

CMOS, Low Voltage RF/Video, SPST Switch

ADG751

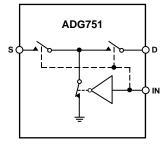
FEATURES

High Off Isolation –75 dB at 100 MHz –3 dB Signal Bandwidth 300 MHz +1.8 V to +5.5 V Single Supply Low On-Resistance (15 Ω) Fast Switching Times t_{ON} Typically 9 ns t_{OFF} Typically 3 ns Typical Power Consumption <0.01 μ W TTL/CMOS Compatible

APPLICATIONS

Audio and Video Switching RF Switching Networking Applications Battery Powered Systems Communication Systems Relay Replacement Sample-and-Hold Systems

GENERAL DESCRIPTION


The ADG751 is a low voltage SPST (single pole, single throw) switch. It is constructed in a T-switch configuration, which results in excellent Off Isolation while maintaining good frequency response in the ON condition.

High off isolation and wide signal bandwidth make this part suitable for switching RF and video signals. Low power consumption and operating supply range of +1.8 V to +5.5 V make it ideal for battery powered, portable instruments.

The ADG751 is designed on a submicron process that provides low power dissipation yet gives high switching speed and low on resistance. This part is a fully bidirectional switch and can handle signals up to and including the supply rails.

The ADG751 is available in 6-lead SOT-23 and 8-lead $\mu SOIC$ packages.

FUNCTIONAL BLOCK DIAGRAM

SWITCH SHOWN FOR A LOGIC "1" INPUT

PRODUCT HIGHLIGHTS

- 1. High Off Isolation -75 dB at 100 MHz.
- 2. -3 dB Signal Bandwidth 300 MHz.
- 3. Low On-Resistance (15 Ω).
- 4. Low Power Consumption, typically $<0.01 \mu$ W.
- 5. Tiny 6-lead SOT-23 and 8-lead µSOIC packages.

REV.0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

ADG751—SPECIFICATIONS ($V_{DD} = +5 V \pm 10\%$, GND = 0 V, unless otherwise noted.)

	B Grade -40°C to		A Grade -40°C to			
Parameter	+25°C	+85°C	+25°C	+85°C	Units	Test Conditions/Comments
ANALOG SWITCH						
Analog Signal Range		0 V to V_{DD}		0 V to V_{DD}	V	
On-Resistance (R _{ON})	28		15		Ω typ	$V_{\rm S} = 0$ V to $V_{\rm DD}$, $I_{\rm DS} = 10$ mA;
	35	40	18	20	Ω max	Test Circuit 1
On-Resistance Flatness (R _{FLAT(ON)})	3		2		Ω typ	$V_{\rm S} = 0$ V to 2.5 V, $I_{\rm DS} = 10$ mA
		5		3	Ω max	$V_{DD} = 4.5 V$
LEAKAGE CURRENTS						$V_{DD} = +5.5 V$
Source OFF Leakage I _S (OFF)	±0.01		±0.01		nA typ	$V_D = 4.5 \text{ V/1 V}, V_S = 1 \text{ V/4.5 V};$
	±0.25	±3.0	±0.25	±3.0	nA max	Test Circuit 2
Drain OFF Leakage I_D (OFF)	± 0.01		±0.01		nA typ	$V_{\rm D} = 4.5 \text{ V/1 V}, V_{\rm S} = 1 \text{ V/4.5 V};$
	±0.25	± 3.0	±0.25	±3.0	nA max	Test Circuit 2
Channel ON Leakage I_D , I_S (ON)	± 0.01		±0.01		nA typ	$V_{\rm D} = V_{\rm S} = 1$ V, or 4.5 V;
	±0.25	±3.0	±0.25	±3.0	nA max	Test Circuit 3
DIGITAL INPUTS						
Input High Voltage, V _{INH}		2.4		2.4	V min	
Input Low Voltage, V _{INL}		0.8		0.8	V max	
Input Current						
I _{INL} or I _{INH}	0.001		0.001		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		± 0.5		± 0.5	μA max	
C _{IN} , Digital Input Capacitance	2		2		pF typ	
DYNAMIC CHARACTERISTICS ¹						
t _{ON}	9		9		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		13		13	ns max	$V_s = 3 V$, Test Circuit 4
t _{OFF}	3		3		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		5		5	ns max	$V_s = 3 V$, Test Circuit 4
Charge Injection	1		1		pC typ	$V_{\rm S} = 1 V, R_{\rm S} = 0 \Omega, C_{\rm L} = 1.0 \text{ nF};$
Off Is alation	75		65		JD tour	Test Circuit 5
Off Isolation	-75		-65		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 MHz$; Test Circuit 6
-3 dB Bandwidth	180		300		MHz typ	$R_{\rm L} = 50 \ \Omega, C_{\rm L} = 5 \text{ pF}, \text{ Test Circuit 7}$
$C_{\rm S}$ (OFF)	4		4		pF typ	$R_L = 50.22$, $C_L = 5$ pr, rest circuit 7
$C_{\rm D}$ (OFF)	4		4		pF typ	
$C_D, C_S (ON)$	26		15		pF typ	
			-		1 -71	X - 15 5 X
POWER REQUIREMENTS	0.001		0.001			$V_{DD} = +5.5 V$ Digital Inputs = 0 V or +5.5 V
I _{DD}	0.001	0.5	0.001	0.5	μA typ μA max	Digital inputs -0 v or ± 5.5 v
	0.1	0.5	0.1	0.5		<u> </u>

