FEATURES

1.8 V to 5.5 V single-supply operation
$\pm 2.5 \mathrm{~V}$ dual-supply operation
On resistance: $\mathbf{4 \Omega}$ at $25^{\circ} \mathrm{C}(+5 \mathrm{~V}$ single supply/ $\pm 2.5 \mathrm{~V}$ dual supply)
0.5Ω on-resistance flatness at $25^{\circ} \mathrm{C}(+5 \mathrm{~V}$ single supply/ $\pm 2.5 \mathrm{~V}$ dual supply)
Rail-to-rail operation
Transition times: $\mathbf{2 3}$ ns typical at $\mathbf{2 5}^{\circ} \mathrm{C}$
Single 32-to-1 channel multiplexer
Dual/differential 16-to-1 channel multiplexer
TTL-/CMOS-compatible inputs
48-lead TQFP or 48 -lead, $7 \mathrm{~mm} \times 7 \mathrm{~mm}$ LFCSP

APPLICATIONS

Optical applications

Data acquisition systems
Communication systems
Relay replacement
Audio and video switching
Battery-powered systems
Medical instrumentation
Automatic test equipment (ATE)

GENERAL DESCRIPTION

The ADG726/ADG732 are monolithic, complementary metal oxide semiconductor (CMOS) 32-channel and dual 16-channel analog multiplexers. The ADG732 switches one of 32 inputs (S1 to S 32) to a common output, D , as determined by the 5 -bit binary address lines A0, A1, A2, A3, and A4. The ADG726 switches one of 16 inputs as determined by the 4 -bit binary address lines A0, A1, A2, and A3.
On-chip latches facilitate microprocessor interfacing. The ADG726 may also be configured for differential operation by tying $\overline{\mathrm{CSA}}$ and $\overline{\mathrm{CSB}}$ together. An $\overline{\mathrm{EN}}$ input is used to enable or disable the devices. When disabled, all channels are switched off.

These multiplexers are designed on an enhanced submicron process that provides low power dissipation yet gives high switching speed, very low on resistance, and leakage currents. They operate from a single supply of +1.8 V to +5.5 V and a $\pm 2.5 \mathrm{~V}$ dual supply, making them ideally suited to a variety of applications. On resistance is in the region of a few ohms and is

[^0]
FUNCTIONAL BLOCK DIAGRAMS

Figure 1.

Figure 2.
closely matched between switches and very flat over the full signal range. These devices can operate equally well as either multiplexers or demultiplexers and have an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. All channels exhibit break-before-make switching action, preventing momentary shorting when switching channels.

The ADG726/ADG732 are available in a 48 -lead LFCSP or a 48 lead TQFP. For functionally equivalent devices with serial interface, see the ADG725/ADG731.

PRODUCT HIGHLIGHTS

1. $\quad+1.8 \mathrm{~V}$ to +5.5 V single- or $\pm 2.5 \mathrm{~V}$ dual-supply operation. These devices are specified and guaranteed with $+5 \mathrm{~V} \pm 10 \%$, $+3 \mathrm{~V} \pm 10 \%$ single-supply, and $\pm 2.5 \mathrm{~V} \pm 10 \%$ dual-supply rails.
2. An on resistance of 4Ω.
3. Guaranteed break-before-make switching action.
4. 48-lead LFCSP package or 48-lead TQFP package.

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagrams. 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
+5 V Single Supply 3
+3 V Single Supply 5
± 2.5 V Dual Supply 7
Timing Characteristics 8
REVISION HISTORY
2/2021-Rev. B to Rev. C
Changed CP-48-1 to CP-48-4 Throughout
Changes to Figure 6 12
Changes to Figure 7. 13
Updated Outline Dimensions 21
Changes to Ordering Guide 21
6/2015—Rev. A to Rev. B
Changes to Figure 4 and Table 6 10
Added Figure 5 and Table 7; Renumbered Sequentially 11
Added Figure 6 and Table 8 12
Changes to Figure 7, Table 9, and Table 10 13
Changes to Table 11 14
2/2015-Rev. 0 to Rev. A
Updated Format Universal
Changes to Features Section 1
Changes to Table 1 3
Absolute Maximum Ratings 9
ESD Caution 9
Pin Configurations and Function Description 10
48-Lead TQFP 10
48-Lead LFCSP 12
Typical Performance Characteristics 15
Test Circuits 17
Terminology. 20
Outline Dimensions 21
Ordering Guide 21
Changes to Table 2 5
Changes to Table 3 7
Changes to Table 5 9
Added Table 6; Renumbered Sequentially 10
Added Table 7 11
Changes to Figure 5 11
Changes to Figure 8 to Figure 11 13
Changes to Figure 13 and Figure 15 to Figure 17 14
Changes to Figure 25 to Figure 28 16
Changes to Figure 29 17
Moved Terminology Section 18
Changes to Terminology Section 18
Updated Outline Dimensions 19
Changes to Ordering Guide 19
7/2002-Revision 0: Initial Version

