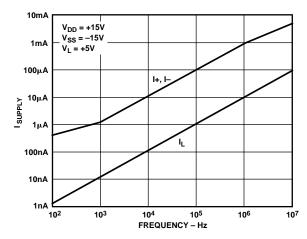


Figure 7. Supply Current vs. Input Switching Frequency

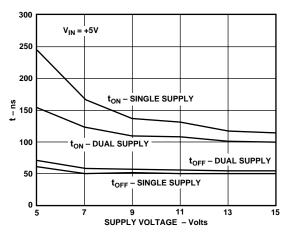
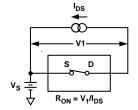
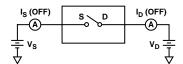
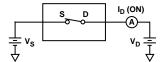
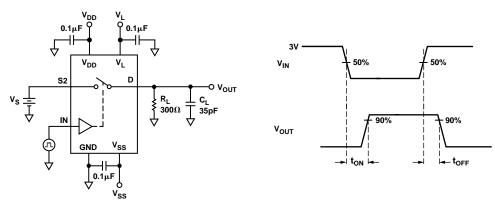
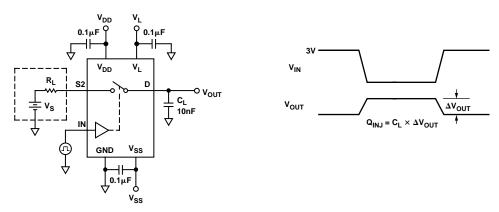
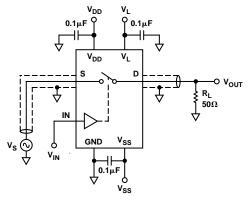




Figure 8. Switching Time vs. Power Supply


Test Circuits

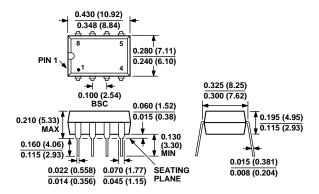

Test Circuit 1. On Resistance


Test Circuit 2. Off Leakage

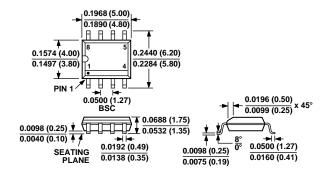

Test Circuit 3. On Leakage

Test Circuit 4. Switching Times

Test Circuit 5. Charge Injection



Test Circuit 6. Off Isolation


OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

8-Lead Plastic DIP (N-8)

8-Lead SOIC (SO-8) (Narrow Body)