NOTES

¹Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

SPECIFICATIONS ($V_{DD} = +3 V \pm 10\%$, GND = 0 V, unless otherwise noted.)

	B Grade -40°C to		A Grade -40°C to			
Parameter	+25°C	-40 ℃ 10 +85°C	+25°C	-40 ℃ 10 +85°C	Units	Test Conditions/Comments
ANALOG SWITCH						
Analog Signal Range		0 V to V _{DD}		0 V to V _{DD}	V	
On-Resistance (R _{ON})	60		35		Ω typ	$V_{\rm S} = 0 \text{ V to } V_{\rm DD}, I_{\rm DS} = -10 \text{ mA};$
		90		50	Ω max	Test Circuit 1
LEAKAGE CURRENTS						$V_{DD} = +3.3 V$
Source OFF Leakage I _S (OFF)	±0.01		±0.01		nA typ	$V_D = 3 V/1 V, V_S = 1 V/3 V;$
	±0.25	±3.0	±0.25	±3.0	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.01		±0.01		nA typ	$V_{\rm D} = 1 \text{ V/3 V}, V_{\rm S} = 3 \text{ V/1 V};$
	±0.25	±3.0	±0.25	±3.0	nA max	Test Circuit 2
Channel ON Leakage I _D , I _S (ON)	±0.01		±0.01		nA typ	$V_{\rm D} = V_{\rm S} = 1$ V, or 3 V;
	±0.25	± 3.0	±0.25	±3.0	nA max	Test Circuit 3
DIGITAL INPUTS						
Input High Voltage, V _{INH}		2.0		2.0	V min	
Input Low Voltage, V _{INL}		0.4		0.4	V max	
Input Current						
I _{INL} or I _{INH}	0.001		0.001		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		±0.5		± 0.5	μA max	
C _{IN} , Digital Input Capacitance	2		2		pF typ	
DYNAMIC CHARACTERISTICS ¹						
t _{ON}	12		12		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		19		19	ns max	$V_s = 2 V$, Test Circuit 4
t _{OFF}	4		4		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		6		6	ns max	$V_s = 2 V$, Test Circuit 4
Charge Injection	1		1		pC typ	$V_{\rm S} = 1 \text{ V}, R_{\rm S} = 0 \Omega, C_{\rm L} = 1.0 \text{ nF};$
						Test Circuit 5
Off Isolation	-75		-65		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 100 MHz;$
						Test Circuit 6
-3 dB Bandwidth	180		280		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 7
$C_{S}(OFF)$	4		4		pF typ	
$C_{\rm D}$ (OFF)	4		4		pF typ	
$C_D, C_S(ON)$	26		15		pF typ	
POWER REQUIREMENTS					.	$V_{DD} = +3.3 V$
I _{DD}	0.001		0.001		μA typ	Digital Inputs = $0 \text{ V or } +3.3 \text{ V}$
	0.1	0.5	0.1	0.5	μA max	