SPECIFICATIONS

+5 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

ADG726/ADG732

Parameter	Symbol	ADG726/ADG732		ADG732		
		$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
Off Switch Source Capacitance	$\mathrm{C}_{\text {S }}$ (Off)	13			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
Off Switch Drain Capacitance	C_{D} (Off)					
ADG726		170			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
ADG732		340			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
On Switch Drain, Source Capacitance	$C_{\text {d }}, C_{S}(\mathrm{On})$					
ADG726		175			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
ADG732		350			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS Positive Supply Current	IDD	10	20	20	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V} \mathrm{DD}=5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

${ }^{1}$ Guaranteed by design; not subject to production test.

+3 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	Symbol	ADG726/ADG732		$\begin{aligned} & \text { ADG732 } \\ & \hline-40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Unit	Test Conditions/Comments
		$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$			
ANALOG SWITCH Analog Signal Range On Resistance On Resistance Match Between Channels On Resistance Flatness	Ron Δ Ron $\mathrm{R}_{\text {FLAt (ON) }}$	$\begin{array}{\|l} 7 \\ 11 \end{array}$	$\begin{aligned} & 0 \mathrm{~V} \text { to } \\ & \mathrm{V} D \mathrm{D} \\ & \\ & 12 \\ & 0.35 \\ & 1 \\ & 3 \end{aligned}$	13 1	V Ω typ Ω max Ω typ Ω max Ω typ	$\begin{aligned} & V_{S}=0 \mathrm{~V} \text { to } V_{D D}, l_{D S}=10 \mathrm{~mA}, \text { see Figure } 20 \\ & V_{S}=0 \mathrm{~V} \text { to } V_{D D}, l_{D S}=10 \mathrm{~mA} \\ & V_{S}=0 \mathrm{~V} \text { to } V_{D D}, l_{D S}=10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage Drain Off Leakage ADG726 ADG732 Channel On Leakage ADG726 ADG732	I_{s} (Off) ID (Off) $\mathrm{I}_{\mathrm{D}}, \mathrm{Is}(\mathrm{On})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.05 \\ & \pm 0.5 \\ & \pm 1 \\ & \pm 0.05 \\ & \pm 0.5 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 2.5 \\ & \pm 5 \\ & \pm 2.5 \\ & \pm 5 \end{aligned}$	± 2 ± 10 ± 10	nA typ nA max nA typ nA max nA max nA typ nA max nA max	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V}, \text { see Figure } 21 \\ \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V} / 1 \mathrm{~V} \text {, see Figure } 24 \\ \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 3 \mathrm{~V} \text {, see Figure } 25 \end{array} . \end{aligned}$
DIGITAL INPUTS Input High Voltage Input Low Voltage Input Current Low or High Digital Input Capacitance	$\mathrm{V}_{\text {INH }}$ VinL Inco or I_{Nn} $\mathrm{Clin}^{\mathrm{N}}$	$\begin{aligned} & 0.005 \\ & 5 \end{aligned}$	$\begin{gathered} 2.0 \\ 0.7 \\ \\ \pm 0.5 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 0.7 \\ & \pm 0.5 \end{aligned}$	\vee min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ Transition Time Break-Before-Make Time Delay On Time $(\overline{C S}, \overline{W R})$ Off Time $(\overline{C S}, \overline{W R})$ On Time ($\overline{\mathrm{EN}}$) Off Time ($\overline{\mathrm{EN}}$) Charge Injection Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth ADG726 ADG732	ttransition tD $t_{\text {on }}(\overline{\mathrm{WR}}, \overline{\mathrm{CS}})$ toff ($\overline{\mathrm{WR}}, \overline{\mathrm{CS}})$ ton ($\overline{\mathrm{EN}}$) toff ($\overline{\mathrm{EN}}$) Qinj Iso C_{TK} BW	34 52 26 29 43 26 38 33 48 19 25 1 -72 -72 34 18	62 1 52 42 55 28	69 1 60 55.5 63.5 28	ns typ ns max ns typ ns min ns typ ns max ns typ ns max ns typ ns max ns typ ns max pC typ dB typ dB typ MHz typ MHz typ	

Parameter	Symbol	ADG726/ADG732		$\begin{aligned} & \hline \text { ADG732 } \\ & \hline-40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Unit	Test Conditions/Comments
		$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$			
Off Switch Source Capacitance	C_{5} (Off)	13			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
Off Switch Drain Capacitance	C_{D} (Off)					
ADG726		170			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
ADG732		340			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
On Switch Drain, Source Capacitance	$C_{\text {d }}, C_{S}(\mathrm{On})$					
ADG726		175			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
ADG732		350			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS Positive Supply Current	IDD	5	10	10	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{aligned}$

