Data Sheet

FEATURES

1.8 V to 5.5 V single supply

Automotive temperature range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
2.5Ω (typical) on resistance
Low on resistance flatness

- $\mathbf{3}$ dB bandwidth $\boldsymbol{>} \mathbf{2 0 0} \mathbf{~ M H z}$

Rail-to-rail operation
10-lead MSOP package
Fast switching times
tos: 16 ns
toff: 8 ns
Typical power consumption ($<0.01 \mu \mathrm{~W}$)
TTL-/CMOS-compatible
Qualified for automotive applications

APPLICATIONS

USB 1.1 signal switching circuits Cell phones
PDAs
Battery-powered systems
Communications systems
Sample-and-hold systems
Audio signal routing
Audio and video switching
Mechanical reed relay replacement

GENERAL DESCRIPTION

The ADG736 is a monolithic device comprising two independently selectable CMOS single pole, double throw (SPDT) switches. These switches are designed using a submicron process that provides low power dissipation yet gives high switching speed, low on resistance, low leakage currents, and wide input signal bandwidth.

The on resistance profile is very flat over the full analog signal range. This ensures excellent linearity and low distortion when switching audio signals. Fast switching speed also makes the part suitable for video signal switching.
The ADG736 operates from a single 1.8 V to 5.5 V supply, making it ideally suited to portable and battery-powered instruments.

Each switch conducts equally well in both directions when on, and each has an input signal range that extends to the power supplies. The ADG736 exhibits break-before-make switching action.

The ADG736 is available in a 10 -lead MSOP package.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

PRODUCT HIGHLIGHTS

1. 1.8 V to 5.5 V Single-Supply Operation. The ADG736 offers high performance, including low on resistance and fast switching times. It is fully specified and guaranteed with 3 V and 5 V supply rails.
2. Very Low Ron (4.5Ω Maximum at $5 \mathrm{~V}, 8 \Omega$ Maximum at 3 V). At a supply voltage of 1.8 V , Ros is typically 35Ω over the temperature range.
3. Low On Resistance Flatness.
4. -3 dB Bandwidth $>200 \mathrm{MHz}$.
5. Low Power Dissipation. CMOS construction ensures low power dissipation.
6. Fast $\mathrm{t}_{\mathrm{o}} / \mathrm{t}_{\text {off }}$.
7. Break-Before-Make Switching Action.
8. 10-Lead MSOP Package.

Rev. D
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com Fax: 781.461.3113 ©2003-2012 Analog Devices, Inc. All rights reserved.

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

- Evaluation Board for 10-Lead MSOP Devices in the Switches and Multiplexers Portfolio

DOCUMENTATION \square

Data Sheet

- ADG736: CMOS Low Voltage 2.5Ω Dual SPDT Switch Data Sheet

User Guides

- UG-1037: Evaluation Board for 10-Lead MSOP Devices in the Switches and Multiplexers Portfolio

REFERENCE MATERIALS

Product Selection Guide

- Switches and Multiplexers Product Selection Guide

Technical Articles

- CMOS Switches Offer High Performance in Low Power, Wideband Applications
- Data-acquisition system uses fault protection
- Enhanced Multiplexing for MEMS Optical Cross Connects
- Temperature monitor measures three thermal zones

DESIGN RESOURCES

- ADG736 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ADG736 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT \square

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 5
ESD Caution 5
REVISION HISTORY
2/12—Rev. C to Rev. D
Added Automotive Information (Throughout) 1
Updated Outline Dimensions 12
Changes to Ordering Guide 12
12/07—Rev. B to Rev. C
Updated Temperature Range (Throughout) 1
Changes to Features Section 1
Changes to Figure 4 and Figure 5 7
Changes to Ordering Guide 12
1/07—Rev. A to Rev. B
Updated Format Universal
Changes to Leakage Currents 3
Changes to Leakage Currents 4
Changes to Ordering Guide 12
Updated Outline Dimensions 12
11/03-Rev. 0 to Rev. A
Renumbered Figures and TPCs Universal
Change to Title 1
Changes to Applications 1
Changes to Absolute Maximum Ratings 4
Changes to Ordering Guide 4
Changes to Test Circuit 3 7
Changes to Outline Dimensions 8
Pin Configuration and Function Descriptions 6
Typical Performance Characteristics 7
Test Circuits 9
Terminology 10
Applications Information 11
Outline Dimensions 12
Ordering Guide 12
Automotive Products 12

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$. All specifications $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