NOTES

¹Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS¹

$(T_{A} = +25^{\circ}C)$	unless	otherwise	noted)

V_{DD} to GND
30 mA, Whichever Occurs First
Peak Current, S or D100 mA
(Pulsed at 1 ms, 10% Duty Cycle Max)
Continuous Current, S or D 30 mA
Operating Temperature Range
Industrial (A, B Versions) $\dots -40^{\circ}$ C to $+85^{\circ}$ C
Storage Temperature Range
Junction Temperature (T _J Max)+150°C
Power Dissipation $(T_J Max - T_A)/\theta_{JA}$
µSOIC Package
θ_{JA} Thermal Impedance
$\theta_{\rm JC}$ Thermal Impedance

SOT-23 Package
θ _{IA} Thermal Impedance
$\theta_{\rm IC}$ Thermal Impedance
Lead Temperature, Soldering
Vapor Phase (60 sec) +215°C
Infrared (15 sec) +220°C

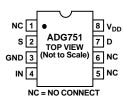
NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

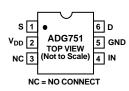
²Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

ORDERING GUIDE

Model	Temperature Range	Brand*	Package Descriptions	Package Options
ADG751BRM	-40°C to +85°C	SDB	μSOIC	RM-8
ADG751BRT	-40°C to +85°C	SDB	SOT-23	RT-6
ADG751ARM	-40°C to +85°C	SDA	μSOIC	RM-8
ADG751ART	-40°C to +85°C	SDA	SOT-23	RT-6


*Brand on these packages is limited to three characters due to space constraints.

CAUTION_


ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG751 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS 8-Lead µSOIC (RM-8)

6-Lead SOT-23 (RT-6)

V_{DD} Most positive power supply potential.GNDGround (0 V) reference.SSource terminal. May be an input or outpDDrain terminal. May be an input or outpINLogic control input. R_{ON} Ohmic resistance between D and S. $R_{FLAT(ON)}$ Flatness is defined as the difference betwthe maximum and minimum value of on tance as measured over the specified anal signal range.Is (OFF)Source leakage current with the switch "OF ID, Is (ON)V_D (V_S)Analog voltage on terminals D and S.	ut. een resis- og FF."
SSource terminal. May be an input or outpDDrain terminal. May be an input or outpINLogic control input.RONOhmic resistance between D and S.RFLAT(ON)Flatness is defined as the difference betw the maximum and minimum value of on tance as measured over the specified anal signal range.Is (OFF)Source leakage current with the switch "OF Drain leakage current with the switch "OF ID, IS (ON)	ut. een resis- og FF."
DDrain terminal. May be an input or outputINLogic control input.RONOhmic resistance between D and S.RFLAT(ON)Flatness is defined as the difference between the maximum and minimum value of on tance as measured over the specified analysignal range.Is (OFF)Source leakage current with the switch "OF ID, IS (ON)Channel leakage current with the switch "OF ID, IS (ON)	ut. een resis- og FF."
INLogic control input. R_{ON} Ohmic resistance between D and S. $R_{FLAT(ON)}$ Flatness is defined as the difference between the maximum and minimum value of on tance as measured over the specified analesignal range. I_S (OFF)Source leakage current with the switch "OF Drain leakage current with the switch "OF ID, IS (ON)Channel leakage current with the switch "OF Drain leakage current with the switch "OF Dra	een resis- og FF."
RON Ohmic resistance between D and S. RFLAT(ON) Flatness is defined as the difference between the maximum and minimum value of on tance as measured over the specified analysignal range. Is (OFF) Source leakage current with the switch "OF Drain leakage current with the switch "OF ID, IS (ON) Channel leakage current with the switch "OF ID, IS (ON)	resis- .og FF."
R _{FLAT(ON)} Flatness is defined as the difference betw the maximum and minimum value of on tance as measured over the specified anal signal range. Is (OFF) I _D (OFF) Source leakage current with the switch "OF I _D , I _S (ON) Channel leakage current with the switch "OF	resis- .og FF."
Hin(on)the maximum and minimum value of on tance as measured over the specified anal signal range.Is (OFF)Source leakage current with the switch "OF Drain leakage current with the switch "OF Drain leakage current with the switch "OF Channel leakage current with the switch "OF	resis- .og FF."
IDIDIDIDIDISIDIDIDISID <td></td>	
I_D , I_S (ON) Channel leakage current with the switch "O	F."
$V_{D}(V_{S})$ Analog voltage on terminals D and S.	DN."
C _S (OFF) "OFF" switch source capacitance.	
C_D (OFF) "OFF" switch drain capacitance.	
C_D , C_S (ON) "ON" switch capacitance.	
t _{ON} Delay between applying the digital control input and the output switching on. See T Circuit 4.	
t _{OFF} Delay between applying the digital control input and the output switching off.	ol
Off Isolation A measure of unwanted signal coupling through an "OFF" switch.	
Charge A measure of the glitch impulse transferred Injection the digital input to the analog output dur switching.	
Bandwidth The frequency at which the output is attended by -3 dBs.	nu-
On Response The frequency response of the "ON" swi	tch.
Insertion Loss Loss due to the ON resistance of the swit	tch.
V _{INL} Maximum input voltage for Logic "0."	
V _{INH} Minimum input voltage for Logic "1."	
Input current of the digital input.	
I _{DD} Positive supply current.	