[^1]
土2.5 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+2.5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-2.5 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} \& \multirow[b]{2}{*}{Symbol} \& \multicolumn{2}{|l|}{ADG726/ADG732} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { ADG732 } \\
\& \hline-40^{\circ} \mathrm{C} \text { to } \\
\& +125^{\circ} \mathrm{C} \\
\& \hline
\end{aligned}
\]} \& \multirow[b]{2}{*}{Unit} \& \multirow[b]{2}{*}{Test Conditions/Comments} \\
\hline \& \& \(+25^{\circ} \mathrm{C}\) \& \[
\begin{aligned}
\& -40^{\circ} \mathrm{C} \text { to } \\
\& +85^{\circ} \mathrm{C}
\end{aligned}
\] \& \& \& \\
\hline \begin{tabular}{l}
ANALOG SWITCH \\
Analog Signal Range On Resistance \\
On Resistance Match Between Channels \\
On Resistance Flatness
\end{tabular} \& \begin{tabular}{l}
Ron \(\Delta\) Ron \(^{\prime}\) \\
\(\mathrm{R}_{\text {flat (on) }}\)
\end{tabular} \& 4
\[
5.5
\]
\[
0.5
\] \& \[
\begin{aligned}
\& V_{S S} \text { to } V_{D D} \\
\& 6 \\
\& 0.3 \\
\& 0.8 \\
\& 1
\end{aligned}
\] \& 7
1
1.2 \& \begin{tabular}{l}
V \\
\(\Omega\) typ \\
\(\Omega\) max \\
\(\Omega\) typ \\
\(\Omega\) max \\
\(\Omega\) typ \\
\(\Omega\) max
\end{tabular} \& \(V_{s}=V_{S S}\) to \(V_{D D}\), los \(=10 \mathrm{~mA}\), see Figure 20
\[
\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD},} \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA}
\]
\[
\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD},} \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA}
\] \\
\hline \begin{tabular}{l}
LEAKAGE CURRENTS \\
Source Off Leakage \\
Drain Off Leakage \\
ADG726 \\
ADG732 \\
Channel On Leakage ADG726 \\
ADG732
\end{tabular} \& \begin{tabular}{l}
\(\mathrm{I}_{\mathrm{s}}\) (Off) \\
lo (Off) \\
\(\mathrm{ID}_{\mathrm{D}} \mathrm{II}_{\mathrm{s}}(\mathrm{On})\)
\end{tabular} \& \[
\begin{aligned}
\& \pm 0.01 \\
\& \pm 0.25 \\
\& \pm 0.05 \\
\& \pm 0.5 \\
\& \pm 1 \\
\& \pm 0.05 \\
\& \pm 0.5 \\
\& \pm 1
\end{aligned}
\] \& \[
\begin{aligned}
\& \pm 0.5 \\
\& \\
\& \pm 2.5 \\
\& \pm 5 \\
\& \\
\& \pm 2.5 \\
\& \pm 5
\end{aligned}
\] \& \[
\pm 1
\]
\[
\pm 10
\]
\[
\pm 10
\] \& \begin{tabular}{l}
nA typ \\
nA max nA typ \\
nA max \\
nA max \\
nA typ \\
nA max \\
nA max
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{V}_{\mathrm{DD}}=+2.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-2.75 \mathrm{~V} \\
\& \mathrm{~V}_{\mathrm{S}}=+2.25 \mathrm{~V} /-1.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-1.25 \mathrm{~V} /+2.25 \mathrm{~V},
\end{aligned}
\] \\
see Figure 21
\[
\mathrm{V}_{\mathrm{S}}=+2.25 \mathrm{~V} /-1.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-1.25 \mathrm{~V} /+2.25 \mathrm{~V},
\] \\
see Figure 24
\[
\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=+2.25 \mathrm{~V} /-1.25 \mathrm{~V} \text {, see Figure } 25
\]
\end{tabular} \\
\hline DIGITAL INPUTS Input High Voltage Input Low Voltage Input Current \& \begin{tabular}{l}
Vinh \\
VinL \\
lind or linh \\
\(\mathrm{C}_{\mathrm{IN}}\)
\end{tabular} \& \[
\begin{aligned}
\& 0.005 \\
\& 5 \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{l}
1.7 \\
0.7 \\
\(\pm 0.5\)
\end{tabular} \& \[
\begin{aligned}
\& 1.7 \\
\& 0.7 \\
\& \\
\& \pm 0.5
\end{aligned}
\] \& \begin{tabular}{l}
\(\vee\) min \\
V max \\
\(\mu \mathrm{A}\) typ \(\mu \mathrm{A}\) max pF typ
\end{tabular} \& \(\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}\) or \(\mathrm{V}_{\text {INH }}\) \\
\hline \begin{tabular}{l}
DYNAMIC CHARACTERISTICS \({ }^{1}\) \\
Transition Time \\
Break-Before-Make Time Delay \\
On Time (\(\overline{(\overline{C S}, ~} \overline{\mathrm{WR})}\) \\
Off Time (\(\overline{\mathrm{CS}}, \overline{\mathrm{WR}})\) \\
On Time (\(\overline{\mathrm{EN}}\)) \\
Off Time (\(\overline{\mathrm{EN}}\)) \\
Charge Injection \\
Off Isolation \\
Channel-to-Channel Crosstalk -3 dB Bandwidth \\
ADG726 \\
ADG732
\end{tabular} \& \begin{tabular}{l}
tTRANSITION \\
\(t_{D}\) \\
\(\mathrm{t}_{\mathrm{on}}(\overline{\mathrm{WR}}, \overline{\mathrm{CS}})\) \\
toff (\(\overline{\mathrm{WR}}, \overline{\mathrm{CS}})\) \\
ton (\(\overline{\mathrm{EN}}\)) \\
toff (\(\overline{\mathrm{EN}}\)) \\
Qins \\
Iso \\
\(\mathrm{C}_{\mathrm{TK}}\) \\
BW
\end{tabular} \& \begin{tabular}{l}
33 \\
45 \\
15 \\
21 \\
30 \\
20 \\
29 \\
26 \\
37 \\
18 \\
26 \\
1 \\
-72 \\
-72 \\
34 \\
18
\end{tabular} \& 51
1
37
35