[^0]$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$. All specifications $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} \& \multicolumn{3}{|c|}{B Version} \& \multirow[b]{2}{*}{Unit} \& \multirow[b]{2}{*}{Test Conditions/Comments} \\
\hline \& \(25^{\circ} \mathrm{C}\) \& \[
\begin{aligned}
\& -40^{\circ} \mathrm{C} \text { to } \\
\& +85^{\circ} \mathrm{C}
\end{aligned}
\] \& \[
\begin{aligned}
\& -40^{\circ} \mathrm{C} \text { to } \\
\& +125^{\circ} \mathrm{C}
\end{aligned}
\] \& \& \\
\hline \begin{tabular}{l}
ANALOG SWITCH \\
Analog Signal Range \\
On Resistance (Ron) \\
On Resistance Match Between Channels (\(\Delta\) Ron) \\
On Resistance Flatness (Rflat (on)
\end{tabular} \& 5

0.1 \& $$
\begin{aligned}
& 5.5 \\
& 8 \\
& 0.4 \\
& 2.5
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 0 \mathrm{~V} \text { to } V_{D D} \\
& 12 \\
& \\
& 0.4 \\
& 2.5
\end{aligned}
$$

\] \& | V |
| :--- |
| Ω typ |
| Ω max |
| Ω typ |
| Ω max |
| Ω typ | \& | $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{l}_{\mathrm{DS}}=-10 \mathrm{~mA}$; |
| :--- |
| see Figure 10 |
| See Figure 10 |
| $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{l}_{\mathrm{DS}}=-10 \mathrm{~mA}$ |
| $V_{S}=0 V$ to $V_{D D}, l_{D S}=-10 \mathrm{~mA}$ |

\hline | LEAKAGE CURRENTS |
| :--- |
| Source Off Leakage Is (Off) |
| Channel On Leakage I_{D} I $\mathrm{I}_{\mathrm{S}}(\mathrm{On})$ | \& \[

$$
\begin{aligned}
& \pm 0.01 \\
& \pm 0.01
\end{aligned}
$$

\] \& \& 5 \& | nA typ |
| :--- |
| nA typ | \& \[

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V} ; \\
& \text { see Figure } 11 \\
& \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 3 \mathrm{~V} \text {; see Figure } 12
\end{aligned}
$$
\]

\hline | DIGITAL INPUTS |
| :--- |
| Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, VINL Input Current, linl or linh | \& 0.005 \& \[

$$
\begin{gathered}
2.0 \\
0.4 \\
\pm 0.1
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 2.4 \\
& 0.8 \\
& \pm 0.1
\end{aligned}
$$

\] \& | \vee min |
| :--- |
| V max |
| $\mu \mathrm{A}$ typ |
| $\mu \mathrm{A}$ max | \& $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$

\hline | DYNAMIC CHARACTERISTICS ${ }^{1}$ |
| :--- |
| ton |
| $t_{\text {off }}$ |
| Break-Before-Make Time Delay, to |
| Off Isolation |
| Channel-to-Channel Crosstalk |
| Bandwidth (-3 dB) |
| C_{s} (Off) |
| $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}$ (On) | \& | 14 |
| :--- |
| 6 |
| 7 |
| -62 |
| -82 |
| -62 |
| -82 |
| 200 |
| 9 |
| 32 | \& 20

\[
10

\] \& | 20 |
| :--- |
| 10 |
| 1 | \& | ns typ |
| :--- |
| ns max |
| ns typ |
| ns max |
| ns typ |
| ns min |
| dB typ |
| dB typ |
| dB typ |
| dB typ |
| MHz typ |
| pF typ |
| pF typ | \& | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=2 \mathrm{~V} ; \text { see Figure } 13 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=2 \mathrm{~V} ; \text { see Figure } 13 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=2 \mathrm{~V} ; \text { see Figure } 14 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{mHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \end{aligned}$ |
| :--- |
| see Figure 15 $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \end{aligned}$ |
| see Figure 16 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \text {; see Figure } 17$ |

\hline | POWER REQUIREMENTS |
| :--- |
| IDD | \& 0.001 \& 1.0 \& 1.0 \& $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max \& \[

$$
\begin{aligned}
& \hline \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\
& \text { Digital inputs }=0 \mathrm{~V} \text { or } 3 \mathrm{~V}
\end{aligned}
$$
\]