ADG751 IN	Switch Condition
0	ON
1	OFF

ADG751-Typical Performance Characteristics

Figure 1. On Resistance as a Function of V_D (V_S) Single Supplies (A Grade)

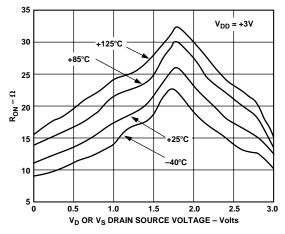


Figure 2. On Resistance as a Function of V_D (V_S) for Different Temperatures $V_{DD} = 3 V$ (A Grade)

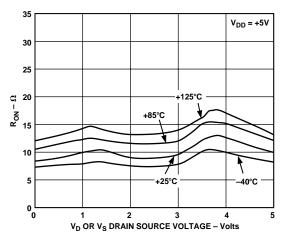


Figure 3. On Resistance as a Function of V_D (V_S) for Different Temperatures $V_{DD} = 5 V$ (A Grade)

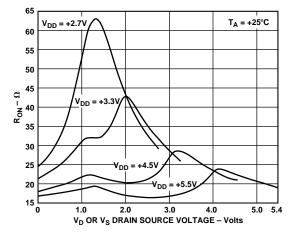


Figure 4. On Resistance as a Function of V_D (V_S) Single Supplies (B Grade)

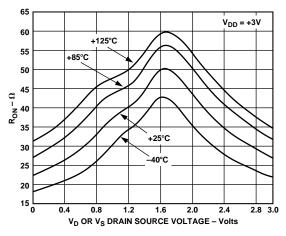


Figure 5. On Resistance as a Function of V_D (V_S) for Different Temperatures $V_{DD} = 3 V$ (B Grade)

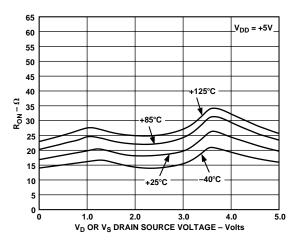


Figure 6. On Resistance as a Function of V_D (V_S) for Different Temperatures $V_{DD} = 5 V$ (B Grade)

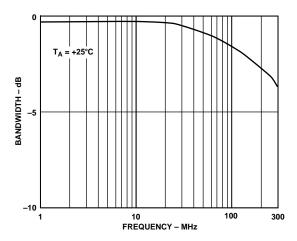


Figure 7. On Response vs. Frequency (A Grade)

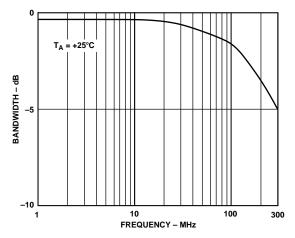


Figure 8. On Response vs. Frequency (B Grade)