29 \& | 56 |
| :--- |
| 1 |
| 43 |
| 38 |
| 50 |
| 29 | \& ns typ

ns max
ns typ
ns min
ns typ
ns max
ns typ
ns max
ns typ
ns max
ns typ
ns max
pC typ
dB typ
$d B$ typ
MHz typ
MHz typ \&

\hline
\end{tabular}

Parameter	Symbol	ADG726/ADG732		$\begin{aligned} & \hline \text { ADG732 } \\ & \hline-40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Unit	Test Conditions/Comments
		$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$			
Off Switch Source Capacitance	Cs_{5} (Off)	13			pF typ	
Off Switch Drain Capacitance	C_{D} (Off)					
ADG726	$\mathrm{C}_{\mathrm{D},} \mathrm{C}_{5}(\mathrm{On})$	137			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
ADG732		275			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
On Switch Drain, Source Capacitance						
ADG726		150			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
ADG732		300			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS						
Positive Supply Current	IDD	10	20	20	$\mu \mathrm{A}$ typ	$\mathrm{V}_{\mathrm{DD}}=2.75 \mathrm{~V}$
Negative Supply Current					$\mu \mathrm{A}$ max	Digital inputs $=0 \mathrm{~V}$ or 2.75 V
	Iss	10			$\mu \mathrm{A}$ typ	$\mathrm{V}_{\mathrm{DD}}=-2.75 \mathrm{~V}$
			20	20	$\mu \mathrm{A}$ max	Digital inputs $=0 \mathrm{~V}$ or 2.75 V

${ }^{1}$ Guaranteed by design; not subject to production test.

TIMING CHARACTERISTICS

Table 4.

Parameter ${ }^{1,2,3}$	Limit at $\mathbf{T}_{\text {MIN }}, \mathbf{T}_{\text {MAX }}$	Unit	Test Conditions/Comments
t_{1}	0	ns min	$\overline{\mathrm{CS}}$ to $\overline{\mathrm{WR}}$ setup time
t_{2}	0	ns min	$\overline{\mathrm{CS}}$ to $\overline{\mathrm{WR}}$ hold time
t_{3}	10	ns min	$\overline{\text { WR }}$ pulse width
t_{4}	10	ns min	Time between $\overline{W R}$ cycles
t_{5}	5	ns min	Address, enable setup time
t_{6}	2	ns min	Address, enable hold time

[^2]

Figure 3 shows the timing sequence for latching the switch address and enable inputs. The latches are level sensitive; therefore, while $\overline{\mathrm{WR}}$ is held low, the latches are transparent and the switches respond to changing the address and enable the inputs.

Input data is latched on the rising edge of $\overline{\mathrm{WR}}$. The ADG726 has two $\overline{\mathrm{CS}}$ inputs. This enables the device to be used either as a dual 16-to-1 channel multiplexer or a differential 16-channel multiplexer. If a differential output is required, tie $\overline{\mathrm{CSA}}$ and $\overline{\mathrm{CSB}}$ together.