\hline
\end{tabular}

[^1]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
VDD to GND	-0.3 V to +6 V
Analog, Digital Inputs ${ }^{1}$	-0.3 V to VDD +0.3 V or 30 mA,
	whichever occurs first
Continuous Current, S or D	30 mA
Peak Current, S or D	100 mA (Pulsed at $1 \mathrm{~ms}, 10 \%$
	duty cycle maximum)
Operating Temperature Range	
\quad Automotive	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
MSOP Package, Power Dissipation	315 mW
$\quad \theta_{\text {JA }}$ Thermal Impedance	$205^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature (Soldering,	$300^{\circ} \mathrm{C}$
$\quad 10$ sec)	$235^{\circ} \mathrm{C}$
IR Reflow (Peak Temperature,	
$\quad<20$ sec)	
Lead-Free Reflow Soldering	$260(+0 /-5)^{\circ} \mathrm{C}$
Peak Temperature	10 sec to 40 sec
\quad Time at Peak Temperature	2 kV
ESD	

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

[^2]
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	IN1	Logic Control Input.
2	S1A	Source Terminal. May be an input or output.
3	GND	Ground (O V) Reference.
4	S2A	Source Terminal. May be an input or output.
5	IN2	Logic Control Input.
6	D2	Drain Terminal. May be an input or output.
7	S2B	Source Terminal. May be an input or output.
8	VDD	Most Positive Power Supply Potential.
9	S1B	Source Terminal. May be an input or output.
10	D1	Drain Terminal. May be an input or output.

Table 5. Truth Table

Logic	Switch A	Switch B
0	Off	On
1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance as a Function of V_{D} or V_{S} Single Supplies

Figure 4. On Resistance as a Function of V_{D} or V_{S} for Different Temperatures $V_{D D}=3 \mathrm{~V}$

Figure 5. On Resistance as a Function of V_{D} or V_{S} for Different Temperatures $V_{D D}=5 \mathrm{~V}$

Figure 6. Supply Current vs. Input Switching Frequency

Data Sheet

TEST CIRCUITS

Figure 10. On Resistance

Figure 11. Off Leakage

Figure 12. On Leakage

Figure 13. Switching Times

Figure 14. Break-Before-Make Time Delay, to

Figure 15. Off Isolation

Figure 16. Channel-to-Channel Crosstalk

Figure 17. Bandwidth

TERMINOLOGY

Ron
Ohmic resistance between Terminal D and Terminal S.

$\Delta R_{\text {on }}$

On resistance match between any two channels; that is, Ron maximum - Ron minimum.
$\mathbf{R}_{\text {flat (ON) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.
I_{s} (Off)
Source leakage current with the switch off.

$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathbf{O n})$

Channel leakage current with the switch on.
V_{D} (V_{s})
Analog voltage on Terminal D and Terminal S.
C_{s} (Off)
Off switch source capacitance.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)
On switch capacitance.
ton
Delay between applying the digital control input and the output switching on. See Figure 13.

$t_{\text {Off }}$

Delay between applying the digital control input and the output switching off. See Figure 13.
$t_{\text {D }}$
Off time or on time measured between the 90% points of both switches, when switching from one address state to another. See Figure 14.

Crosstalk

A measure of unwanted signal that is coupled from one channel to another as a result of parasitic capacitance.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Bandwidth

The frequency at which the output is attenuated by -3 dB .

On Response

The frequency response of the on switch.

On Loss

The voltage drop across the on switch, seen on the on response vs. frequency plot (see Figure 7) as how many decibels (dB) the signal is away from 0 dB at very low frequencies.

APPLICATIONS INFORMATION

Figure 18. Using the ADG736 to Select Between Two Video Signals

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187-BA
©
高
Figure 19. 10-Lead Mini Small Outline Package [MSOP]
(RM-10)
Dimensions shown in millimeters

ORDERING GUIDE

Model ${ }^{1,2}$	Temperature Range	Package Description	Package Option	Branding
ADG736BRM	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 -Lead Mini Small Outline Package (MSOP)	RM-10	SAB
ADG736BRM-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 -Lead Mini Small Outline Package (MSOP)	RM-10	SAB
ADG736BRM-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package (MSOP)	RM-10	SAB
ADG736BRMZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10 -Lead Mini Small Outline Package (MSOP)	RM-10	SAB\#
ADG736BRMZ-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package (MSOP)	RM-10	SAB\#
ADG736BRMZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package (MSOP)	RM-10	SAB\#
ADW54010Z-0REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	10-Lead Mini Small Outline Package (MSOP)	RM-10	SAB\#

${ }^{1}$ Z = RoHS Compliant Part, \# denotes RoHS compliant part may be top or bottom marked.
${ }^{2}$ W = Qualified for Automotive Applications.

AUTOMOTIVE PRODUCTS

The ADW54010Z model is available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

[^0]: ${ }^{1}$ Guaranteed by design; not subject to production test.

[^1]: ${ }^{1}$ Guaranteed by design; not subject to production test.

[^2]: ${ }^{1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