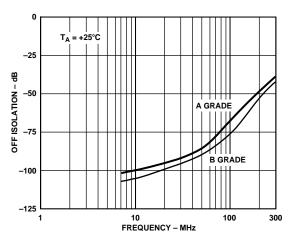


Figure 9. Off Isolation vs. Frequency for Both Grades

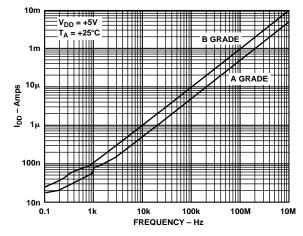


Figure 10. Supply Current vs. Input Switching Frequency

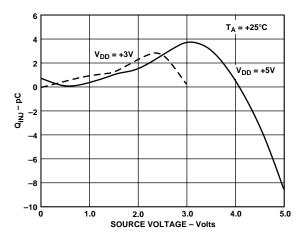
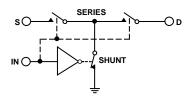


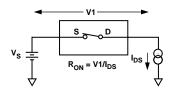
Figure 11. Charge Injection vs. Source/Drain Voltage

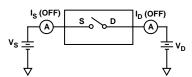
GENERAL DESCRIPTION

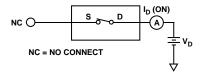
The ADG751 is an SPST switch constructed using switches in a T configuration to obtain high "OFF" isolation while maintaining good frequency response in the "ON" condition.

Figure 12 shows the T-switch configuration. While the switch is in the OFF state, the shunt switch is closed and the two series switches are open. The closed shunt switch provides a signal path to ground for any of the unwanted signals that find their way through the off capacitances of the series' MOS devices. This results in improved isolation between the input and output than with an ordinary series switch. When the switch is in the ON condition, the shunt switch is open and the signal path is through the two series switches which are now closed.



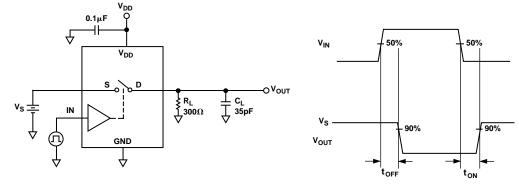

Figure 12. Basic T-Switch Configuration

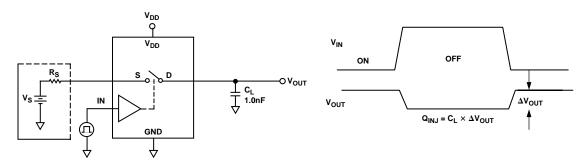

LAYOUT CONSIDERATIONS

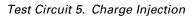

Where accurate high frequency operation is important, careful consideration should be given to the printed circuit board layout and to grounding. Wire wrap boards, prototype boards and sockets are not recommended because of their high parasitic inductance and capacitance. The part should be soldered directly to a printed circuit board. A ground plane should cover all unused areas of the component side of the board to provide a low impedance path to ground. Removing the ground planes from the area around the part reduces stray capacitance.

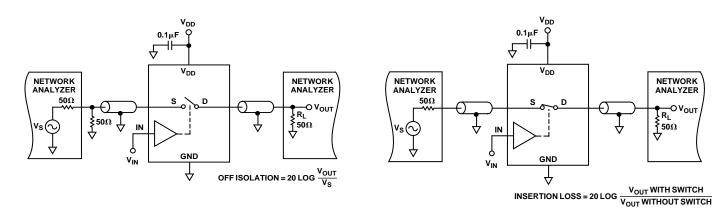
Good decoupling is important in achieving optimum performance. $V_{\rm DD}$ should be decoupled with a 0.1 μF surface mount capacitor to ground mounted as close as possible to the device itself.

Test Circuits

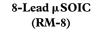


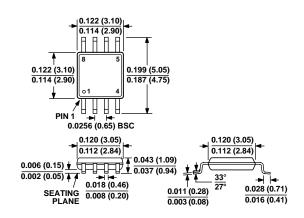

Test Circuit 1. On Resistance


Test Circuit 2. Off Leakage

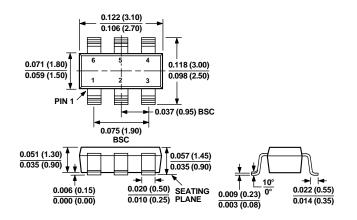

Test Circuit 3. On Leakage

Test Circuit 4. Switching Times




Test Circuit 6. Off Isolation

Test Circuit 7. Bandwidth


OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