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 5.

Parameter	Rating
$\mathrm{V}_{\text {D }}$ to $\mathrm{V}_{\text {SS }}$	7 V
$V_{\text {DD }}$ to GND	-0.3 V to +7 V
$V_{\text {ss }}$ to GND	+0.3 V to -7 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, S or D (Pulsed at 1 ms, 10\% Duty Cycle Maximum)	60 mA
Continuous Current, S or D	30 mA
Operating Temperature Range	
ADG726	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
ADG732	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Thermal Impedance θ_{JA} (4-Layer Board)	
48-Lead LFCSP	$25^{\circ} \mathrm{C} / \mathrm{W}$
48-Lead TQFP	$54.6{ }^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature, Pb Free	As per JEDEC J-STD-020

[^3]Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTION

48-LEAD TQFP

Table 6. ADG726 Pin Function Description

Pin No.	Mnemonic	Description
1 to 12, 45 to 48	S16A to S1A	Source Terminal. This pin may be an input or output.
13, 14	$V_{\text {DD }}$	Most Positive Power Supply Potential.
15 to 18	A0 to A3	Logic Control Inputs.
19	$\overline{\mathrm{CSA}}$	Chip Select Pin $A . \overline{C S A}$ is active low. If a differential output configuration is required, tie $\overline{\operatorname{CSA}}$ and $\overline{\mathrm{CSB}}$ together.
20	$\overline{C S B}$	Chip Select Pin $B . \overline{C S B}$ is active low. If a differential output configuration is required, tie $\overline{\mathrm{CSB}}$ and $\overline{\mathrm{CSA}}$ together.
21	$\overline{\mathrm{WR}}$	Write pin. When $\overline{W R}$ is low, the logic control inputs (A0 to A3) control which state the switches are in. On the rising edge of $\overline{\mathrm{WR}}$, the logic control input data is latched.
22	$\overline{\mathrm{EN}}$	Active Low, Digital Input. When this pin is high, the device is disabled and all switches are off. When this pin is low, the Ax logic control inputs determine the on switches. The $\overline{\mathrm{EN}}$ input signal is not latched by $\overline{\mathrm{WR}}$
23	GND	Ground (0 V) Reference.
24	$V_{\text {ss }}$	Most Negative Power Supply in a Dual-Supply Application. In single-supply applications, connect this pin to GND.
25 to 40	S1B to S16B	Source Terminal. This pin may be an input or output.
41	DB	Drain Terminal. This pin may be an input or output.
42,44	NIC	Not Internally Connected. Do not connect to this pin.
43	DA	Drain Terminal. This pin may be an input or output.

Figure 5. ADG732 Pin Configuration
Table 7. ADG732 Pin Function Description

Pin No.	Mnemonic	Description
1 to 12,45 to 48	S16 to S1	Source Terminal. This pin may be an input or output.
13, 14	VDD	Most Positive Power Supply Potential.
15 to 19	A0 to A4	Logic Control Inputs.
20	$\overline{\mathrm{CS}}$	Chip Select Pin. $\overline{C S}$ is active low.
21	$\overline{\mathrm{WR}}$	Write Pin. When $\overline{\mathrm{WR}}$ is low, the logic control inputs (A0 to A4) control which state the switches are in. On the rising edge of $\overline{\mathrm{WR}}$, the logic control input data is latched.
22	$\overline{\mathrm{EN}}$	Active Low, Digital Input. When this pin is high, the device is disabled and all switches are off. When this pin is low, the Ax logic control inputs determine the on switches. The $\overline{\mathrm{EN}}$ input signal is not latched by $\overline{\mathrm{WR}}$.
23	GND	Ground (0 V) Reference.
24	$\mathrm{V}_{\text {ss }}$	Most Negative Power Supply in a Dual-Supply Application. In single-supply applications, connect this pin to GND.
25 to 40	S17 to S32	Source Terminal. This pin may be an input or output.
41, 42, 44	NIC	Not Internally Connected. Do not connect to this pin.
43	D	Drain Terminal. This pin may be an input or output.

48-LEAD LFCSP

Table 8. ADG726 Pin Function Description

Pin No.	Mnemonic	Description
1 to 12,45 to 48	S16A to S1A	Source Terminal. This pin may be an input or output.
13, 14	$V_{\text {DD }}$	Most Positive Power Supply Potential.
15 to 18	A0 to A3	Logic Control Inputs.
19	$\overline{\mathrm{CSA}}$	Chip Select Pin A. $\overline{C S A}$ is active low. If a differential output configuration is required, tie $\overline{\mathrm{CSA}}$ and $\overline{\mathrm{CSB}}$ together.
20	$\overline{C S B}$	Chip Select Pin $B . \overline{C S B}$ is active low. If a differential output configuration is required, tie $\overline{\operatorname{CSB}}$ and $\overline{\operatorname{CSA}}$ together.
21	$\overline{W R}$	Write pin. When $\overline{W R}$ is low, the logic control inputs (AO to A3) control which state the switches are in. On the rising edge of $\overline{W R}$, the logic control input data is latched.
22	$\overline{\mathrm{EN}}$	Active Low, Digital Input. When this pin is high, the device is disabled and all switches are off. When this pin is low, the Ax logic control inputs determine the on switches. The $\overline{\mathrm{EN}}$ input signal is not latched by $\overline{\mathrm{WR}}$.
23	GND	Ground (0V) Reference.
24	$\mathrm{V}_{\text {SS }}$	Most Negative Power Supply in a Dual-Supply Application. In single-supply applications, connect this pin to GND.
25 to 40	S1B to S16B	Source Terminal. This pin may be an input or output.
41	DB	Drain Terminal. This pin may be an input or output.
42, 44	NIC	Not Internally Connected. Do not connect to this pin.
43	DA	Drain Terminal. This pin may be an input or output.
	EPAD	Exposed Pad. The exposed pad must be connected to GND.

[^4]Figure 7. ADG732 Pin Configuration
Table 9. ADG732 Pin Function Description

Pin No.	Mnemonic	Description
1 to 12,45 to 48	S16 to S1	Source Terminal. This pin may be an input or output.
13, 14	VD	Most Positive Power Supply Potential.
15 to 19	A0 to A4	Logic Control Inputs.
20	$\overline{C S}$	Chip Select Pin. $\overline{C S}$ is active low.
21	$\overline{W R}$	Write Pin. When $\overline{\mathrm{WR}}$ is low, the logic control inputs (A0 to A4) control which state the switches are in. On the rising edge of $\overline{W R}$, the logic control input data is latched.
22	$\overline{\mathrm{EN}}$	Active Low, Digital Input. When this pin is high, the device is disabled and all switches are off. When this pin is low, the Ax logic control inputs determine the on switches. The $\overline{\mathrm{EN}}$ input signal is not latched by $\overline{\mathrm{WR}}$.
23	GND	Ground (0 V) Reference.
24	$\mathrm{V}_{\text {SS }}$	Most Negative Power Supply in a Dual-Supply Application. In single-supply applications, connect this pin to GND.
25 to 40	S17 to S32	Source Terminal. This pin may be an input or output.
41, 42, 44	NIC	Not Internally Connected. Do not connect to this pin.
43	D EPAD	Drain Terminal. This pin may be an input or output. Exposed Pad. The exposed pad must be connected to GND.

Truth Tables

Table 10. ADG726 Truth Table

A3 ${ }^{1}$	A2 ${ }^{1}$	A1 ${ }^{1}$	AO^{1}	$\overline{E N}^{1}$	$\overline{\text { CSA }}$	$\overline{\text { CSB }}$	$\overline{\mathbf{W R}}^{1}$	On Switch
X	X	X	X	X	1	1	$\mathrm{L} \rightarrow \mathrm{H}$	Latches control input data
X	X	X	X	X	1	1	X	No change in switch condition
X	X	X	X	1	X	X	X	None
0	0	0	0	0	0	0	0	S1A to DA, S1B to DB
0	0	0	1	0	0	0	0	S2A to DA, S2B to DB
0	0	1	0	0	0	0	0	S3A to DA, S3B to DB
0	0	1	1	0	0	0	0	S4A to DA, S4B to DB
0	1	0	0	0	0	0	0	S5A to DA, S5B to DB
0	1	0	1	0	0	0	0	S6A to DA, S6B to DB
0	1	1	0	0	0	0	0	S7A to DA, S7B to DB
0	1	1	1	0	0	0	0	S8A to DA, S8B to DB
1	0	0	0	0	0	0	0	S9A to DA, S9B to DB
1	0	0	1	0	0	0	0	S10A to DA, S10B to DB
1	0	1	0	0	0	0	0	S11A to DA, S11B to DB
1	0	1	1	0	0	0	0	S12A to DA, S12B to DB

A3 $^{\mathbf{1}}$	$\mathbf{A 2}^{\mathbf{1}}$	$\mathbf{A 1}^{\mathbf{1}}$	$\mathbf{A 0}^{\mathbf{1}}$	$\overline{\mathbf{E N}}^{\mathbf{1}}$	$\overline{\mathbf{C S A}}$	$\overline{\mathbf{C S B}}$	$\overline{\mathbf{W R}}^{\mathbf{1}}$	On Switch
1	1	0	0	0	0	0	0	S13A to DA, S13B to DB
1	1	0	1	0	0	0	0	S14A to DA, S14B to DB
1	1	1	0	0	0	0	0	S15A to DA, S15B to DB
1	1	1	1	0	0	0	0	S16A to DA, S16B to DB

${ }^{1} \mathrm{X}$ is don't care, L is low, and H is high.

Table 11. ADG732 Truth Table

A4 ${ }^{1}$	A3 ${ }^{1}$	A2 ${ }^{1}$	A1 ${ }^{1}$	A0 ${ }^{1}$	$\overline{\mathbf{E N}}^{1}$	$\overline{\mathbf{C S}}$	$\overline{\mathbf{W R}}^{1}$	Switch Condition
X	X	X	X	X	X	1	$\mathrm{L} \rightarrow \mathrm{H}$	Latches control input data
X	X	X	X	X	X	1	X	No change in switch condition
X	X	X	X	X	1	X	X	None
0	0	0	0	0	0	0	0	1
0	0	0	0	1	0	0	0	2
0	0	0	1	0	0	0	0	3
0	0	0	1	1	0	0	0	4
0	0	1	0	0	0	0	0	5
0	0	1	0	1	0	0	0	6
0	0	1	1	0	0	0	0	7
0	0	1	1	1	0	0	0	8
0	1	0	0	0	0	0	0	9
0	1	0	0	1	0	0	0	10
0	1	0	1	0	0	0	0	11
0	1	0	1	1	0	0	0	12
0	1	1	0	0	0	0	0	13
0	1	1	0	1	0	0	0	14
0	1	1	1	0	0	0	0	15
0	1	1	1	1	0	0	0	16
1	0	0	0	0	0	0	0	17
1	0	0	0	1	0	0	0	18
1	0	0	1	0	0	0	0	19
1	0	0	1	1	0	0	0	20
1	0	1	0	0	0	0	0	21
1	0	1	0	1	0	0	0	22
1	0	1	1	0	0	0	0	23
1	0	1	1	1	0	0	0	24
1	1	0	0	0	0	0	0	25
1	1	0	0	1	0	0	0	26
1	1	0	1	0	0	0	0	27
1	1	0	1	1	0	0	0	28
1	1	1	0	0	0	0	0	29
1	1	1	0	1	0	0	0	30
1	1	1	1	0	0	0	0	31
1	1	1	1	1	0	0	0	32

[^5]
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 8. On Resistance vs. $V_{D}\left(V_{s}\right)$, Single Supply

Figure 9. On Resistance vs. VD (Vs), Dual Supply

Figure 10. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Different Temperatures, Single Supply

Figure 11. On Resistance vs. $V_{D}\left(V_{S}\right)$, Single Supply

Figure 12. On Resistance vs. $V_{D}\left(V_{s}\right)$, Dual Supply

Figure 13. Leakage Currents vs. Temperature

Figure 14. ADG732 Charge Injection ($Q_{1 N J}$) vs. $V_{D}\left(V_{S}\right)$

Figure 15. $t_{O N} / t_{O F F}(\overline{E N})$ Time vs. Temperature

Figure 16. Logic Threshold Voltage vs. Supply Voltage (VDD)

Figure 17. Off Isolation vs. Frequency

Figure 18. Crosstalk vs. Frequency

Figure 19. Insertion Loss vs. Frequency

TEST CIRCUITS

Figure 20. On Resistance

Figure 21. Is (Off)

Figure 22. Off Isolation

Figure 23. Channel-to-Channel Crosstalk

Figure 24. I_{D} (Off)

Figure 25. I_{D} (On)

Figure 26. Bandwidth

*SIMILAR CONNECTION FOR ADG726.

Figure 27. Switching Time of Multiplexer, $t_{\text {transition }}$
 *SIMILAR CONNECTION FOR ADG726.

Figure 28. Break-Before-Make Delay, topen

*SIMILAR CONNECTION FOR ADG726.

Figure 29. Write Turn-On and Turn-Off Time, ton, toff ($\overline{W R}$)

Figure 30. Enable Delay, toN $(\overline{E N})$, toff $(\overline{E N})$

*SIMILAR CONNECTION FOR ADG726.

Figure 31. Charge Injection

TERMINOLOGY

IdD
IDD represents the positive supply current.
Iss
Iss represents the negative supply current.
IN
IN represents the logic control input.
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$
V_{D} and V_{S} represent the analog voltage on the Dx pins and the Sx pins, respectively.
$\mathrm{R}_{\text {on }}$
Ron represents the ohmic resistance between the Dx pins and the Sx pins.
$\Delta R_{\text {on }}$
Δ Ron represents the difference between the Ron of any two channels.

$\mathbf{R}_{\text {flat(on) }}$

$\mathrm{R}_{\text {flat(on) }}$ is the flatness that is defined as the difference between the maximum and minimum value of on resistance measured over the specified analog signal range.
I_{s} (Off)
I_{s} (Off) represents the source leakage current with the switch off.
I_{D} (Off)
I_{D} (Off) represents the drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}(\mathrm{On}), \mathrm{I}_{\mathrm{s}}(\mathbf{O n})$
$\mathrm{I}_{\mathrm{D}}(\mathrm{On})$ and $\mathrm{I}_{\mathrm{S}}(\mathrm{On})$ represent the channel leakage currents with the switch on.

VinL
$\mathrm{V}_{\text {INL }}$ is the maximum input voltage for Logic 0 .
$V_{\text {inh }}$
$\mathrm{V}_{\text {INH }}$ is the minimum input voltage for Logic 1.

$\mathrm{I}_{\text {INL }}, \mathrm{I}_{\text {INH }}$

$\mathrm{I}_{\text {INL }}$ and $\mathrm{I}_{\text {INH }}$ represent the low and high input currents of the digital inputs.
C_{s} (Off)
C_{s} (Off) represents the off switch source capacitance. It is measured with a reference to ground.
C_{D} (Off)
C_{D} (Off) represents the off switch drain capacitance. It is measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{\mathrm{s}}(\mathrm{On})$
$C_{D}(\mathrm{On})$ and $\mathrm{C}_{S}(\mathrm{On})$ represent the on switch capacitances, which are measured with reference to ground.
$\mathrm{C}_{\text {IN }}$
$\mathrm{C}_{\text {IN }}$ is the digital input capacitance.
$\mathbf{t}_{\text {transition }}$
$t_{\text {transition }}$ is the delay time measured between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.
ton ($\overline{\mathrm{EN}}$)
$\mathrm{t}_{\mathrm{ON}}(\overline{\mathrm{EN}})$ is the delay time between the 50% and 90% points of the $\overline{\mathrm{EN}}$ digital input and the switch on condition.
$\boldsymbol{t}_{\text {off }}(\overline{\mathrm{EN}})$
toff $(\overline{\mathrm{EN}})$ is the delay time between the 50% and 90% points of the $\overline{\mathrm{EN}}$ digital input and the switch off condition.

topen

topen is the off time measured between the 80% points of both switches when switching from one address state to another

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

Off isolation is a measure of the unwanted signal coupling through an off switch.

Channel-to-Channel Crosstalk

Crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Insertion Loss

Insertion loss is the loss due to the on resistance of the switch.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-220-WKKD-4
Figure 32. 48-Lead Frame Chip Scale Package [LFCSP]
$7 \mathrm{~mm} \times 7 \mathrm{~mm}$ Body and 0.75 mm Package Height
(CP-48-4)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-026ABC
Figure 33. 48-Lead Thin Plastic Quad Flat Package [TQFP] (SU-48)
Dimensions shown in millimeters
ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADG726BCPZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 -Lead Frame Chip Scale Package [LFCSP]	CP-48-4
ADG726BCPZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48-Lead Frame Chip Scale Package [LFCSP]	CP-48-4
ADG726BSUZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 -Lead Thin Plastic Quad Flat Package [TQFP]	SU-48
ADG726BSUZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	48-Lead Thin Plastic Quad Flat Package [TQFP]
ADG732BCPZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	48-Lead Frame Chip Scale Package [LFCSP]	SU-48
ADG732BCPZ-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	48-Lead Frame Chip Scale Package [LFCSP]	CP-48-4-4
ADG732BSUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	48-Lead Thin Plastic Quad Flat Package [TQFP]	SU-48
ADG732BSUZ-REEL			SU-48

[^6]
[^0]: Rev. C
 Document Feedback
 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

[^1]: ${ }^{1}$ Guaranteed by design; not subject to production test.

[^2]: ${ }^{1}$ See Figure 3.
 ${ }^{2}$ All input signals are specified with $\mathrm{tr}=\mathrm{tf}=1 \mathrm{~ns}$ (10% to 90% of $V_{D D}$).
 ${ }^{3}$ Guaranteed by design and characterization, not production tested.

[^3]: ${ }^{1}$ Overvoltages at $A, \overline{E N}, \overline{W R}, \overline{C S}, S$, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

[^4]: NOTES

 1. NIC = NOT INTERNALLY CONNECTED. DO NOT CONNECT TO THIS PIN.
 2. THE EXPOSED PAD MUST BE CONNECTED TO GND.
[^5]: ${ }^{1} \mathrm{X}$ is don't care, L is low, and H is high.

[^6]: ${ }^{1} Z=$ RoHS-Compliant Part

